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Electro-optic delay oscillator with nonlocal nonlinearity:
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We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-
optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line,
and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the
oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is
ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study
the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant
feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of
the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the
observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in
particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos

synchronization is also reported with an emitter-receiver pair of the setup.
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I. INTRODUCTION

Optical chaos communications using chaotically emitting
semiconductor lasers were first proposed 15 years ago [1-3].
This approach makes use of the intrinsic nonlinear interac-
tion of the light field and the gain material of the semicon-
ductor laser. This interaction does not yield, in itself, chaotic
intensity output of the laser. However, the combination of
this nonlinear interaction and a delayed feedback [4-6],
which can either be optical or electrical, can induce complex
chaotic dynamics, since it renders the system mathematically
infinite dimensional. Therefore, in recent years, much re-
search has been dedicated to investigate the dynamical prop-
erties of semiconductor lasers which are subject to delayed
feedback or to external perturbation in form of optical injec-
tion or electrical driving. Meanwhile, numerous dynamical
phenomena and regimes have been theoretically and experi-
mentally identified and analyzed, including regimes of com-
plex chaotic dynamics. For an overview, we refer to [7].

Furthermore, with these laser systems, also chaos syn-
chronization has been extensively investigated and demon-
strated. It has been shown that a receiver system which is
synchronized to a chaotic transmitter system can discrimi-
nate between the chaotic signal and a message that has been
applied in form of an external perturbation to the transmitter
system [8-11]. Utilizing this mechanism, feasibility of opti-
cal chaos communication systems (encrypted communica-
tions) has been demonstrated. The required chaos synchroni-
zation is, however, very sensitive to the physical parameters
of the lasers which on one hand is desired for reasons of
security, but on the other hand it is still challenging to
achieve the required parameter agreement of the lasers at the
fabrication stage. Very recent work led to successful demon-
stration of integrated photonic devices explicitly designed for
chaos generation and synchronization [12]. With this photo-
nic integrated device approach, accurate parameter control is
expected at the fabrication stage, thus taking an important
step toward the definition of a physical hardware key for
secure chaos communications.
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Out of this laser dynamics approach for practical optical
chaos generation, another approach based on electro-optic
and optoelectronic nonlinear delayed feedback oscillators
has been proposed [13—15]. This approach was following the
Ikeda’s idea [16] on optical chaos generation principles. The
differential process itself is linear in this Ikeda-like dynam-
ics, since it originates from linear dissipative filtering. The
filtering effect is often related to unavoidable but controllable
electronic bandwidth limitations in the case of optoelectronic
or electro-optic realizations. In all-optical systems as for the
original Ikeda ring cavity setup, the linear filtering originates
from the dissipative filtering effect of the level lifetime in the
light-matter interaction process [16]. Ikeda-like chaotic be-
havior is still induced by application of a delayed nonlinear
feedback term, but in that case, this nonlinear term is driving
the linear differential process. A typical nonlinear transfor-
mation is the one obtained when modulating the interference
condition of a two-wave interferometer. This is realized in
the Ikeda ring cavity as the input light beam interferes with
the cavity feedback light beam, which phase is Kerr modu-
lated by the previous round intensity interference. With the
electro-optic version of the Ikeda dynamics, the interference
nonlinear modulation transfer function is performed between
the electrical input and the optical output of an integrated
optics electro-optic Mach-Zehnder modulator. The required
delay is practically implemented by a given length of a light
propagation medium: the cavity length for the original Ikeda
setup or a fixed length of fiber for its optoelectronic version.
The whole oscillator is formed by the interconnected indi-
vidual elements, realizing a delayed feedback system capable
of chaotic behavior. When compared to laser-dynamics-
based systems, the electro-optic and optoelectronic ap-
proaches showed comparable or currently even slightly bet-
ter [17,18] performances in terms of bit rate capability (up to
3.2 Gb/s) and in terms of decoding quality [measured by the
bit error rates (BERs), better than 10~°]. From the experi-
mental point of view, the so far realized electro-optic chaos
generators have proven their value regarding two important
issues: the practical investigation of fundamental dynamical
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properties exhibited by nonlinear delay systems and also as a
first successful demonstration of efficient chaos-based opti-
cal communication systems. All those electro-optic experi-
ments have been however performed with interconnected
discrete devices. Their integration potential is not yet ex-
ploited and is under current investigation. Highly integrated
systems could be realized in the future, e.g., using
semiconductor-based electro-optic modulators.

The results reported in the present paper lie within the
latter research area on the electro-optic approach for chaos
communications. A system architecture is proposed, which
exploits recent ideas and potentials in optical phase modula-
tion (instead of intensity modulation) for fiber optics com-
munications.

The paper is organized as follows. First, we introduce the
general principle of the dynamical process which we apply.
The reported architecture is discussed and compared to ear-
lier realizations of electro-optic and optoelectronic chaos
generators. Then, in Sec. I, we describe in detail the experi-
mental setup which realizes the desired dynamical process
for the optical phase of a light beam. The dynamical proper-
ties of the experiment will be characterized in Sec. III in
terms of the major relevant parameter: the feedback gain of
the oscillator. We will study and discuss the emergence of
different dynamical regimes through the analysis of the cor-
responding temporal wave forms, amplitude probability den-
sity functions (PDFs), and rf spectra. Before concluding, in
Sec. IV, we will propose an encoding and decoding scheme
that can be applied for the realization of an optical chaos
communication link on the basis of the reported phase chaos
generator. Specifically, we demonstrate an experimental op-
tical phase chaos synchronization [19,20], in which chaos
cancellation is achieved directly in the optical domain. For
this, we show that excellent synchronization quality can be
achieved experimentally, by demonstrating very good can-
cellation of the received chaotic signal from the transmitter,
when the synchronized chaotic receiver signal is subtracted.

II. EXPERIMENTAL SETUP
A. Principle of operation

Ikeda-based nonlinear delay dynamics can be usually re-
duced in their modeling to a scalar nonlinear delay differen-
tial equation of the form

€0+ 7o) = flei - ) (1)

where the left-hand side is representative of a linear filtering
process with a characteristic time 7. The right-hand side is
the nonlinear delayed feedback term involving the nonlinear
transformation fy; . The time delay 7 is usually much greater
than the characteristic time 7. When tuned into chaotic re-
gime, the dimension of the attractor is known to increase
proportionally to 7/ 7[21-23], which can be easily as high as
several hundreds in practical situations. In previous attempts
to perform the Tkeda ring cavity in optics (or optoelectronics,
electro-optics), this nonlinear transformation was imple-
mented as an electronically tunable two-wave interference
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function; the optical intensity at the output of the nonlinear
transformation was thus ruled as a cos? transformation of the
interferometer phase difference ¢=27A/\ (A is the optical
path difference and N\ the optical wavelength). The latter
phase ¢ was modulated over at least 7 to scan a strong-
enough nonlinear range of the cos’-transfer function. This
was obtained through the modulation of an electronic quan-
tity driving linearly either A (through the electro-optic effect
[13,14]) or N (through the linear wavelength modulation ca-
pability of a multielectrode tunable distributed Bragg reflec-
tor (DBR) laser [15]). The dynamical properties of these set-
ups are captured by the same mathematical modeling as in
Eq. (1), which indeed also exhibit very rich dynamics, simi-
lar than the ones first predicted by Ikeda. It is also common
for these systems that the corresponding nonlinearity is de-
scribed by a cos?-shaped function, which is defined locally in
time, i.e., which is memoryless (fy;, is an instantaneous func-
tion of x only and not of time).

In our attempt to develop fast chaos communication sys-
tems, our group concentrated its efforts on the Neyer and
Voges setup [14], which was making use of potentially very
fast integrated optics devices, e.g., LiNbO; electro-optic
Mach-Zehnder modulators. Our investigations led to the
demonstration of the attractive potential of this approach for
chaos communications [17]. The success of the demonstra-
tion was, however, obtained at the cost of relatively complex
polarization state control in a polarization combiner. This
combiner was performing an all-optical mixing process be-
tween the two crossed polarization light beams of the chaotic
optical intensity carrier and the optical intensity binary data,
respectively. For security issues, fast polarization scrambling
was also required to prevent from a simple polarization split-
ting attack on the transmission line. The practical issue caus-
ing this additional experimental complexity is the one con-
cerned by the mixing technique between the chaotic
dynamics with the message. When working with the physical
variable “intensity,” this issue becomes critical because add-
ing optically two intensity fluctuations of the same wave-
length generally leads to undesired interference phenomena:
the mixing process is not linear anymore and the decoding
process involving electronic subtraction of photodiode out-
put signals (the received and the synchronized one) cannot
be applied. The use of crossed polarization could thus pre-
vent from the interference phenomena, but at the cost of
additional polarization scrambling due to security issues.

In order to circumvent this practical drawback of chaotic
optical intensity, we studied the possibility for the realization
of an optical phase chaos generator. A linear superposition
between a chaotic phase modulation and a standard binary
differential phase modulation can be much more easily and
efficiently implemented, e.g., with two cascaded phase
modulators. The design of a phase chaos oscillator was then
investigated on the basis of our accumulated experience on
intensity chaos generation through the Ikeda principles. The
next section will detail the practical architecture developed
from these investigations. It will underline the very specific
dynamical features that are associated with this new electro-
optic chaos generation principle. It involves fast phase
modulation and imbalanced passive interferometers, which
time imbalance is longer than the characteristic time of the
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FIG. 1. (Color online) Experimental setup of the electro-optic
nonlinear delay phase oscillator.

phase modulation. That specific situation is referred as the
temporal nonlocality of the nonlinear phase-to-intensity con-
version or, differently speaking, the imbalanced dynamical
interference phenomena. One could say equivalently that the
interference condition can be dynamically modulated by the
phase modulation as soon as the latter is faster than the in-
terferometer time imbalance.

B. Differential phase-shift keying delay oscillator

A scheme of the experimental setup for the electro-optic
nonlinear delay phase oscillator is shown in Fig. 1. In this
setup, a 1.55 wum distributed feedback (DFB) semiconductor
laser with a narrow linewidth of AN<2 MHz is used for
injection of a continuous-wave (cw) light with power 0
<Py<3.2 mW into the delayed feedback loop of the
electro-optic oscillator. A variable attenuator (VA) is used for
adjusting the injected intensity without changing the oscilla-
tion frequency of the source (which would occur if the laser
current is used). Laser frequency modifications due to injec-
tion current variations are indeed critical for the operating
conditions of the phase-to-intensity (imbalanced interferom-
eter) demodulator.

The cw-injected light enters a broadband phase modulator
(PM) with a bandwidth of 20 GHz. The PM represents a key
element of the feedback loop as a fast electrical-to-optical
converter. The optical phase of the injected CW light is thus
modulated according to the voltage applied to the electrical
rf input of the PM, while the intensity of the output light
remains constant.

This output light is delayed by propagation in a few
meters of optical fiber until it enters a fiber-based passive
imbalanced interferometer. For this, we used a commercial
differential phase-shift keying demodulator (DPSK-d) with a
2.5 GHz free spectral range (FSR, corresponding to a time
imbalancing of 6T=400 ps) performed by a fiber-based
Mach-Zehnder interferometer (MZI) in an athermal packag-
ing. It should be noticed here that in principle, any custom-
ized imbalanced multiple wave interferometer could be used
as long as the characteristic free spectral ranges attached to
the imbalancings are smaller than the PM modulation band-
width and if the interference contrast is reasonably good
(>6 dB). The interferometer is aimed at performing a non-
linear, dynamical (nonlocal in time), phase-to-intensity con-
version.

The phase-to-intensity conversion is governed by a non-
linear transformation described by the function P (7)
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~ B cos?[ @,,(1)—D,,(t—S6T)+D,)]. In this notation, P,,(t)
stands for the optical power at the MZI output, ®;, for the
optical phase at the input, and ®,, for the offset interference
phase of the MZI (depending on the optical path difference
in the MZI, as well as on the laser frequency). An important
difference in this nonlinear transformation is its nonlocal
character in time compared to the standard Ikeda-like dy-
namics. For the reported phase chaos dynamics, a differential
term is involved as the argument of the cos? function, thus
inducing an implicit dynamical character in the nonlinear
transformation, fy(x,z,7—8T). The constant 8 depends on
the optical input power, on the optoelectronic and electro-
optic conversion efficiencies, and on the electronic amplifi-
cation factor.

The obtained MZI output intensity signal is detected with
a broadband amplified photodetector (PD) with a bandwidth
of 30 kHz-13 GHz (-3 dB cutoff) and a conversion effi-
ciency of S=1.9 V/mW. It is the electrical component with
the smallest bandwidth in the oscillator loop, therefore it
effectively determines the overall bandwidth of the com-
bined bandpass-filtering properties of the system. Accord-
ingly, the characteristic time scales of the bandpass filter are
7=12.2 ps for the high cutoff (which indeed satisfies 7
< 07) and 6=5.3 us for the low cutoff; the corresponding
frequencies are v;=(277)~! and v=(276)~!, respectively.
The converted electrical signal is then linearly amplified with
a broadband amplifier which drives the rf input of the PM. It
has a gain of 18 dB (a linear amplitude amplification of 8)
and a bandwidth of 30 kHz-25 GHz. Thus, the optical phase
of the light at the PM output is modulated according to its
own delayed history. The electro-optic effect is closing the
delayed feedback loop of the nonlinear oscillator. The total
delay time comprising the optical and electrical delays cor-
responds to 7=24.35 ns. Since the maximum output voltage
of the rf driver is 13.0 V and since the half wave voltage of
the PM corresponds to V,_.=4.0, the phase ®;,(r) can be
modulated by up to 3.257 rad. Up to three extrema of the
nonlinear cos’-interference function can thus be swept in the
DPSK-d. This strong nonlinear operation capability is par-
ticularly of interest when complex chaotic waveforms are
desired, typically for chaos communication applications
where very low autocorrelation carriers are desired.

According to the previous description of the electro-optic
delay nonlinear phase oscillator, a simple dynamical model
can be established. The band-limited electronic feedback
bandwidth is responsible for an integrodifferential linear dy-
namical process, which is driven by the nonlinear delayed
term issued from the phase-to-intensity conversion of the
DPSK-d. The dynamical equation ruling the phase chaos
generator reads, according to this simple modeling (see also
Refs. [17,24] where similar bandpass dynamical models are
used),

%Jtox(f)d§+x(t) + T%(l)

=B cos’[x(t—=T) —x(t— T = 8T) + D], (2)

where x(¢) is proportional to the voltage driving the modula-
tor. This normalized dynamical variable can be viewed also
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as proportional to the optical phase modulation ®;,(¢) in-
duced by the electro-optic modulator, since the latter is as-
sumed to have a quasiadiabatic response compared to other
slower limiting dynamical elements (typically the amplified
photodiode). For similar reasons concerning the even
broader bandwidth of the rf amplifier driving the PM, the
same signal can be considered as proportional to the photo-
diode output. This is a consequence of the fact that the pho-
todiode performs the strongest filtering in the oscillator loop.
This filtering is operated on the detected optical intensity
fluctuations at the output of the DPSK-d, i.e., which is math-
ematically represented by the nonlinear delayed term in the
right-hand side of Eq. (2).

Equation (2) will be later used to support through numeri-
cal integration: the proposed modeling of the optical phase
electro-optic delay oscillator. It should be noticed that this
equation differs from the usual Ikeda delay dynamics essen-
tially in two points. First, the right-hand side involves a dif-
ference dual delay (7 and S7) nonlinear term. Since two
different delays are involved in the nonlinear term, this one
is qualified as nonlocal in time. In our practical situation, the
second time delay 8T is much shorter (a factor of 200) than
the long delay 7, but it is also larger (a factor of 40) than the
high cutoff time 7. The second point differing from the Ikeda
dynamics is less unusual since it has been already considered
in the literature, but its fundamental nonlinear dynamical is-
sues have been only recently reported [24,25]: it is con-
cerned by the integrodifferential character of the left-hand
side, which is a consequence of the bandpass character of the
linear filtering. This is opposed to the low-pass (or dc-
preserving) filtering, typically considered in Ikeda-like dy-
namics, and issuing a differential term only. It should be
noticed here that the first-order differential term and the
single integration term in the left-hand side of Eq. (2) are
representative of the following assumption: the bandpass fil-
ter is resulting from two cascaded first-order low-pass (with
the cutoff time 7) and high-pass (with cutoff time 6) filters.
This is definitely not as simple in a real-world broadband
dynamics as the one of concern here, since especially the
low-pass cutoff is of a much higher order (the actual measure
of the linear filtering function by a 40 GHz vectorial analyzer
revealed an equivalent tenth-order low-pass cutoff). Such
higher-order cutoff have been indeed considered for the nu-
merical simulations presented later and performed with time
domain digital filters. This higher-order frequency cutoff cor-
responds mathematically in Eq. (2) to additional nth-order
derivative terms, n=1-10 (and eventually also additional
higher-order integral terms depending on the high-pass cutoff
order). However, if analytical investigations are concerned, it
has been recently found [24] that the qualitative dynamics
can indeed be captured by the simple and analytically trac-
table first-order integral and first-order derivative model of
Eq. (2). Notice that higher orders seem to be crucial for some
specific dynamical features as it was underlined in [24].

For experimental characterization of the optical phase dy-
namics in the intensity domain, we use the complementary
output of the MZI (sin? output) at which we detect the light
with another similar broadband photodetector. This photode-
tector is of the same kind as the one used within the feedback
loop. Therefore, we detect the complementary signal with
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respect to the one amplified and used as the feedback voltage
driving the PM. The externally detected signal is recorded
and analyzed in the temporal and in the rf spectral domains.
This is done simultaneously using a digital storage oscillo-
scope (DSO) with 12 GHz analog bandwidth and a sampling
rate of 40 GSamples/s and with an electrical spectrum ana-
lyzer (ESA) with a bandwidth of 22 GHz, respectively.

III. CHARACTERIZATION OF THE DYNAMICS

For characterizing the dynamical properties of the oscil-
lator, we finely tune the laser frequency v=c/\ to set the
offset interference phase of the MZI to ®y=m(6T)v="m/4.
This fine tuning, as well as a precise control and stabilization
of this offset phase parameter, can also be achieved by ther-
mally tuning the differential delay (8T) through a heating
wire integrated in the commercial DPSK-d. The parameter
stability of the DPSK-d operating point is practically enough
over several tens of minutes if the device environment is
carefully protected. If longer stability is desired, active con-
trol of the DPSK-d operating point is useful.

It can be noticed that the chosen (arbitrary) operating
point (®y=m/4) corresponds to the middle situation with
respect to the constructive and the destructive interference
situation (in the standard use for DPSK transmission, the
typical operating point is the destructive or the constructive
one). The value of ®y=7/4 mod(7) is favorable when low
feedback gain instabilities are explored, since the steady-
state dynamics operates at the maximum slope of the nonlin-
ear function, for which first instabilities are expected even
for low values of the feedback gain.

The observation of the dynamical behavior is performed
via time series and their corresponding rf spectra. The bifur-
cations of the behavior are obtained for increasing the injec-
tion power Py, which is equivalent to a linearly increasing
feedback gain. In the following, this parameter will be sub-
stituted by a normalized feedback gain parameter which also
takes into account the electrical amplification, defined by
=m7yaGSPy/(2V ). With the actual parameter values of the
setup, B can be varied from 0 to 5.1, the highest value cor-
responding to the already mentioned 3.25V _ of the electro-
optic (EO) voltage swing.

Figure 2 depicts examples of measured temporal dynam-
ics, both for long time scales (a few delay times T, left fig-
ures) and shorter ones (a few DPSK imbalance times &7,
right figures). These time traces give rise to different dy-
namical states depending on the feedback gain. When f3 is
small, a stable zero steady state is observed as expected. At
B=0.5, the steady states lose its stability and a limit cycle
appears. The usual threshold for this Hopf bifurcation is typi-
cally 1 for the Ikeda dynamics. We clearly see here that the
difference term [x(7)—x(z— 8T)] lowers by a factor of 2 the
Hopf threshold, with a frequency which must be related to
both 6T and T. The typical oscillation is represented in Figs.
2(a) and 2(d) for B=0.6; it corresponds to a rapid oscillation
between a two level states, with tilted decreasing plateaus.
The observed oscillation frequency is clearly related to the
DPSK-d. The rf amplitude filtering of the DPSK-d, when
applied to a phase modulated light beam, gives a maximum
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FIG. 2. Experimental time series for different values of the nor-
malized feedback gain B detected at the output of the Mach-
Zehnder DPSK-d for ®y=m/4. (a)—(c) are zoomed in (d)—(f). In
(a)/(d) B=0.6, (b)/(e) B=1.3, and (c)/(f) B=5.1.

transmission around 1.25 GHz (modulo 2.5 GHz), which is
half of its FSR (a zero transmission occurs at zero frequency
and at the FSR modulo itself). The actually observed 1 GHz
oscillation frequency is the combined rf filtering of the
DPSK-d together with the amplitude response of the elec-
tronic feedback (amplified photodiode+rf driver+PM elec-
trodes). We have checked that the linear open loop rf filtering
exhibits a maximum at around 1 GHz, instead of FSR/2, thus
explaining the actual closed-loop oscillation frequency.
When the feedback gain is slightly increased, a secondary
bifurcation of a Neimark-Sacker type is observed. Such a
bifurcation is already known for delay systems and it has
been analyzed for other physical setups [26,27]. A typical
corresponding time trace is represented in Figs. 2(b) and
2(e), which is obtained for S=1.3. The dynamics is now
characterized by both the fast 1 GHz oscillation (e) as well as
a 2T-periodic envelope modulation (b). This kind of bifurca-
tion was only recently observed and demonstrated analyti-
cally in [25] for the particular case of the intensity EO dy-
namics with a bandpass selective feedback. This setup was
initially proposed in [14] in order to perform experimentally
an lkeda-like dynamics, with a low-pass delayed feedback.
The bandpass selective version studied in [25] is well known
in the context of the so-called optoelectronic oscillators, in-
tended for high spectral purity microwave generation. It in-
volves very long fiber delay lines and also highly selective
feedback filtering around the desired microwave oscillation
frequency. In the setup proposed in this paper, the EO MZI is
replaced by a PM, followed by an imbalanced DPSK-d. An
analogy can be drawn between the two setups in the sense
that the DPSK-d plays the role of a “relatively”” narrow-band
spectral filtering, forcing the rf oscillation within its band-
width around 1.25 GHz. Additionally, in order to support the
Neimark-Sacker interpretation preferentially to the higher
harmonic synchronization one [28], the following physical
argument can be proposed: the two successively appearing
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FIG. 3. (Color online) Bifurcation diagrams of the amplitude
probability density functions (logarithmic color scale) of the dy-
namics vs normalized feedback gain B. Upper: from experimental
time traces; lower: from computed time series using Eq. (2).

frequencies are clearly related to two independent and very
different physical time scales—the DPSK-d imbalancing 6T
[fast oscillations in Fig. 2(e)] and the total delay T [slow
envelope seen in Fig. 2(b)].

When higher feedback gains are concerned, the phase
chaos generator however exhibits significantly different dy-
namical features compared to [25]. The time traces observed
with the maximum feedback gain S=15.1 are represented in
Figs. 2(c) and 2(f). They show large amplitude chaotic fluc-
tuations corresponding to a broadband spectrum covering the
full bandwidth of the electronic feedback (see Fig. 6).

The amplitude probability density function (PDF) is then
used as a graphical representation of a given temporal dy-
namics. When finely scanning the bifurcation parameter 3, a
bifurcation diagram can be plotted to represent a quasicon-
tinuous evolution of the dynamics through its PDF with re-
spect to . This is represented in Fig. 3, where the PDF is
practically encoded via a logarithmic color scaling (white for
highly probable amplitudes and dark for low probability am-
plitudes, though red for intermediate PDF amplitudes). The
same kind of such bifurcation diagram is drawn for both
experimental (upper) and numerical (lower) time traces. The
experimental time trace duration is 4 us at 40 GSamples/s,
thus leading to 160 000 points used for calculating the am-
plitude distribution (the corresponding time trace is of course
a filtered image of the actual dynamics, due to the limited
bandwidth of the real time sampling oscilloscope). The nu-
merical diagram was making use of around 400 000 points
over a comparable duration, computed with a time domain
digital filter. As already noticed, the digital filter used for the
numerical integration is fitting the actual strength of the fre-
quency cutoff (tenth order for the high-frequency low-pass
cutoff and first order for the low-frequency high-pass cutoff).
The low-pass digital filter is of a Butterworth kind.
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Frequency (GHz)

FIG. 4. (Color online) Low frequency range spectral bifurcation
diagram. Color-encoded amplitudes are in dB.

It can be noticed that both diagrams show a very good
resemblance at least qualitatively but also quantitatively in
terms of bifurcating values of 8. Such diagrams allow giving
a summarized picture of the bifurcation scenario met by the
optical phase dynamics, while increasing B from the stable
steady state to the fully developed chaotic regime. This bi-
furcation scenario can be described as follows.

For very low feedback gains, the oscillator is nearly an
open loop one and the zero amplitude steady state is stable
(this part of the diagram is however not represented in Fig. 3,
since it corresponds to the trivial horizontal segment at the
zero vertical level, spanning from B=0 to 0.5). From S
=0.5 up to 1.3, one can identify a two-level oscillation ap-
pearing through a Hopf bifurcation, with a frequency related
to FSR/2. A typical time trace of this limit cycle was given in
Figs. 2(a) and 2(d). The cycle amplitude grows continuously
from zero, while B is increased (the Hopf is supercritical).
Between 1.3=< B=1.7, a four-amplitude level is revealed by
the bifurcation diagram, as was also described through the
time traces in Figs. 2(b) and 2(e). As pointed out, this four-
level oscillation is not issued from a period doubling as it is
for standard Ikeda dynamics, but rather from the occurrence
of an additional frequency through a Neimark-Sacker bifur-
cation (limit cycle to torus). From 1.7 to 1.9, the experimen-
tal bifurcation diagram shows two positive and negative
bands of oscillation amplitudes, separated by a low probabil-
ity amplitude band at the central low-amplitude levels. This
transition dynamics from periodic to chaotic regimes re-
semble the prechaotic states of the inverse cascade typically
observed with lkeda-like dynamics. One can notice here a
difference with the numerical bifurcation diagram, which
shows a very small 8 range concerned by these transition
dynamics. For higher gain (>1.9), we find a washing out of
the amplitude characteristics, so that the PDFs develop into
widespread almost-Gaussian-shaped functions. This feature
is also known to exist for chaotic dynamics of nonlinear
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FIG. 5. (Color online) Spectral bifurcation diagram in the high-
frequency range. Left: experimental; right: numerical.

delayed feedback systems modeled by standard single delay
dynamics [22,29].

Additional information about this bifurcation scenario and
the properties of the visited dynamical regimes can be ob-
tained from a spectral analysis. Therefore, we plot the corre-
sponding bifurcation diagrams of the rf spectra of the dy-
namics, which have been measured with the ESA. To
account for the widely spread characteristic time scales, we
present first a zoom into the intermediate frequency range
(0-2 GHz, Fig. 4) and second we also give an overview
covering the full spectral range of the dynamics until the 22
GHz limit of the ESA (Fig. 5).

The intermediate frequency range (0-2.5 GHz) bifurca-
tion diagram is depicted in Fig. 4. A fine periodic spectral
structure first appears over the frequency band analysis, with
a small frequency motif of 41 MHz (1/7). This reveals
clearly the signature of the numerous delay modes which are
modulating the spectrum. The contrast of this modulation
however vanishes progressively as the feedback gain is in-
creased, i.e., when the dynamics is becoming more and more
complex. Differently speaking, the nonlinear mixing of the
frequency components becomes more and more important,
making the 41 MHz periodic modulation smaller and
smaller. If we then analyze the global spectral shape evolu-
tion over the GHz scale, we recognize the already described
route to chaos: the Hopf bifurcation at S=0.5 with an oscil-
lation frequency of ca. FSR/2, the Neimark-Sacker bifurca-
tion at B=1.3 with an amplitude modulation governed by
the dual time delay 27 and revealed by the side band spectral
lines at +(27)7!, the prechaotic transition regimes from S
=1.7 to 1.9, and the fully developed chaotic regimes starting
at 1.9. It is interesting to notice an additional information
brought by this spectral analysis and concerning the precha-
otic transition regimes. The experimental spectral bifurcation
diagram indeed reveals a frequency jump of the main delay
oscillating mode around FSR/2 from 1.02 to 1.26 GHz (thus
much closer to the exact FSR/2 of the DPSK-d). This jump
corresponds approximately to 6 times the delay mode fre-
quency T-!. Next, the prechaotic character of the transition
regimes is here justified by a significantly increased back-
ground frequency noise around the central frequency FSR/2.

The fully developed chaotic regimes starting at =2 can
be more finely analyzed with a spectral bifurcation diagram.
This is more specifically emphasized with two vertical cuts
of the spectral bifurcation diagram, as reported in Fig. 6. At
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FIG. 6. Vertical cuts of the spectral bifurcation diagram in the
fully developed chaotic regimes: (a) f=2.8 and (b) B=5.1.

the beginning of this dynamical transition, we first observe a
strong spectral contribution of many delay modes together,
around half of the FSR frequency (more than 20 delay modes
with a power >-25 dBm). This high number of delay
modes contribution comes together with a globally increased
background noise in the frequency intervals between the de-
lay modes [from less than —45 dBm for <2 to more than
>-35 dBm for B8>2; see Figs. 4 and 6(a)]. As B is further
increased, the fully developed chaotic spectrum becomes
flatter and flatter until the maximum achievable experimental
gain, where even the rf filtering of the DPSK-d is difficult to
identify [see Fig. 6(b)].

Figure 5 shows the high-frequency range bifurcation dia-
grams of the dynamics spectrum. Both experimental and nu-
merical are represented, to illustrate again the capability of
the model to capture the observed dynamics with a relatively
good accuracy, when the feedback gain S is changed from 0
to 5. The already-described scenario of the route to chaos is
confirmed, highlighting here the role of the DPSK-d FSR in
the evolution of the spectrum. As mentioned for the PDF
bifurcation diagram, we notice again a difference in the ex-
periment and the numerics for the prechaotic regimes
(around B=2): this transition appears as smooth in the nu-
merics, whereas a frequency drift is observed experimentally.
This difference is unexplained for the moment. It could be
attributed to an already-mentioned particular experimental
feature: there is a fine structure of the rf filtering feedback,
which can be detected when measuring the open loop linear
filtering of the rf feedback. This is not considered in the
model, since simulating the same experimentally observed
complex ripples (in phase and amplitude) is too difficult to
account for in the time domain. The broadband bandpass
modeling is indeed smooth and flat in the frequency range of
interest, whereas complex small ripples do exist in the actual
oscillator filtering feedback. Such ripples are mainly related
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FIG. 7. (Color online) Scheme of a possible phase chaos com-
munication system for encrypted message transmission.

to technological limitations in the realization of flat and ul-
trabroadband (30 kHz-25 GHz) electronic amplification de-
veloped for high-speed optics communication systems.

Finally, it can be noticed on these figures that for the
achievable maximum feedback gain (8=5.1), a full band-
width and nearly flat spectrum is obtained over more than 13
GHz bandwidth. These spectral features are characteristic of
high complexity chaotic dynamics that are highly attractive
for applications in high-speed chaos-based communication.
Such chaotic optical phase can be used as a noiselike but
deterministic carrier signal, which role is to hide a message
for encryption purposes and transmission through a fiber
channel. An additional important issue in this context is the
capability of the proposed architecture to allow for a practi-
cal and efficient chaos synchronized receiver, which will be
dealt in the last section.

IV. PHASE CHAOS SYNCHRONIZATION FOR CHAOS
COMMUNICATION

Figure 7 depicts a scheme of a possible transmitter and
receiver structure, intended for encryption, transmission, and
decryption of a chaotic optical phase-encrypted message.
The transmitter comprises an additional phase modulator
compared to Fig. 1. It is implemented for the mixing of a
DPSK-encoded binary message into the broadband chaotic
phase modulation demonstrated in the previous section. This
phase modulator PM,, can be placed best just behind or be-
fore the chaos-generating PM;. For message encryption, the
PM,, is modulated by a driving voltage signal (the message)
with an amplitude of the order of V. The resulting phase-
modulated signal ®,.((7) at the output of PM,, consists of the
message, superimposed to a chaotically modulated optical
phase, with a constant intensity. This signal is coupled out of
the transmitter using a 50/50 fiber coupler and sent to the
receiver. The other part is fed to the MZI followed by a
photodiode and subsequently converted into an electrical sig-
nal that drives the chaos generating PMy, one delay time T
later, as described in Sec. Il (nonlinear delayed feedback
phase oscillator). In this way, the message is not just simply
added onto the chaotic carrier signal, but it is nonlinearly
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mixed with the feedback phase dynamics, according to a
chaos masking scheme [30]. This is beneficial regarding se-
curity aspects of the communication scheme, since the mes-
sage itself is blurring the determinism of the stand-alone
phase chaos oscillation. Good mixing of the carrier addition-
ally requires that the temporal imbalance of the interferomet-
ric element in the feedback loop (MZI) exceeds the charac-
teristic time scale of one message-bit period, 6T > T;.

The light output of the transmitter is then sent to the re-
ceiver via an optical fiber channel. At the receiver input, the
light beam is split into two by a 50/50 fiber coupler; one part
is delayed and converted into an intensity signal using an
MZI with the same specifications as that of the transmitter.
The only difference is that the receiver MZI is tuned (e.g.,
through the receiver DPSK-d temperature) to operate at an
interference phase offset of ®g =®ro* 7/2 so that the
nonlinear cos® transformation is performed at the receiver in
antiphase, when compared to that of the transmitter. The ob-
tained intensity signal at the output of the receiver MZI is
detected, amplified, and used as a driving signal for the re-
ceiver phase modulator PM; the latter PM is practically act-
ing on the second part of the split input light beam. The
delay in the receiver needs to be adjusted precisely such that
the light that drives the PM, modulates its own future state at
one delay time T later, where T is the delay of the transmitter
feedback. In this way, the nonlinear transformation of the
phase, previously performed in the transmitter, is reversed
and compensated in the receiver, provided that all involved
receiver components and operating conditions are matched to
that of the transmitter. Fulfilling these requirements, the sig-
nal at the output of PMy only exhibits the message phase
modulation that has been previously applied to PM,,. The
phase-encoded message can then be conventionally con-
verted into an easy-to-detect intensity signal using a second
DPSK-d matched with the message bit rate (as implemented
in conventional DPSK message transmission schemes).

Following this encoding and decoding architecture
adapted for optical phase chaos communication, we success-
fully demonstrated the synchronization capability of the
setup in a back-to-back configuration. The cancellation of the
chaotic phase modulation at the receiver (which is a good
measure for the synchronization quality) was observed in the
optical spectral domain, at the output of PMp, using a high-
resolution optical spectrum analyzer (OSA) (10 MHz reso-
lution). Figure 8 reveals in the optical domain both the spec-
trum of the chaotic signal around the optical carrier
wavelength, as well as the residual phase synchronization
error measured at the receiver. Both spectra have been re-
corded at the same point, the output of PMpg, so that they
exhibit consistent amplitude scaling. The chaotic carrier sig-
nal and the synchronization error can be measured by on or
off switching the nonlinear delayed optical path in the re-
ceiver system, the path which drives the PMy. High synchro-
nization quality is obtained, as it can be noticed, with an
error-to-chaos ratio better in average than 10 dB (in the op-
tical domain, i.e., value theoretically twice less than in the
electrical domain) over more than 15 GHz. This preliminary
result is very encouraging for the next step, the demonstra-
tion of high bit rate and high-quality optical communication,
involving chaotic phase for masking conventional DPSK sig-
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FIG. 8. (Color online) High-resolution optical spectra. Black:
chaotic phase modulation spectrum, red: phase chaos cancellation
or phase chaos synchronization error.

nal. It is also worth noticing that the proposed synchronized
receiver architecture allows for an optical chaos cancellation,
which might be a strong advantage of the approach in terms
of decoding error level and message recovery quality.

V. CONCLUSIONS

An optical phase chaos oscillator was presented. It is con-
structed following the Ikeda cavity principles, with optoelec-
tronic and electro-optic nonlinear delay feedback architec-
tures. Dynamical features were reported and related to the
particularities of the setup, one of which being the multiple
delay character: a large delay involved in the feedback and a
short delay allowing for a phase-to-intensity nonlinear trans-
formation, with a specific nonlocality in time. When varying
the feedback gain, bifurcation diagrams were reported and
analyzed in the temporal and spectral domains, revealing an
interesting potential of the setup in terms of nonlinear dy-
namics (variety and complexity of the behaviors) and also in
terms of application to optical chaos communications (broad-
band and fast optical phase chaos). In the latter context, we
proposed the experimental use of the optical phase to per-
form optical chaos communication, which is expected to of-
fer reliable and efficient practical solutions. On the basis of a
simple chaos generator architecture, high quality and broad-
band phase chaos synchronization was demonstrated and a
full encoder/decoder scheme was proposed for future inves-
tigations of high-speed message transmission using optical
phase chaotic carriers. Future work is also oriented toward
specific device fabrication for hybrid phase chaos encoder
and decoder. More specifically, a laser with two cascaded
phase modulators integrated on III-V semiconductor is being
designed and explored; it could allow in the future for com-
pact emitter/receiver pairs. Also, the passive nonlinear phase-
to-intensity converter could benefit from a customized device
approach; this functionality was performed in the present
paper with a standard commercial DPSK-d MZI. Customized
similar devices with more complex architectures (multiple
wave-imbalanced interferometer) would lead to dedicated
hardware keys. Such a hardware key could offer efficient
flexibility in the definition of the physical parameters that are
required for chaos generation, for sensitive and accurate
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chaos synchronization, and for the development of efficient
and secure optical chaos communication systems.
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