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We investigate front propagation and synchronization transitions in dependence on the information trans-
mission delay and coupling strength over scale-free neuronal networks with different average degrees and
scaling exponents. As the underlying model of neuronal dynamics, we use the efficient Rulkov map with
additive noise. We show that increasing the coupling strength enhances synchronization monotonously,
whereas delay plays a more subtle role. In particular, we found that depending on the inherent oscillation
frequency of individual neurons, regions of irregular and regular propagating excitatory fronts appear inter-
mittently as the delay increases. These delay-induced synchronization transitions manifest as well-expressed
minima in the measure for spatial synchrony, appearing at every multiple of the oscillation frequency. Larger
coupling strengths or average degrees can broaden the region of regular propagating fronts by a given infor-
mation transmission delay and further improve synchronization. These results are robust against variations in
system size, intensity of additive noise, and the scaling exponent of the underlying scale-free topology. We
argue that fine-tuned information transmission delays are vital for assuring optimally synchronized excitatory
fronts on complex neuronal networks and, indeed, they should be seen as important as the coupling strength or
the overall density of interneuronal connections. We finally discuss some biological implications of the pre-

sented results.
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I. INTRODUCTION

Synchronization phenomena are ubiquitous in nature and
play an important role in biology, ecology, climatology, so-
ciology, technology, and even fine arts [ 1-4]. In the study of
nonlinear dynamical systems, synchronization is recurrently
being placed in the focus of attention and recently insightful
findings regarding the synchronization phenomena on com-
plex networks were reported [5—-10] and comprehensively re-
viewed [3]. It is interesting to see that one can literary infer
topological scales of complex networks based solely on syn-
chronization [11], thus making a closed loop of dependence
between the synchronizability and the structure of underlying
interactions of network elements. In neural systems, in par-
ticular, the interplay between the network structure and the
dynamics taking place on it is closely interrelated. The
function-follow-form paradigm, for example, is central to at-
test to this observation [12—-16]. It is also well known that the
cerebral cortex features properties that are characteristic for
complex networks [17-19]. As a result, the firing activities of
individual neurons are often related to the synchronization of
the underlying network and accordingly synchronized firings
can be observed at virtually all processing levels, including
the retina [20,21], the lateral geniculate nucleus [21], and the
cortex [22-25].

Synchronization on complex networks, therefore, has ac-
tually become a focal topic in theoretical neurosciences
[26,27], as evidenced by several recent studies devoted to the
explorations of this subject [28-36]. Important works have
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been elaborating on general aspects of synchronization on
scale-free [37-40] as well as complex-gradient [41] net-
works, among many other models. It is now clear that syn-
chronization is key to the efficient processing and transmis-
sion of information across a nervous system such as the brain
[23,42]. The handling of information transmission over a
neuronal network, however, is still an open avenue for re-
search. Since information transmission delays are inherent to
neuronal systems because of the finite speeds at which action
potentials propagate across neuron axons and due to the time
lapses occurring in both dendritic and synaptic processings
[43], studies are in need of catching up with the most recent
advances in synchronization research on complex networks.

Indeed, delays have been found responsible for several
interesting phenomena in coupled dynamical systems. For
example, Ernst et al. [44] identified mechanisms of synchro-
nization among pulse-coupled oscillators in the presence of
time delay. Moreover, it has been shown that coupled oscil-
lators undergo a transition toward amplitude death faster if
the time delays in coupling are distributed over an interval
rather than being uniform throughout the system [45]. The
role of delays and connection topologies for the synchroni-
zation of coupled chaotic maps has been studied in [46],
where it is reported that on scale-free and random networks,
sufficiently large coupling strengths can offset the delayed
flow of information. It has also been shown that networks
with delays can sometimes synchronize more easily than in
their absence and it has been argued that this may be particu-
larly relevant for neuronal networks for establishing a con-
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cept of collective information processing in the presence of
delayed information transmission [47]. In the present paper,
we give further support to the latter assumption by consider-
ing the impact of delays in scale-free neuronal networks.
More recently, the role of delays by the formation of the
so-called chimera, i.e., coexistent coherent and incoherent
states in a system of nonlocally coupled phase oscillators,
has also been examined [48] and it has been shown that time
delays can induce a transition toward phase clustering, giv-
ing rise to clustered chimera states that have spatially distrib-
uted phase coherence separated by incoherence with adjacent
coherent regions in antiphase. Here, we support the theory of
delay-induced dynamical transitions in terms of the syn-
chrony of neuronal noise-induced excitations on a scale-free
network. Notably, previous studies have already considered
particularly the neuronal dynamics on large networks in con-
junction with information transmission delay, but the focus
was primarily on the bifurcation structure of transitions be-
tween different delay-induced states, including oscillatory
bumps, aperiodic regimes, traveling, lurching, and standing
waves, as well as regimes of multistability [49,50]. The im-
pact of information transmission delay on neuronal synchro-
nization, on the other hand, has been studied in [51-53],
where the emergence of zigzag fronts, clustering antiphase
synchronization, and in-phase synchronization on regular
and small-world neuronal networks has been discussed.

At present, we aim to extend the scope of the above-
mentioned investigations by studying front propagation and
synchronization transitions in dependence on the coupling
strength and information transmission delays over scale-free
neuronal networks with different average degrees and scaling
exponents. Notably, it has been reported that, by using func-
tional magnetic-resonance imaging (fMRI), power-law distri-
butions can be obtained upon linking correlated fMRI voxels
[18] and that the robustness against simulated lesions of ana-
tomic cortical networks relies mostly on the scale-free struc-
ture [54]. This study thus addresses a relevant system setup
that is still widely open for new research. More specifically,
we report several nontrivial effects induced by finite delay
lengths and the ability of its fine tuning toward highly syn-
chronized fronts of excitations. These findings are compared
to the impacts of different coupling strengths and average
degrees and their robustness is examined at different levels
of additive noise, variations in system size, and different
scaling exponents of the underlying scale-free topology. Re-
markably, we found that, irrespective of the system size and
the scaling exponent, properly adjusted information trans-
mission delays play a pivotal role in warranting synchro-
nized fronts of excitations on noisy scale-free neuronal net-
works, which can be further enhanced via larger coupling
strengths or higher average degrees of the constitutive nodes.
We argue that this is primarily attributed to the emergence of
locking between the delay and the inherent oscillation fre-
quency of individual neurons of the scale-free network.

The remainder of this paper is organized as follows. In the
next section, we describe the Rulkov map [55], which will be
employed to obtain an efficient setup for simulating neuronal
dynamics on scale-free networks [56]. In Sec. II, we also
present the coupling scheme and the measure for synchroni-
zation of excitatory fronts, as well as other mathematical
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methods to be used. In Sec. III, we present the main results
and in Sec. IV, we summarize our findings and discuss their
potential implications.

II. MATHEMATICAL MODEL AND SETUP

For simulating the neuronal dynamics on a scale-free net-
work effectively, the Rulkov map [55] is employed, which
succinctly captures all the major dynamical features of the
complex continuous-time models. The spatial-temporal evo-
lution of the studied network, corrupted with additive Gauss-
ian noise and experienced with information transmission de-
lays, is described by the following iteration equations:

M+ 1) = affx2(n)]+ y?(n) + w&(n)

+ DE Y[ (n -1 -x(n)],
j

y(i)(n+1)=y(i)(n)—ﬁx(i)(n)—y, i=1,...,N, (1)

where n is the discrete time index, x'’(n) is the membrane
potential, and y(n) the variation of ion concentration of the
ith neuron, representing the fast and the slow variables, re-
spectively. The slow temporal evolution of y?(n) is due to
the small values of the positive parameters 8 and 7y, which
within this study equal 8=7y=0.001 unless stated otherwise.
Moreover, «a is the main parameter determining the dynamics
of individual neurons on the scale-free network. According
to [55], if @<<2.0, all neurons are situated in excitable steady
states [x*=—1,y"=—1-(a/2)], whereas if @>2.0, complex
firing and bursting patterns of temporal activity emerge via a
Hopf bifurcation. Here, we set «=1.95 and initiate each neu-
ron from steady-state initial conditions, so that the additive
spatiotemporal Gaussian noise &(n), having mean (&)=0
and autocorrelation (£,(n)&,(h))=6;;6(n—h), acts as the only
source of large-amplitude excitations. Moreover, in Eq. (1)
f(x)=1/1+x? is a nonlinear function warranting the essential
ingredient of neuronal dynamics, parameter w determines the
noise intensity, D is the coupling strength, and 7 is the infor-
mation transmission delay. The latter two parameters will be
in the focus of attention within this work, whereas w, 8, and
vy will be varied only occasionally.

As the interaction base between neurons, we primarily use
the scale-free network generated via growth and preferential
attachment as proposed by Barabdsi and Albert [56] consist-
ing of N=200 nodes unless stated otherwise. Each node cor-
responds to one neuron, whose dynamics is governed by the
noise-driven Rulkov map. In Eq. (1), /=1 if neuron i is
coupled to neuron j and &“/=0 otherwise. Following Ref.
[56], the preferential attachment is introduced via the prob-
ability II, which states that a new node will be connected to
node i depending on its connectivity k; according to
I1(k;)=k;/ 2 jk;, as demonstrated schematically in Fig. 1. This
growth and preferential attachment scheme yields a network
with an average degree k,,=2k;/N and a power-law degree
distribution with the slope of the line equaling =-3 on a
double-logarithmic graph. Notably, analytical estimations
predict the slope of the line to equal —3 [56]. We will use
Barabasi-Albert scale-free networks having k,,=4 through-
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FIG. 1. Schematic presentation of growth and preferential at-
tachment as proposed by Barabasi and Albert [56]. Each new node
(white) preferentially attaches to two (thus here k,,=4) old nodes
(black) that already have many other connections at that time.

out this work (see Fig. 1) unless stated otherwise.

In order to quantitatively study the degree of spatiotem-
poral synchronization in the network and thus support below
presented visual assessments of front propagation via space-
time plots, we introduce, by means of the standard deviation,
a synchronization parameter o (see, e.g., [57]), which can be
calculated effectively according to

N 2

LS P | L3
Ni:l x\n - N XxX\n

I
o= ;z o), on)=

(2)

It turns out that o is an excellent indicator for numerically
measuring the spatiotemporal synchronization of excitations,
hence revealing different synchronization levels and related
transitions. From Eq. (2), it is evident that the smaller the
synchronization parameter o, the more synchronous is the
neuronal network. Accordingly, when o=0, the network
reaches complete synchrony. Final results shown below were
averaged over 20 independent runs for each set of parameter
values to warrant appropriate statistical accuracy with re-
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spect to the scale-free network generation and numerical
simulations.

III. RESULTS

We start by presenting space-time plots obtained with a
fixed information transmission delay 7=700 and noise inten-
sity w=0.015, but different values of the coupling strength
D. Results shown in the left three panels of Fig. 2 illustrate
the spatiotemporal dynamics of neurons on the scale-free
neuronal network having k,,=4. Evidently, for small cou-
pling strengths [see panel (a), left] the excitatory fronts are
quite nicely ordered in both time and space. However, both
the temporal and spatial regularities increase further and sub-
stantially as D is increased [see panels (b) and (c), left].
Interestingly, by setting the information transmission delay to
7=1000 and keeping the same noise intensity w=0.015, the
orders in both time and space deteriorate substantially, as
depicted by the right three panels of Fig. 2. Nevertheless,
increasing the coupling strength can still improve the overall
regularity of the excitatory fronts [comparing panels (a), (b),
and (c), right]. It is thus revealed that different information
transmission delays have a profound impact on the spa-
tiotemporal regularity of excitatory fronts, whereas increas-
ing the coupling strength always leads to an improvement of
temporal and spatial synchronizations.

To investigate the impact of different information trans-
mission delays, outlined in Fig. 2 more precisely, we show in
Fig. 3 space-time plots obtained with fixed coupling strength
D=0.01 and noise intensity w=0.015, but different values of
7. It can be observed that the spatiotemporal dynamics is
ordered nicely if 7=0 [see panel (a)]. When 7=200, this
deteriorates drastically [see panel (b)], but is again revived at
7=600 [see panel (c)]. In fact, by closely examining space-
time plots obtained with 7=0 and 7=600, respectively, one
can observe that the nonzero yet appropriately tuned infor-
mation transmission delay can further enhance the regularity
of excitatory fronts as compared to the case of 7=0. Quite
remarkably, when 7=1000, the regularity of excitatory fronts
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FIG. 2. Left: Space-time plots of x)(n) obtained for 7=700 and w=0.015 with different coupling strengths D equaling (a) 0.004, (b)
0.008, and (c) 0.016. Right: Space-time plots of x'”(n) obtained for 7=1000 and w=0.015 with different coupling strengths D equaling (a)

0.004, (b) 0.008, and (c) 0.016. In all panels, the system size is i=1,2, ...,

200=N.
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FIG. 3. Space-time plots of x)(n) obtained for D=0.01 and
w=0.015 with different information transmission delays 7 equaling
(a) 0, (b) 200, (c) 600, (d) 1000, (¢) 1400, and (f) 1800. In all
panels, the system size is i=1,2,..., 200=N.

is again heavily impaired [see panel (d)], yet with 7=1400,
the order is restored anew [see panel (e)]. Indeed, the infor-
mation transmission delay-induced transitions to superbly
synchronized neuronal activities on scale-free networks seem
to appear intermittently, at roughly integer multiples of a
given value of 7, which equals approximately 600-700 in
Fig. 3. In accordance with this preliminary assessment, it is
expectable that with 7=1800, disorder in the temporal as
well as the spatial domain sets in again [see panel (f)]. Visual
investigations of Fig. 3 thus reveal that regular and irregular
front propagations appear intermittently as the delay is in-
creased. Hence, it can be stated that finite (nonzero) informa-
tion transmission delays play a pivotal role in the generation
of spatiotemporal patterns of neuronal activity on scale-free
networks.

In what follows, the degree of spatiotemporal synchroni-
zation will be studied quantitatively via o [see Eq. (2)], so as
to support and validate the above visual assessments. Fur-
thermore, it remains of interest to examine the impact of
different w and k,,. In Fig. 4(a), we first plot ¢ in depen-
dence on D for three different values of 7. As visually inter-
preted by space-time plots presented in Fig. 2, larger cou-
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synchronization in an monotonous manner. That is, as D in-
creases, o decreases (irrespective of 7), which is in agree-
ment with previous studies examining synchronization phe-
nomena in neuronal as well as many other nonlinear systems.
More eventful are results presented in Fig. 4(b), where o is
presented in dependence on 7 for three different coupling
strengths D. It can be observed clearly that certain values of
T significantly facilitate spatiotemporal synchronization of
excitatory fronts on scale-free neuronal networks. The two
minima of ¢ appear at 7=700 and 7= 1400, respectively,
and are largely independent of D. This confirms the above
claim that the information transmission delay-induced tran-
sitions to spatiotemporally synchronized neuronal activity
appear intermittently at integer multiples of the given value
of 7. On the other hand, values of 7 outside these regions
significantly impair synchronization, as can be inferred from
the rather sharp ascends toward larger o beyond the optimal
delays.

The delay-induced synchronization transitions, as well as
the impact of increasing D, can be presented succinctly also
via contour plots of ¢ in dependence on the two parameters.
Figure 5 features two such graphs obtained for w=0.015
[panel (a)] and w=0.03 [panel (b)]. Transitions to highly
synchronized states in dependence on the information transi-
tion delay are clearly visible as extensive white regions
(denoting smallest values of o) occurring at 7=700 and
721400, corresponding to the two minima depicted previ-
ously in Fig. 4(b). Moreover, results presented in Fig. 5
clearly convey the impact of increasing the coupling strength
D. In fact, not only does increasing D decrease o, as outlined
above when interpreting Fig. 4(a), but also they broaden the
span of 7 within which synchronous spatiotemporal neuronal
activity is warranted. Notably, the optimal values of 7 shift
insignificantly during the broadening. These features can be
inferred also from Fig. 4(b), yet the contour plots in Fig. 5
convey them more clearly. Finally, it is interesting to note
that different values of w do not evoke significantly different
results, as can be appreciated by comparing panels (a) and
(b) of Fig. 5. From this, we conclude that the delay-induced
transitions to synchronous neuronal activity on scale-free

pling strengths  indeed  facilitate  spatiotemporal networks are largely independent of D (apart from the broad-
a
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FIG. 4. (Color online) (a) Dependence of the synchronization parameter o on D with different 7. (b) Dependence of ¢ on 7 with different

D. Where applicable, other parameters are the same as in Fig. 2.
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FIG. 5. Contour plots of o in dependence on D and 7 with (a) w=0.015 and (b) w=0.03. Information transmission delay-induced
synchronization transitions are clearly visible and largely robust to variations of the noise intensity w.

ening of the interval of 7 warranting optimal synchroniza-
tion) and robust against reasonable variations of the noise
intensity.

Thus far, we have considered only scale-free networks
having k,,=4. Since the average degree determines the den-
sity of interneuronal links and is thus arguably an important
parameter, we present effects of different k,, in Fig. 6. Panel
(a) features space-time plots obtained with D=0.004 and
7=500 for increasing average degree from left to right. Vi-
sual inspection reveals that the impact of increasing k,, is
comparable to the impact of increasing D (comparing to the
space-time plots presented in Fig. 2) in that the excitatory
fronts propagate increasingly ordered in both time and space
as the average degree increases. This can be confirmed quan-
titatively via o, as shown in Fig. 6(b). Indeed, larger kg,
shifts lower the whole outlay of o in dependence on 7, thus
indicating improvement in the quality of spatiotemporal syn-
chronization of neuronal activity on scale-free networks. Im-
portantly, however, the oscillating outlay of o, along with the
optimal value of 7, is preserved and does not vary in depen-
dence on k,,. Therefore, we conclude that the delay-induced
synchronization transitions are a robust phenomenon of neu-
ronal dynamics on scale-free networks, which is an impor-
tant role in achieving synchronized information transmission
among neighboring as well as distant neurons.
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In order to further test the generality of our findings, we
examine the impact of different N as well as different scaling
exponents characterizing the scale-free degree distribution.
While the growth and preferential attachment algorithm pro-
posed by Barabdsi and Albert [56] yields a power-law degree
distribution with the slope of the line =-3 on a double-
logarithmic graph and serves as the most commonly used
structure for testing theoretical models, also relevant for neu-
ronal networks are slopes around -2, as reported in [18].
Accordingly, we employ an alternative algorithm for scale-
free network generation based on assigning a quenched fit-
ness value to every node and drawing links among them with
a probability depending on the fitness of the two involved
sites [58]. Using exponentially distributed fitness and a
threshold rule for linking nodes, we obtain a scale-free net-
work with the scaling exponent —2, as presented in Fig. 3 of
[58]. Results presented in Figs. 7(a) and 7(b) show clearly
that variations of the system size do not notably influence the
outcome of our simulations. In fact, the minima of ¢ remain
located at the same values of 7 and are of the same depth
(with a reasonable error margin) irrespective of N. Likewise,
by changing the scaling exponent from —3 (as given by the
Barabdsi-Albert algorithm) to —2 (as given by the algorithm
described in [58]), the results also do not change signifi-
cantly in that the minima of ¢ appear by roughly the same
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FIG. 6. (Color online) (a) Space-time plots of x)(n) obtained with D=0.004, w=0.015, and 7=500 for different average degrees k.,

equaling (from left to right) 4, 8, and 12, respectively. In all presented panels, the system size is i=1,2, ...

, 200=N. (b) Dependence of o

on 7 with different k,,. Other parameter values are the same as in panel (a).
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FIG. 7. (Color online) (a) Dependence of o on 7 with different N of the Barabdsi-Albert scale-free network [56] having k,,=4. Other
parameter values are D=0.004 and w=0.015. (b) Dependence of o on 7 with different N of the scale-free network generated as proposed in
[58] (see also text for details). Other parameter values are D=0.008 and w=0.015.

values of 7[compare panels (a) and (b) of Fig. 7]. Notable as
a qualitative difference between the two scaling exponents
characterizing the underlying scale-free topology is the very
first local minimum of o by 7= 250, occurring if the slope of
the degree distribution equals —2, as depicted in Fig. 7(b).
We conjecture that this minimum may be related to the sub-
harmonic of the optimal 7 (1/3 of the first minimum at
7==740). Nevertheless, results presented in Fig. 7 attest to
the fact that reported synchronization transitions on scale-
free neuronal networks due to finite information transmission
delays are largely robust to variations of the system size and
of the scaling exponent characterizing the scale-free degree
distribution.

Finally in this section, we provide an explanation for the
emergence of the newly reported delay-induced synchroniza-
tion transitions. Up to now, we have shown that the optimal
value of 7, resulting in the occurrence of the first minimum
of o, as well as its reappearance at integer multiples, does
not vary significantly in dependence on D [see Fig. 4(b)], w
(see Fig. 5), k,, [see Fig. 6(b)], N [see Fig. 7(a)], or the
scaling exponent characterizing the underlying scale-free
network [see Fig. 7(b)]. This leads to the conclusion that
parameters determining the global neuronal dynamics do not
play a significant role. Hence, one may adjust the local dy-
namics of each neuron by varying B and 7 (thus far we have
not varied them). These two parameters affect the speed of
the temporal evolution of y;(n) and consequently the pre-
dominant oscillation period of excitations. Results presented
in Fig. 8 clearly show that the locations of minima of o shift
to different values of 7as B and 7y are varied. We thus deter-
mined the predominant oscillation period ¢, of individual
neurons within the scale-free network and remarkably found
that for B=7y=0.0006, it is #,,.~ 1200, for B=y=0.001 it is
t,sc=~7130, and for B=vy=0.0015 it is 7,,.~580. These data
agree very well with the occurrence of the first minimum of
o in dependence on 7 as presented in Fig. 8. Accordingly, we
also conclude that the information transmission delay-
induced transitions to spatiotemporal synchronization of neu-
ronal activity are due to the locking between 7 and the pre-
dominant oscillation period of individual neurons on the
scale-free network.

IV. SUMMARY AND DISCUSSION

In sum, we have studied front propagation and synchro-
nization transitions on scale-free neuronal networks in de-
pendence on the information transmission delay, coupling
strength, and the average degree. We found that an appropri-
ately adjusted delay length can significantly enhance syn-
chronization of excitatory fronts in an intermittent fashion in
dependence on 7. The intermittent outlay emerges due to the
locking between the delay and the inherent oscillation fre-
quency of individual neurons on the scale-free network.
Thus, approximately at every multiple of the inherent oscil-
lation period of each neuron, the information transmission
delay between coupled neurons results in supremely ordered
and synchronized fronts of excitations. The widths of these
dynamical regimes in dependence on 7 can be broadened,
and the synchronization further improved, if the coupling
strength or the average degree of the network is enlarged. In
addition, we have examined the robustness of these findings
to different levels of additive noise, as well as to different
system sizes and scaling exponents characterizing the scale-
free topology, finding that all the conclusions prevail. We
have shown that fine-tuned information transmission delays

040 T T T T T T T T T T
—0— f=7=0.0006 1
0.35 1 =N =@ f=y=0.001 -
A f=y=0.0015 1
030 gl
025 -
b
0.20 -
0.15 -
0.10 - ]
0.05 | -
1 " 1 " 1 " 1 " 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800
T

FIG. 8. (Color online) Dependence of o on 7 for different com-
binations of B and 7. Other parameter values are D=0.018,
w=0.015, and k,,=4 (Barabdsi-Albert scale-free network [56]).
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can effectively supplement some recently identified mecha-
nisms for the enhancement of synchronization [59,60], as
well as weak signals in general [61], on scale-free networks.
These conclusions seem to be supported by real biological
data stating that conduction velocities along axons connect-
ing neurons vary from 20 to 60 m/s [62]. Real-life transmis-
sion delays are within the range of milliseconds, suggesting
that substantially lower or higher values may be preclusive
for optimal functioning of neuronal tissue. In future studies,
it would be interesting to examine the impact of synaptic
noise and different conductance states [63] on synchroniza-
tion transitions in delayed complex networks, as well as to
pinpoint the precise role of different aspects of structure and

PHYSICAL REVIEW E 80, 026206 (2009)

functioning of active neuronal networks [64]. We hope that
our present study will be a useful source of information
when striving toward these goals.
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