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We investigate the statistics of flat-top solitary wave parameters in the presence of weak multiplicative
dissipative disorder. We consider first propagation of solitary waves of the cubic-quintic nonlinear Schrodinger
equation (CQNLSE) in the presence of disorder in the cubic nonlinear gain. We show by a perturbative analytic
calculation and by Monte Carlo simulations that the probability-density function (PDF) of the amplitude 7
exhibits loglognormal divergence near the maximum possible amplitude 7,,, a behavior that is similar to the
one observed earlier for disorder in the linear gain [A. Peleg ef al., Phys. Rev. E 72, 027203 (2005)]. We relate
the loglognormal divergence of the amplitude PDF to the superexponential approach of 7 to 7, in the
corresponding deterministic model with linear/nonlinear gain. Furthermore, for solitary waves of the derivative
CQNLSE with weak disorder in the linear gain both the amplitude and the group velocity 3 become random.
We therefore study analytically and by Monte Carlo simulations the PDF of the parameter p, where p=7/(1
—&,B/2) and g, is the self-steepening coefficient. Our analytic calculations and numerical simulations show

that the PDF of p is loglognormally divergent near the maximum p value.
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I. INTRODUCTION

Flat-top solitary waves are coherent patterns, which exist
as a result of a balance between dispersion/diffraction and
competing nonlinearities, where the low order nonlinearity is
“focusing” while the high order nonlinearity is “defocusing”
[1-3]. When the intensity of the field is relatively small, the
low order nonlinearity is dominant, and consequently, the
solitary waves are narrow and have a shape that is similar to
that of conventional solitons. However, when the intensity
increases, the high order nonlinearity becomes dominant and
leads to the broadening of the pulse shape and to the genera-
tion of a typical table-top pattern. Flat-top solitary waves
appear as solutions to nonlinear wave models in many areas
of physics, including nonlinear optics [1,4,5] fluid dynamics
[3.6], and plasma physics [7,8]. As a result, they have been
the subject of intensive research efforts in recent years. The
interest in flat-top solitary waves is further enhanced since
they are used in pattern formation theory to explain the emer-
gence of fronts (kinks) from localized coherent structures
such as solitons and solitary waves [9,10]. Many of the sys-
tems in which flat-top solitary waves appear can be influ-
enced by processes involving noise or disorder. When the
disorder is strong the solitary waves are usually destroyed,
whereas, when it is weak, the solitary waves can form and
evolve. In the latter case one is mainly concerned with the
statistics of the solitary wave parameters.

In this study we focus attention on an important type of
disorder, which we call multiplicative dissipative disorder.
This type of disorder is characterized by the following prop-
erties: (1) the disorder affects the amplitude of the solitary
wave in first order of the perturbation; (2) the disorder term
in the nonlinear wave model is multiplicative. Dissipative
disorder can appear in systems described by nonlinear wave
equations in various forms. Two of the most common forms
are disorder in the linear gain/loss coefficient and disorder in
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the cubic nonlinear gain/loss coefficient. Disorder in the lin-
ear gain coefficient can appear in optical fiber communica-
tion systems due to randomness in the gain of amplifiers that
are positioned along the fiber line to compensate for the loss
[11]. Moreover, such disorder appears in massive multichan-
nel optical fiber transmission as a result of the interplay be-
tween Raman-induced energy exchange in pulse collisions
and bit pattern randomness [ 12—16]. In this case, the disorder
can lead to relatively high bit-error-rate values and intermit-
tent dynamics of pulse parameters [ 16—18]. We point out that
in all the studies reported in Refs. [11-18] weak disorder was
considered. In addition, both linear and cubic nonlinear dis-
order in the gain can emerge in an active nonlinear medium
due to random variations with distance in the linear/
nonlinear gain/loss coefficient.

We consider two nonlinear wave models, which possess
flat-top solitary wave solutions: the cubic-quintic nonlinear
Schrodinger equation (CQNLSE) and the derivative
CQNLSE (DCQNLSE). A third model, the extended
Korteweg-de Vries (eKdV) equation, is also briefly dis-
cussed. The CQNLSE is a simple nonintegrable extension of
the cubic nonlinear Schrédinger equation (CNLSE) possess-
ing solitary wave solutions. The CQNLSE describes a vari-
ety of physical systems including pulse propagation in
semiconductor-doped optical fibers [1,4,19-23], laser-plasma
interaction [7,24], and Bose-Einstein condensates [25-28].
Another important reason for the interest in the CQNLSE is
that due to its nonintegrability it allows one to observe dy-
namical effects that do not exist in the CNLSE, e.g., emis-
sion of continuous radiation in two-soliton collisions [29,30].
Furthermore, the cubic-quintic complex Ginzburg-Landau
equation, which is a generalization of the CQNLSE includ-
ing dissipative terms, is known to describe even a wider
range of physical systems, including, for example, convec-
tion and pattern formation in fluids [9,10,31-34] and mode-
locked lasers [5,35-38].
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The derivative CNLSE is an extension of the CNLSE that,
in the context of nonlinear optics, takes into account the
effects of self-steepening [19,39—41]. For short optical pulses
propagating in semiconductor-doped fibers both quintic non-
linearity and self-steepening are important. Consequently,
one expects that the derivative CQNLSE, which takes into
account both effects, would provide a more accurate descrip-
tion of the propagation in this case. We note that a variant of
the derivative CNLSE is known to describe propagation of
Alfvén waves in magnetized plasmas [42-44]. Moreover, it
was recently shown theoretically and experimentally that a
variant of the DCQNLSE accurately describes propagation
of high-intensity pulses in cascaded-quadratic nonlinear me-
dia [45].

The eKdV equation, which is also known as the Gardner
equation, is an integrable model that describes interfacial
waves in a two-layer system [46—48] as well as stratified
shear flow in the ocean [3,49,50]. It provides a possible ex-
planation to observations of large-amplitude flat-top solitary
waves in coastal zones [51-53].

In a previous work [54] we studied the effects of weak
disorder in the linear gain coefficient on solitary waves of the
CQNLSE. We showed analytically (by employing an adia-
batic perturbation method) and by Monte Carlo simulations
that the probability-density function (PDF) of the solitary
wave amplitude has a loglognormal diverging form in the
vicinity of the maximum possible amplitude. Since solitary
waves with amplitude values close to the maximum possible
amplitude have a table-top shape, this finding means that the
amplitude PDF of flat-top solitary waves exhibits loglognor-
mal divergence. We also conjectured that similar loglognor-
mal divergence should be observed for disorder in the non-
linear gain. However, the full analytic form of the amplitude
PDF for disorder in the nonlinear gain was not obtained and
the conjecture was not tested by numerical simulations.
Thus, the important question concerning the generality of the
loglognormal divergence of the amplitude PDF for flat-top
solitary waves was not fully answered, even for the
CQNLSE. Furthermore, it is not clear whether loglognormal
divergence can be observed in other nonlinear wave models
possessing solitary wave solutions. In the current paper we
address these questions in detail. We start by considering
propagation of solitary waves of the CQNLSE in the pres-
ence of weak disorder in the cubic nonlinear gain. The case
of disorder in the cubic nonlinear gain is particularly impor-
tant since cubic gain/loss is very common in many systems
described by the complex Ginzburg-Landau equation (see,
for example, Ref. [33] and references therein). We calculate
the amplitude PDF analytically by employing an adiabatic
perturbation method and validate its loglognormal diver-
gence by Monte Carlo simulations. We then turn to study
propagation of solitary waves of the DCQNLSE in the pres-
ence of weak disorder in the linear gain. In this case both the
amplitude and the group velocity randomly vary during
propagation. We therefore study the PDF of a new parameter,
which is the ratio between the amplitude and a linear func-
tion of the group velocity. We find that the PDF of this new
parameter is loglognormally divergent near the parameter’s
maximum value. We conclude by a brief discussion of the
dynamic mechanism responsible for the loglognormal diver-
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gence of the PDFs, and of the possibility to observe similar
statistical behavior in the eKdV model.

The material in the rest of the paper is organized as fol-
lows. In Sec. II, we study propagation of solitary waves of
the CQNLSE in the presence of disorder in the cubic nonlin-
ear gain. In Sec. III, we investigate propagation of solitary
waves of the DCQNLSE in the presence of disorder in the
linear gain. Sections IV and V are reserved for discussion
and conclusions, respectively. In Appendix A, we describe a
method for identifying loglognormal divergence in numerical
data. Finally, Appendixes B and C are devoted to calculation
of the PDF by employing the Fokker-Planck approach and
by working within Itd’s interpretation.

II. CUBIC-QUINTIC NLSE WITH DISORDER IN THE
CUBIC GAIN/LOSS COEFFICIENT

Consider the dynamics described by the CQNLSE with
disorder in the cubic gain/loss coefficient,

i+ d+20YlPy—e ylty=ied)|Py. (1)

where the disorder &(z) is zero in average and short corre-
lated in z,

(§2)) =0, (&2)é(z')=Ddz-2"). 2)

In the context of nonlinear optical waveguides ¢ is propor-
tional to the envelope of the electric field, z is the propaga-
tion distance, ¢ is a retarded time, g, is the quintic nonlinear-
ity coefficient, 0 < e<1 is the cubic gain coefficient and D is
the disorder intensity. The terms &,|i/|*s and ie&(z)| 4%y de-
scribe the effects of quintic nonlinearity and disorder in the
cubic nonlinear gain/loss coefficient, respectively. When €
=0, Eq. (1) supports stable solitary wave solutions of the
form [55] ,(t,z) =V (x)exp(ix), where

-
V27
[(1 = %/ 72) " cosh(2x) + 1]V

M= (48(//3)_1/29 X= C(+,8(f—y)+ (WZ_BZ)Z’ and x= ﬂ(f—y
—2fz). In these relations the parameters n, B, «, y are
related to the amplitude, frequency, phase, and position of
the solitary wave, respectively. Note that the solitary wave
solution i, exists provided that <<,

We study the dynamics of the solitary wave ¢, as de-
scribed by Eq. (1). Since we are interested in flat-top solitary
waves we focus attention on the case g,>0. We also assume
that 4De*z<<1, so that for most of the disorder realizations
the dynamics of the solitary wave amplitude is not yet influ-
enced by the O(€®) radiation instability effects [9,56]. The
dynamics of the parameter 7 is obtained by using energy
balance considerations,

WVix) = 3)

o[ atop=2eso [ ayi @

In order to solve Eq. (4) we employ the adiabatic perturba-
tion method, which has been extensively used in previous
studies of the CQNLSE, see, for example, Ref. [9]. This
calculation yields
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F (n)

FIG. 1. The probability-density function F.(7) at z=10 for D
=3, £,=0.5, €=0.03 and 7(0)=1. The solid curve corresponds to
the analytic result obtained by using Egs. (8) and (10). The squares
represent the result of Monte Carlo simulations with Eq. (1), while
the circles stand for the result of Monte Carlo simulations with Eq.

(8).

i {arctanh( 1) } = 467]3,,5(2) {arctanh( i) _ i] )
dz in ! T
(5)

Furthermore, within the framework of Stratonovich’s inter-
pretation [57-59] Eq. (5) can be transformed into

d
d—: =4eé(z) (7, - 772)[ Do arctanh<l> - 17} (6)
Changing variables from 7 to v, where

J =
v= ,
(7, = 7) [,y arctanh(zy/,,) — 7]

we obtain the equation dv/dz=4€&(z), whose solution is

(7)

( ) (O) 7(z) dn
rEmeE 20 (7, = 7)1, arctanh(7/7,,) — 7]
=4€X(z), (8)

where X(z)=[{dz'&(z'). Notice that X(z) can be regarded as
a sum over many independent random variables. Conse-
quently, according to the central limit theorem its PDF ap-
proaches a Gaussian PDF of the form

F(X) = 2mDz)™"exp[- X*/(2Dz)]. 9)

Equation (8) defines a monotonously increasing function X
=¢(7) on 0= 5< 7, Changing variable from X to z while
employing Eqgs. (8) and (9) we obtain that the PDF of 7 is
given by

(327D ez) ™ 2exp[- ¢*(7)/(2Dz2)]
77%1 - 772)[77m arctanh( 77/ 77m) - 77]

for 0< <, and F.(7)=0 elsewhere. To calculate the
value of F,(#) for a given 7 one numerically solves Eq. (8)
for X=¢(7) and then substitutes the result into Eq. (10). The
graph of F.(7) obtained by this calculation is shown in Figs.
1 and 2.

Fun) = (10)
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FIG. 2. Blowup of the data in Fig. 1 in the vicinity of 7,
showing the divergence of F.(7).

As can be seen from Figs. 1 and 2, F.(7) diverges in the
vicinity of 7,,. In order to characterize the divergence we
obtain an approximate analytic solution of Eq. (8) for 7 near
7,,- We first write the integral in Eq. (8) as a sum of two
integrals,

7(2) d
4eX(z) = f 5 7
7(0) (77m - 772)[77m arCtanh(ﬂ/ 77m) - 77]

. J’?(Z) d77
25 (7= 1), arctanh(7/7,,) — 7]’
(11)

where 7(Z) is a constant satisfying 7(z) < 7(z) <, and
both 7(Z) and 7(z) are close to 7,,. Since both limits of the
first integral on the right hand side of Eq. (11) are constants
this integral is a constant that we denote by c;. We also
denote  Sy=m,—-n and notice that 0<én(z)/ 7,
<6m(2)/ 1,<1. We can therefore expand the integrand in
the second integral on the right hand side of Eq. (11) about
6m=0, keeping terms up to order 67 in the denominator.
This calculation yields

1 n(z) ds
46X(Z)2cl+—2f — " (12)

5 .
MY 65(3) 57]1n(6 577)
27,

Integrating over 67 we arrive at

X(z)zln{—ln{%}/5}/(467731), (13)
2%

where ¢ is another constant. Since the normally distributed
random variable X(z) is related to 87(z) via a double loga-
rithm, we say that 57(z) is loglognormally distributed. Using
Egs. (9) and (13), and changing variables from X to 67 we
obtain
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FIG. 3. G.(87) vs g.(5n) for the same parameters considered in
Figs. 1 and 2. The triangles represent the analytic prediction of Eqgs.
(8) and (10), the squares stand for the result of numerical simula-
tions with Eq. (1) and the circles correspond to the result obtained
by Monte Carlo simulations with Eq. (8). The solid line is a linear
fit of the squares with a slope of 0.97.

e*on -!
Fc(’r’)|7157]m = {(327TD62Z)1/27],27157] ln|: 277
In’[— In[(¢?87)/(27,,) /€]
X exp) — 7 ,
32D627]mz

(14)

from which it follows that the divergence of F.(7) near 7,, is
loglognormal.

To check the analytic predictions given by Egs. (10) and
(14) we performed Monte Carlo simulations with Eq. (1)
with 1.09 X 10° disorder realizations. We considered the pa-
rameter values D=3, g,=0.5 (corresponding to 7,
=1.22474) and €=0.03. The initial condition was taken in
the form of the solitary wave i, with 7(0)=1, B(0)=0,
y(0)=0, and a(0)=0. We carried out the simulations up to a
final distance z;=10, for which the disorder strength is
4D€z;=0.3. Equation (1) was integrated by employing a
split-step method that is of fourth order with respect to the
z-step dz [60]. The linear part id.y=—d"t was advanced ef-
ficiently via an evaluation of the operator exponential in Fou-
rier space and the nonlinear part id g=g,|f*+(ie(z)
-2)|¥* was advanced via a fourth-order Runge-Kutta
scheme. To overcome numerical errors resulting from radia-
tion emission and the use of periodic boundary conditions we
applied the method of artificial damping in the vicinity of the
boundaries of the computational domain. (See Refs.
[30,54,61] for other examples where the same method was
successfully used). The size of the domain was taken to be
—L=t=L with L=167 so that the absorbing layers do not
affect the dynamics of the solitary waves. The ¢ step and z
step were taken as Ar=0.01 and Az=0.001, respectively.

Figure 1 shows the 7-PDF obtained by the simulations as
well as the analytic prediction obtained with Egs. (8) and
(10) and the PDF obtained by Monte Carlo simulations with
Eq. (8). Figure 2 shows a blowup of the same data in the
neighborhood of 7,,. The good agreement between the three
results strongly indicates that the divergence is indeed loglo-
gnormal. In Fig. 3 we present a more sensitive analysis of
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this divergence that is based on the procedure described in
Appendix A for detecting loglognormal divergence in nu-
merical data. Following this procedure we plot G.(d7%) ver-
sus g.(67), where G.(67) and g.(57) are defined by Egs.
(A4) and (A5), respectively. It is seen that the data obtained
by numerical simulations with Eq. (1) lies on a straight line
with a slope 0.97, which is very close to the theoretically
predicted value of 1. Therefore, this analysis provides further
support in favor of the loglognormal divergence of F.(7).
Combining this observation with the result of Ref. [54], we
conclude that both disorder in the linear gain/loss coefficient
and disorder in the cubic nonlinear gain/loss coefficient lead
to the same type of divergence of the 7-PDF.

III. MULTIPLICATIVE-DISSIPATIVE DISORDER IN THE
DERIVATIVE CQNLSE

The discussion in Sec. II indicates that the loglognormal
divergence of the amplitude PDF is quite general for solitary
waves of the CQNLS model. We now show that similar sta-
tistical behavior is exhibited by solitary waves of a second
nonlinear wave model. We consider the derivative CQNLSE
(DCQNLSE) with weak disorder in the linear gain/loss co-
efficient

i0.+ a;+ 2yl y— eyl v+ ie (YY) = ied2)y,
(15)

where &(z) satisfies Eq. (2). In the context of nonlinear optics
g, is the self-steepening coefficient and ie,d,(|14>1)) describes
the self-steepening effect. In the absence of the perturbation
term ie&(z), Eq. (15) possesses solitary wave solutions of
the form ¢,(¢,z) =V (x)exp(ix), where

(2 - 8SB) 1/2p

WV (x) = ,
) [(1 = p*/p2)2cosh(2x) + 1]

(16)

pP= 71/(1—833/2), pm=[4(8(1_383/ 16)/3]_1/2’ X=a+B(t_y)
+(7*=B*)z+g(x), and x= 5(t—y—-2pz). In addition, the chirp
g(x) is given by

3
glx)=- —Zsspm arctanh[ B, tanh(x)], (17)
v

where the coefficient B, is

1_(1 _pZ/p'Zn)l/Z 1/2
B, = 2, 2\1/2 (18)
1+ (1-pIp;)

These solitary wave solutions exist provided that e,
>36f/ 16 and p<p,,. Notice that the solitary waves of the
DCQNLSE are chirped and are thus fundamentally different
from the solitary waves of the CQNLSE.

In the presence of disorder in the linear gain both 7 and 8
randomly vary along the propagation. Thus, the dynamics is
different from that observed in the CQNLSE case, where
only 7 varies as a result of the disorder. Energy-balance con-

siderations lead to an equation of the form

026602-4



DIVERGING PROBABILITY-DENSITY FUNCTIONS FOR...

azf dt|¢|2=26§(z)f di|yf*. (19)

In the first-order adiabatic perturbation procedure we replace
(t,z) with ,(r,z) in Eq. (19) and obtain

i{arctanh<£>] = 26§(z)arctanh(£). (20)
dZ Pm Pm

Denoting p,(z)=arctanh[p(z)/p,,], we observe that p, satis-
fies the stochastic equation

dp,ldz =2€&(2)pys (21)
whose solution in Stratonovich’s interpretation is
pa(z) = p4(0)exp[2€X(z)]. (22)

Therefore, the PDF of p,(z) is lognormal. Changing vari-
ables from p,(z) to p(z) we obtain that the PDF of p is given
by

exp{— In’[arctanh(p/p,,)/p,(0)1/(8D€*2)}
(87D E72)"?p,,(1 - p*/p*)arctanh(p/p,,)

Fylp) = (23)
for 0<p<p,, and F (p)=0 elsewhere. In Appendix B we
obtain the same expression for F,(p) by using the Fokker-
Planck approach. The PDF F,(p) has exactly the same form
as the PDF of 7 in systems described by the CQNLSE with
disorder in the linear gain/loss coefficient. {Compare Eq.
(23) with Eq. (6) in Ref. [54]}. In particular, F,(p) exhibits
loglognormal divergence in the vicinity of p,,,

Fd(p)|p5pm
= {(8mDe*2)"*5pln[5p/(2p,,) ]I}

X exp{~ In*{- In[ p/(2p,,) V[ 2p4(0)1}/(8D€%2)},
(24)

where dp=p,,—p and 0<dp/p,,<1. In Appendix C we cal-
culate F,(p) by applying Itd’s interpretation [58,59] to the
stochastic equation (21) satisfied by p,;. We show that in this
case as well F,(p) exhibits loglognormal divergence near p,,.

To validate our theoretical predictions we performed
Monte Carlo simulations with Eq. (15) with about 7.8 X 10*
disorder realizations. We used an initial condition in the form
of the solitary wave ¢, with 5(0)=1, B(0)=0, y(0)=0, and
@(0)=0 and considered the parameter values D=3, &,=0.7,
£,=0.8, and €=0.05. For these values, p(0)=1 and p,,
=1.13715. The simulations were carried out up to a final
distance zp=11, for which the disorder strength is 4D52zf
=0.33. Equation (15) was integrated by employing the split-
step method with periodic boundary conditions and with the
same numerical scheme as described in Sec. II. The size of
the computational domain was taken to be —100=r=100,
and the r-step and z-step were taken as Ar=0.01 and Az
=0.001, respectively.

The PDF F,(p) at z=10 obtained in the numerical simu-
lations is shown in Fig. 4 together with the theoretical pre-
diction. The numerically obtained PDF clearly exhibits di-
vergence in the vicinity of p,, and the overall agreement
between theory and simulation is good. To further check the
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F,(p)

FIG. 4. The probability-density function of p F,(p) at z=10 for
D=3, g,=0.7, £,=0.8, €=0.05, and p(0)=1. The squares represent
the result of Monte Carlo simulations with Eq. (15), while the solid
curve corresponds to the analytic result given by Eq. (23).

behavior of the PDF in the vicinity of p,, Fig. 5 shows a
blowup of the data in the region p=<p,,. Reasonable agree-
ment between theory and simulations is observed. We at-
tribute the differences between the curves to the difficulties
in obtaining an accurate measurement of the group velocity
from the numerical data. As a further test for the asymptotic
behavior of F,(p) near p, we employ the procedure for
detecting loglognormal divergence that is outlined in
Appendix A. Following this procedure we present the graph
of Gu(dp) versus g dp) in Fig. 6, where Gy (p)
={-In[(87De*z)"*8p|In[ 8p/ 2p,) I|IF4(p)1}'"* and  g,(dp)
=(8D€%z)"In{-In[Sp/(2p,,)]}. We observe that the numeri-
cally obtained curve lies on a straight line with a slope 0.97,
which is very close to the theoretically predicted value of 1.
We therefore conclude that the numerically obtained PDF of
p does exhibit loglognormal divergence.

IV. DISCUSSION

Here we discuss the underlying reason for the loglognor-
mal divergence of the %-PDF due to disorder in the linear/
nonlinear gain/loss. In addition, we briefly discuss a KdV-
type of model where the loglognormal divergence of soliton
parameters can potentially be observed.

30

25
20

15

F,(p)

10

1.02 1.04 1.06 1.08 1.10 1.12 1.14

p
FIG. 5. Blowup of the data shown in Fig. 4 in the vicinity of p,),.

The dashed line corresponds to the asymptotic loglognormal PDF
given by Eq. (24).
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FIG. 6. G4(p) vs g4(p) for the same parameters considered in
Figs. 4 and 5. The squares represent the analytic result obtained
with Eq. (23), while the circles stand for the numerical result. The
solid and dashed lines are linear fits with slopes 1.00 and 0.97,
respectively.

A. Loglognormal divergence of F(7) and superexponential
decay of o7 to 0

Consider, for example, the CQNLSE with deterministic
linear gain,

i0.+ G+ 20yl — eyl y=ieyp. (25)

Using the adiabatic perturbation method we obtain the fol-
lowing equation for the dynamics of #:

d 2
—7]=267]m(1 - %)arctanh(i). (26)
dz T T

Even though Eq. (26) can be solved analytically, it is instruc-
tive to consider its asymptotic approximation for 7= 7,,. De-
noting 8n=7,—7 and expanding both sides of Eq. (26)
about 7,, while keeping terms up to O(57) we obtain

dény (577)
— =2edpIn| —|. 27
dz €O 5 @7

m

Integrating Eq. (27) over z we arrive at
Sn(z) =2, exp[- C(0)e*<], (28)

where 5(0)=—ln[67](0)/ (27,,)]1>0. We therefore observe
that in this case 67 decays to 0 superexponentially with in-
creasing z. It is this superexponential approach of 7 to 7,
that leads to the loglognormal divergence of F(7). Indeed,
for the CQNLSE with disorder in the linear gain/loss coeffi-
cient one obtains a similar equation for 87(z) with z replaced
by X(z) on the right-hand side. As a result, X(z) is related to
on(z) via

x(z):ln[-lrI(ﬁ) / 6(0)} / (2e), (29)
27,

which describes loglognormal divergence of the 7-PDF near
- A similar result holds for the CQNLSE with disorder in
the cubic nonlinear gain/loss coefficient [see Eq. (13)].
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B. Extended Korteweg—de Vries equation

A different type of nonlinear wave equation that possesses
flat-top solitary wave solutions is the following extended
Korteweg—de Vries (eKdV) equation [3,6,48],

Au + 6u(l —u)&zu+a7§u=0. (30)

Note that Eq. (30) is integrable [6,48]. In the context of
interfacial waves in two-layer systems and stratified shear
flow in the ocean u represents the vertical displacement, z is
the horizontal coordinate, and ¢ is time. The solitary wave
solutions of Eq. (30) take the form [6]

45>

(1 - k%K) ?cosh(2x) +1°

uy(z,1) = (31)
where x=«(z—4k%t), k,,=1/2, and the parameter k charac-
terizes the soliton amplitude and group velocity.

Since perturbative linear gain and loss terms are quite
common in KdV models of wave motion in the ocean
[53,62], it is interesting to study the situation where random-
ness is present. We therefore consider the following per-
turbed eKdV equation,

Ju+ 6u(l —u)d.u+ ﬁiu = e&(t)u, (32)
where

(&) =0, (D& )=Dot-1"). (33)

Employing mass-balance considerations we obtain that the
dynamics of « is described by an equation similar to Eq.
(20). Based on this observation one would expect the k-PDF
to exhibit loglognormal divergence in the vicinity of «,,. It
should be pointed out, however, that for models of the KdV
type radiative effects are more significant [62], and as a re-
sult, a perturbative calculation that takes these effects into
account is required. We therefore defer the full analysis of
this case to a future publication.

V. CONCLUSIONS

We studied the statistics of flat-top solitary wave param-
eters in the presence of weak dissipative multiplicative dis-
order. We started by considering propagation of solitary
waves of the cubic-quintic nonlinear Schrédinger equation
(CQNLSE) in the presence of disorder in the cubic nonlinear
gain/loss. We found that the amplitude PDF exhibits loglog-
normal divergence in the vicinity of the maximum possible
amplitude 7,,. Since solitary waves with # values near 7,
have a typical table-top shape we conclude that the ampli-
tude PDF of flat-top solitary waves is loglognormally diver-
gent. This finding combined with similar findings in Ref.
[54] for the case of disorder in the linear gain/loss coefficient
indicates that loglognormal divergence is quite ubiquitous
for flat-top solitary waves of the CQNLSE in the presence of
weak multiplicative dissipative disorder. Furthermore, we
showed that this divergence can be explained by the super-
exponential approach of 7 to 7,, in the corresponding deter-
ministic model with weak linear/nonlinear gain.

Next we considered propagation of solitary waves in the
presence of weak disorder in the linear gain/loss in systems
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described by the derivative cubic-quintic nonlinear
Schrodinger equation (DCQNLSE). The solitary waves of
the DCQNLSE are chirped and are thus fundamentally dif-
ferent from the solitary waves of the CQNLSE. As a result of
the chirp, in the presence of disorder in the linear gain/loss
both the amplitude 7 and the group velocity 8 vary randomly
along the propagation. We therefore studied the PDF of the
parameter p, where p=7/(1-¢,8/2) and e, is the self-
steepening coefficient. We found that Fu(p) is loglognor-
mally divergent when p is near its maximum value p,,, i.e.,
the p-PDF of the corresponding flat-top solitary waves ex-
hibits loglognormal divergence. Moreover, we showed that
the same divergence is observed in both Stratonovich’s inter-
pretation and It0’s interpretation of the linear stochastic per-
turbation term, thus illustrating another feature of the statis-
tics that appears to be quite general.

APPENDIX A: THE G VS g METHOD

Here we give the details behind the G vs g method that is
used to analyze the divergence of the PDFs of # and p near
their maximum possible values. As a specific example we
consider the case of the CQNLSE in the presence of disorder
in the cubic gain/loss coefficient. In Sec. II we obtained the
following approximate analytic expression for F.(7) near

ﬁm'
ln
2 Um

_ In’[— In[(?87)/(27,) V€]
32Dz '

F.(n)| nsn, = { (327D €)% 67

X exp

(A1)

The problem we want to address is how to verify that the
PDF obtained in the simulations satisfies the loglognormal
divergence described by Eq. (A1). In particular, we need a
method that will allow us to ignore the coefficient ¢, which
cannot be found from the numerical data. Furthermore, we
would like to find a mapping that “stretches” the small 7
neighborhood of 7, into a wider interval. To address these
issues we rewrite Eq. (A1) in the form

<62597>

In

27

IR nl(@*6n)/27,))E)
32D 7z

F.(7n)

11’1|:(32’7TD€22)1/27],2"577

(A2)

where it is understood that F.(7) is calculated near 7,,. Mul-
tiplying by —1 and taking the square root we arrive at

2
ln( e 57]) Fo 77)] }1/2
29,

__ In{-In[(*67)/(27,) ]} — In(©)
B (32D 7' 2)"? (A3)

{— ln[ (327D €)1 67

We now define G.(87) and g.(57) as
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6‘2577 1/2
G.(8n) =1- 1n[(327TD62z)1/27],2n577 1n< . ) Fc(n)] ,
(A4)
and
2
gc( 57]) — 1n{_ 11’1[(8 57])/(2 7]171)]} (AS)

(32D 7} 2)"?

Using these definitions we observe that when the statistics of
7 is described by Eq. (A1) the graph of G vs g is a straight
line with a slope 1, independent of the value of ¢. A similar
conclusion (with slightly different expressions for G and g)
holds in the case of DCQNLSE with disorder in the linear
gain/loss coefficient.

APPENDIX B: FOKKER-PLANCK APPROACH FOR
CALCULATION OF THE PDFS

In this appendix we demonstrate that the expressions for
the PDF of the solitary wave parameters that were obtained
in Secs. II and III by solving the Langevin equation can also
be obtained within the framework of the Fokker-Planck ap-
proach. As a specific example we consider the DCQNLSE
with disorder in the linear gain/loss coefficient and work
with Stratonovich’s interpretation of Eq. (21). The corre-
sponding Fokker-Planck equation for the PDF of p,,
H(py,z), is [58,59]

9.H=2D€3, [ psd, (paH)]. (B1)
Changing variable to w=In p,; we arrive at
0.H=2DEGH, (B2)
where
H(w,2) = pw)H(ps(w),2). (B3)

The solution of Eq. (B2) with the initial condition Hw,?)

=8w-w(0)] is

- —[w=-w(0)]%/(8D&
)= LB OIS0 ]

Changing variable from p, to p while using Egs. (B3) and
(B4) we obtain

B exp{— In}[arctanh(p/p,,)/p4(0)1/(8D€*2)}
= (87TD62Z)1/2 (1 —Pz/p,zn)arctanh(p/pm)

for 0<p<p,, and F (p)=0 elsewhere. Equation (B5) is the
same as Eq. (23) in Sec. ITI. A similar calculation based on
the Fokker-Planck approach leads to Eq. (10) for the 7-PDF
for the CQNLSE with disorder in the cubic gain/loss coeffi-
cient.

(B4)

Fylp) (B5)

APPENDIX C: CALCULATION OF F,(p) IN ITO’S
INTERPRETATION

Consider the DCQNLSE with disorder in the linear gain/
loss coefficient. We now obtain the PDF of p by employing
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Itd6’s interpretation to Eq. (20), and show that this PDF ex-
hibits loglognormal divergence in the vicinity of p,,. The
solution of the equivalent Eq. (21) in It6’s interpretation is
[58]

pa(z) = pa(0)exp[2€X(z) — 2€%2], (C1)

where the PDF of X(z) is given by Eq. (9). Therefore, X(z) is
related to p(z) via

X(z)= le{ln{arctanh{?}/pdm)} + 281}. (C2)

m

Changing variables from X(z) to p(z) we obtain the PDF of p
in It0’s interpretation:

F(p) =[87DE2)p,, (1 - p*/pZ)arctanh(p/p,) ]!

X exp{~- [In[arctanh(p/p,,)/ p4(0)]
+2€217/(8D€*7)}. (C3)

PHYSICAL REVIEW E 80, 026602 (2009)

In the vicinity of p,, Eq. (C2) can be approximated by

X(z) = lﬁ{ln{— %M{%@]} + 262Z}. (C4)

Consequently, F&’)(p) is given by

FP(p)l,=p, = {(87DE2)" splin[ 3p/(2p,,) ]}

X exp{- [In{-In[ 6p/(2p,,) J/[2p4(0)]}
+2€22/(8D€E2)}, (Cs)

which exhibits loglognormal divergence as p approaches p,,.
We therefore conclude that for the DCQNLSE with disorder
in the linear gain coefficient both Stratonovich’s interpreta-
tion and It6’s interpretation lead to loglognormal divergence
of the PDF of p.

[1] D. Pushkarov and S. Tanev, Opt. Commun. 124, 354 (1996).

[2] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81
(1998).

[3] R. Grimshaw, in Environmental Stratified Flows, edited by R.
Grimshaw (Kluwer Academic, Dordrecht, 2001), Chap. 1, pp.
1-27.

[4] L. Gagnon, J. Opt. Soc. Am. A 6, 1477 (1989).

[5] J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S.
Wabnitz, Phys. Rev. E 55, 4783 (1997).

[6] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and A. Slunyaev,
Chaos 12, 1070 (2002).

[7] C. Zhou, X. T. He, and S. Chen, Phys. Rev. A 46, 2277 (1992).

[8] M. Tribeche, S. Ghebache, K. Aoutou, and T. H. Zerguini,
Phys. Plasmas 15, 033702 (2008).

[9] W. van Saarloos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749
(1990); Physica D 56, 303 (1992).

[10] B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. A 42,
6009 (1990).

[11] Y. Kodama and A. Hasegawa, Opt. Lett. 8, 342 (1983).

[12] F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, IEEE Photon.
Technol. Lett. 7, 101 (1995).

[13] K.-P. Ho, J. Lightwave Technol. 18, 915 (2000).

[14] A. Peleg, Opt. Lett. 29, 1980 (2004).

[15] Y. Chung and A. Peleg, Nonlinearity 18, 1555 (2005).

[16] Y. Chung and A. Peleg, Phys. Rev. A 77, 063835 (2008).

[17] A. Peleg, Phys. Lett. A 360, 533 (2007).

[18] A. Peleg, Phys. Lett. A 373, 2734 (2009) .

[19] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego,
CA, 2001).

[20] D. Mihalache, D. Mazilu, M. Bertolotti, and C. Sibilia, J. Opt.
Soc. Am. B 5, 565 (1988).

[21]J. Herrmann, Opt. Commun. 87, 161 (1992).

[22] Y. Kartashov, V. A. Vysloukh, A. E. Egorov, and A. S. Ze-
lenina, J. Opt. Soc. Am. B 21, 982 (2004).

[23] S. J. Shwetanshumala, A. Biswas, and S. Konar, J. Electro-
magn. Waves Appl. 20, 901 (2006).

[24] L. Hong, R. Beech, F. Osman, X. T. He, S. Y. Lou, and H.
Hora, J. Plasma Phys. 70, 415 (2004).

[25] E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi,
Phys. Rev. Lett. 85, 1146 (2000).

[26] B. Tanatar, Europhys. Lett. 51, 261 (2000).

[27] X. Y. Tang and P. K. Shukla, Phys. Rev. A 76, 013612 (2007).

[28] R. Carretero-Gonzdlez, D. J. Frantzeskakis, and P. G. Kevreki-
dis, Nonlinearity 21, R139 (2008).

[29] Y. S. Kivshar and B. A. Malomed, J. Phys. A 19, 1.967 (1986).

[30] J. Soneson and A. Peleg, Physica D 195, 123 (2004).

[31] V. Hakim, P. Jakobsen, and Y. Pomeau, Europhys. Lett. 11, 19
(1990).

[32] R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 72, 478
(1994).

[33] L. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).

[34] P. Coullet and L. Kramer, Chaos 14, 244 (2004).

[35]J. D. Moores, Opt. Commun. 96, 65 (1993).

[36] F. 1. Khatri, J. D. Moores, G. Lenz, and H. A. Haus, Opt.
Commun. 114, 447 (1995).

[37] N. N. Akhmediev and A. Ankiewicz, in Dissipative Solitons,
edited by N. N. Akhmediev and A. Ankiewicz (Springer, Ber-
lin, 2005), Chap. 1, pp. 1-18.

[38] J. N. Kutz, SIAM Rev. 48, 629 (2006).

[39] N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981).

[40] D. Anderson and M. Lisak, Phys. Rev. A 27, 1393 (1983).

[41] G. Yang and Y. R. Shen, Opt. Lett. 9, 510 (1984).

[42] K. Mio, T. Ogino, K. Minami, and S. Takeda, J. Phys. Soc.
Ipn. 41, 265 (1976).

[43] E. Mjolhus, J. Plasma Phys. 16, 321 (1976).

[44] D. J. Kaup and A. C. Newell, J. Math. Phys. 19, 798 (1978).

[45] ). Moses, B. A. Malomed, and F. W. Wise, Phys. Rev. A 76,
021802(R) (2007).

[46] T. Kakutani and N. Yamasaki, J. Phys. Soc. Jpn. 45, 674
(1978).

[47] C. Koop and G. Butler, J. Fluid Mech. 112, 225 (1981).

[48] M. J. Ablowitz and H. Segur, Solitons and The Inverse Scat-

026602-8



DIVERGING PROBABILITY-DENSITY FUNCTIONS FOR...

tering Transform (SIAM, Philadelphia, 1981).

[49] Ch.-Y. Lee and R. C. Beardsley, J. Geophys. Res. 79, 453
(1974).

[50] R. Grimshaw, E. Pelinovsky, and O. Poloukhina, Nonlinear
Process. Geophys. 9, 221 (2002).

[51]T. P. Stanton and L. A. Ostrovsky, Geophys. Res. Lett. 25,
2695 (1998).

[52] D. R. G. Jeans and T. J. Sherwin, Cont. Shelf Res. 21, 1855
(2001).

[53] P. Holloway, E. Pelinovsky, and T. Talipova, in Environmental
Stratified Flows, edited by R. Grimshaw (Kluwer Academic,
Dordrecht, 2001), Chap. 2, pp. 29-60.

[54] A. Peleg, T. Dohnal, and Y. Chung, Phys. Rev. E 72, 027203
(2005).

[55] N. Akhmediev, A. Ankiewicz, and R. Grimshaw, Phys. Rev. E
59, 6088 (1999).

PHYSICAL REVIEW E 80, 026602 (2009)

[56] Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard,
Phys. Rev. Lett. 80, 5032 (1998); T. Kapitula and B. Sandst-
ede, J. Opt. Soc. Am. B 15, 2757 (1998); J. Yang and D. J.
Kaup, STAM J. Appl. Math. 60, 967 (2000).

[57] R. L. Stratonovich, Introduction to the Theory of Random
Noise (Gordon and Breach, New York, 1963).

[58] C. W. Gardiner, Handbook of Stochastic Methods (Springer,
Berlin, 2004).

[59] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (Elsevier, Amsterdam, 2007).

[60] H. Yoshida, Phys. Lett. A 150, 262 (1990).

[61] E. A. Kuznetsov, A. V. Mikhailov, and I. A. Shimokhin,
Physica D 87, 201 (1995).

[62] A. C. Newell, Solitons in Mathematics and Physics (SIAM,
Philadelphia, 1985).

026602-9



