
Improved risk estimation in multifractal records: Application to the value at risk in finance

Mikhail I. Bogachev and Armin Bunde
Institut für Theoretische Physik III, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
�Received 16 July 2008; revised manuscript received 3 June 2009; published 31 August 2009�

We suggest a risk estimation method for financial records that is based on the statistics of return intervals
between events above/below a certain threshold Q and is particularly suited for multifractal records. The
method is based on the knowledge of the probability WQ�t ;�t� that within the next �t units of time at least one
event above Q occurs, if the last event occurred t time units ago. We propose an analytical estimate of WQ and
show explicitly that the proposed method is superior to the conventional precursory pattern recognition tech-
nique widely used in signal analysis, which requires considerable fine tuning and is difficult to implement. We
also show that the estimation of the Value at Risk, which is a standard tool in finances, can be improved
considerably by the method.
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I. INTRODUCTION

Risk estimation is a central issue in finance, seismology,
weather forecasting, medicine, and many other fields �1�. By
estimating the risk of an extreme event, one aims to learn in
advance about the periods of high risk, this way minimizing,
for example, the impact of market crashes �2–4�, critical
physiological conditions �5–8�, natural hazards such as large
earthquakes, floods, or periods of extreme temperatures
�9,10�, or destructive effects of mass human behavior
�11,12�. The main strategy to estimate the risk of extreme
events is to find their characteristic precursory patterns by
understanding the laws governing the extreme events
occurrence �13�.

In conventional signal analysis, the standard strategies are
based on finding precursory patterns yn,k :yn−k ,yn−k+1 ,
. . . ,yn−1 of k events that typically precede an extreme event
yn�Q. The strategies are mainly based on two approaches.
In the first approach, one concentrates on the extreme events
and their precursory patterns and determines the frequency of
these patterns. In the second approach, one considers all pat-
terns of k events yn,k :yn−k ,yn−k+1 , . . . ,yn−1 that precedes any
event in the record and determines the probability that a
given pattern is a precursor for an extreme event yn�Q
�13,14�. The second approach appears more profound, since
it considers information about precursors of all events, thus
providing additional information on the time series studied,
as has been confirmed recently for short- and long-term cor-
related data �15,16�.

Recently, we have suggested a third approach, which is
based on the statistics of the return intervals between events
above some threshold Q �17�. This return interval approach
�RIA� is particularly useful in multifractal records where lin-
ear correlations are absent and, hence, simple linear predic-
tion tools are not useful. The most prominent data sets that
fall in this category are the price returns ri= �Pi− Pi−1� / Pi−1,
where Pi is the daily closing price of a financial asset
�18–31�.

Here, we compare the prediction efficiency of the conven-
tional precursory pattern recognition technique �PRT� �which
has not been applied before to financial data sets� and the
RIA. Since the RIA requires less information than the PRT

and no fine tuning, it is easier to implement. Using a decision
algorithm and the receiver operator characteristics �ROC�
analysis, we show that the RIA performs better than the PRT.
We also show how the RIA can be used to considerably
improve the value at risk, which is one of the central quan-
tities in finances �32�.

II. RETURN INTERVAL APPROACH AND PATTERN
RECOGNITION TECHNIQUE

In the RIA, the central quantity for risk evaluation is the
probability WQ�t ;�t� that within the next �t units of time at
least one extreme event �above Q� occurs, if the last extreme
event occurred t time units ago �17�. This quantity is related
to the probability density function �pdf� PQ�r� of the return
intervals by

WQ�t;�t� = �
t

t+�t

PQ�r�dr/�
t

�

PQ�r�dr . �1�

We have shown earlier that in records with nonlinear
memory, the return intervals are long-term correlated, and
their pdf exhibits pronounced power-law behavior

PQ�r� � �r/RQ�−��Q�, �2�

where RQ is the mean return time which can be obtained
directly from the distribution H�x� of the data by RQ
=1 /�Q

�H�x�dx. The exponent ��1 depends explicitly on RQ
�17�. The power-law dependence �1� can be clearly seen in
financial records �33�.

As a consequence of the algebraical decay of PQ�r�,
WQ�t ;�t�= ���Q�−1��t / t for �t� t. To obtain by numerical
simulation a more general expression for WQ�t ;�t� valid for
all arguments, we employ a variant of the multiplicative ran-
dom cascade process �MRC�. In the MRC, the data are ob-
tained in an iterative way, where the length of the record
doubles in each iteration. In the zero-th iteration �n=0� the
data set �yi� consists of one value, y1

�n=0�=1. In the n-th itera-
tion, the data yi

�n�, i=1,2 , . . . ,2n, is obtained from y2l−1
�n�

=yl
�n−1�m2l−1

�n� and y2l
�n�=yl

�n−1�m2l
�n�, where the multipliers m2l−1

�n�

and m2l
�n� are independent and identically distributed �i.i.d.�

random numbers taken from a Gaussian distribution with

PHYSICAL REVIEW E 80, 026131 �2009�

1539-3755/2009/80�2�/026131�6� ©2009 The American Physical Society026131-1

http://dx.doi.org/10.1103/PhysRevE.80.026131


zero mean. The resulting multifractal record has no linear
correlations and can serve as a very useful model for the
price returns in financial records �17�. Contrary to models for
volatility, this model is specific in predicting market losses,
since it allows to concentrate solely on predicting large nega-
tive returns.

Figures 1�a� and 1�b� show, for the MRC record, the risk
function W�Q ;�t�, for RQ=10 and 70, respectively. In the
inset, the related pdf of the return intervals PQ�r� is shown.
Since W�t ;�t� is bounded by one for t /RQ→0, the power
law behavior can only be valid for t /RQ� ���Q�−1��t /RQ.
For large t /RQ, strong finite size effects occur in PQ�r� which
become more pronounced for large RQ values. Since these
finite size effects decrease with decreasing RQ and increasing
data length L, they underestimate the denominator in �1� and
thus lead to an artificial overestimation of WQ. To account for
the proper short and large time behavior, we are thus led to
the ansatz

WQ�t;�t� =
���Q� − 1��t/RQ

�t/RQ� + ���Q� − 1��t/RQ
, �3�

which for the MRC yields the correct behavior for both small
and large arguments t /RQ �shown in Fig. 1 with full lines�.
We will use �3� for the risk estimation.

Figure 2 shows WQ�t ;1� for the price returns of three
representative financial records �Dow Jones index, IBM
stock, British Pound vs U.S. Dollar exchange rate� for �a�
RQ=10 and �b� RQ=70. The corresponding pdfs of the return
intervals are shown, as in Fig. 1, in the insets. Since the data
is short, finite size effects are more pronounced than in the
simulated data of Figs. 1�a� and 1�b�. For comparison, the
results for the simulated data ��m	=0 and �m=1� of compa-
rable system size L=214 are also shown �dashed lines�. The
model pdfs represent slightly better the observational data
for RQ=70 than for RQ=10, in agreement with the conclu-
sions from �33�. The risk functions from the model and from
the observational data agree remarkably well. Due to the
short record length and no averaging, the finite size effects

are comparable in the simulated and in the observational
data.

The PRT approach is illustrated in Fig. 3. To estimate the
risk probability in the pattern recognition approach, one can
either use the “learning” observational record itself or use a
model representing the record �here the MRC model, where
we based our estimations on 150 MRC records of length L
=221�. First, we choose a pattern length k and create a digital
database of all possible patterns yn,k of length k. To this end,
we divide the total range of the possible data yi into l win-
dows such that there is the same number of values in each
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FIG. 1. �Color online� The risk functions WQ�t ;�t� for the MRC
record for �a� RQ=10 and �b� RQ=70. The symbols show the nu-
merical estimates for �t /RQ=1 /9�� �, 1/3���, 1���, and 3��� for
an average over 150 records of length L=221. The corresponding
analytical approximations according to �3� are shown by full lines.
The pdfs of the return intervals PQ�r�, for the same records, are
shown in the insets.
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FIG. 2. �Color online� Risk functions WQ�t ;1� for the price re-
turns of three representative financial records: Dow Jones index
�� �, IBM stock ���, British Pound vs U.S. Dollar exchange rate
��� for �a� RQ=10 and �b� RQ=70. The dashed lines shows the
corresponding risk functions obtained from the MRC model ob-
tained for a single representative configuration of size L=214. In the
insets, the corresponding pdfs of the return intervals are shown; the
dashed lines show the numerical estimate for an average over 150
MRC records of length L=221.

0 2 4 6 8 10 12 14 16 18 20
i[d]

-0.02

-0.01

0

0.01

0.02

R
i

7

1

2
3

4
5

6
7

8
9

10

4 9

P10(749)=?PRT 3 10

8 4 1

P10(841)=?P10(588)=?

5 8 8

FIG. 3. �Color online� Illustration of the precursory pattern rec-
ognition technique for a fragment of the daily returns of the Dow
Jones index. For illustration, we have chosen for the pattern length
k=3 and for the magnitude resolution l=10. The dashed lines divide
the returns into 10 quantiles. The horizontal solid line shows the
threshold Q corresponding to RQ=10. All patterns of three consecu-
tive events are considered in a sliding window. The identificator
�ID� of each pattern is a k dimensional consisting of the quantile
numbers. For each pattern, we determine the frequency of being a
precursor of an event above Q from the learning cohort.
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window. Accordingly, there exist lk different patterns. Next,
we determine how often each pattern is followed by an event
above Q which after normalization yields the desired prob-
ability P�yn�Q 
yn,k� that the following event yn exceeds Q.

The major disadvantage of the PRT �compared with the
RIA� is that it needs a considerable amount of fine tuning for
finding the optimum parameters l and k that yield the highest
prediction efficiency. For transparency, we have kept the to-
tal number of patterns lk=const and concentrated on five
pattern lengths k=2, 3, 4, 5, and 6. For the predictions in the
MRC record, we have chosen lk=106 and obtained the best
result for k=2. Smaller and larger values of lk did not im-
prove the prediction efficiency. For predictions based on the
observational records where the statistics is limited, it is usu-
ally not possible to exceed lk=102 for obtaining ROC curves
�see below� that cover the whole area between zero and unit
sensitivity. We obtained the best performance for k=1 and 2.

III. DECISON-MAKING ALGORITHM
AND THE ROC-ANALYSIS

The common strategy for a decision-making algorithm is
to seek for that pattern which has the highest probability to
be followed by an extreme event and give an alarm when this
pattern appears. In nonlinear complex records �e.g., in fi-
nance, geophysics, climate, and physiology�, this pattern
may not be representative, since many other patterns may
have comparable probabilities to be followed by an extreme
event. In this case, a better approach is to give an alarm when
the estimated probability for an extreme event to occur ex-
ceeds a certain threshold QP. The �arbitrary� selection of QP
is usually optimized according to the minimal total cost of
false predictions made, including false alarms and missed
events, after a certain cost of a single false alarm and of a
single missed event has been specified, see, e.g. �14�.

In order to illustrate the decision-making algorithm, we
show in Fig. 4�a� a representative fragment of the Dow Jones
returns record �multiplied by �−1� such that large positive
values now represent large losses�, where we have indicated
a threshold Q corresponding to the mean return time RQ
=70 between large negative returns. Figure 4�b� illustrates
the estimated probabilities WQ�t ;1� from �3� for the above
record. Figure 4�c� illustrates the same probabilities esti-
mated by the PRT with k=2 and l=10.

The decision threshold QP is shown as dashed lines in
Figs. 4�b� and 4�c�. When the estimated occurrence prob-
abilities exceed QP, an alarm is activated. For a certain QP
value, the efficiency of the algorithm is generally quantified
by the sensitivity Se, which denotes the fraction of correctly
predicted events, and the specificity Sp, which denotes the
fraction of correctly predicted nonevents. The larger Se and
Sp are, the better is the prediction provided by the algorithm.
The overall quantification of the prediction efficiency is usu-
ally obtained from the ROC analysis, where Sp is plotted
versus Se for all possible QP values. By definition, for QP
=0, Se=1 and Sp=0, while for QP=1, Se=0, and Sp=1. For
0�QP�1, the ROC curve connects the upper left corner of
the panel with the lower right one. If there is no memory in
the data, Sp+Se=1, and the ROC curve is a straight line

between both corners �dashed lines in Fig. 5�. The total mea-
sure of the predictive power PP, 0� PP�1, is the integral
over the ROC curve, which equals one for perfect prediction
and equals one half for the random guess.

Figures 5�a� and 5�b� show the ROC curves for a single
MRC record of length L=221 for RQ=10 and 70. The figure
shows that in this case, where the statistics is excellent �com-
pared with observational records�, the prediction efficiency
of both the RIA and the PRT approach, is quite high and
comparable with each other. Figures 5�c�–5�h� show the
equivalent curves for the Dow Jones Index �c, d�, the IBM
Stock �e, f� and the exchange rate between the British Pound
and the U.S. Dollar �g, h�. In these figures, we have also
added the corresponding PRT results obtained from the ob-
servational records, where we “learned” from the precursors
of large positive returns �gains� to predict large negative re-
turns �losses�. This is reasonable since the behavior of large
positive returns is in quantitative agreement with that for
negative returns �33�, see also �34�. For both RQ=10 and 70,
learning on the MRC model generally yields a higher predic-
tion efficiency than learning on the observational records.
The figure shows that for the 3 financial records, the ROC
curves for the RIA are systematically above the curves from
the PRT, especially close to Se=1. Accordingly, for the same
high sensitivities the RIA yields considerably less false
alarms than the PRT. The superiority of the RIA approach
increases with an increasing return period RQ when the finite
size effects in the observational records become increasingly
important. We like to note that we have obtained similar
conclusions for all representative records analyzed, consist-
ing of four indices �DJ, FTSE, NASDAQ, and S&P 500�,
four stocks �BOEING, GE, GM, and IBM�, four currency
exchange rates �DKK, GBP, GM, and SWF vs USD� and
four oil prices �Brent, WTI, Rotterdam, and Singapore�.
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FIG. 4. �Color online� �a� A representative fragment of the Dow
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RQ=70. An alarm is given, when the probabilities exceed a certain
decision threshold QP.
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IV. VALUE AT RISK

Finally, we use the RIA to estimate the Value at Risk
�VaR�, which is probably the best-known risk estimation
technique in finances. The VaR is defined as the loss that, in
a given time interval, can only be exceeded with a certain
small probability q. In the following, we consider as time
interval 1 day. In a first order approximation, when memory
effects are being neglected, the VaR can be simply deter-
mined from the �global� distribution P�r� of the daily returns
via

�
−Q

−�

P�r�dr = q . �4�

By solving this equation, which is identical to 1 /R−Q=q, one
can obtain the return −Q and the corresponding VaR. In or-
der to take into account the fact that the fluctuations in the
returns vary in time, one often does not consider the global
distribution to estimate −Q, but rather a local distribution of
the returns based on, e.g., the last 100 days. This technique,
which allows to distinguish between volatile and less volatile
times, is usually a better estimator of the VaR. For a further

improvement of the VaR, recently a method based on the
return interval between the last two events below −Q has
been suggested �35�.

Here we show how the RIA can be used to further im-
prove the estimations of the VaR by using explicitly Eq. �3�
for the risk function WQ, which is a symmetric function of Q.

To obtain the VaR within the RIA, we proceed iteratively:
�i� In the first step, we choose q and determine from

1 /R−Q=q the corresponding loss −Q in zero-th order ap-
proximation. Next, we determine the time t= t−Q that has
been elapsed after the last return below −Q and use Eq. �3� to
determine the new probability W−Q.

�ii� �a� If W−Q is within a certain confidence interval �q
around q, the algorithm is stopped. �b� If W−Q is above the
confidence interval we multiply −Q by 1+�Q and determine
the new elapsed time t−Q�1+�Q� after the last event below
−Q�1+�Q�. If W is still above the confidence interval, we
repeat this step until, in the n� step, W−Qn��1+�Q� is either
within or below the confidence interval. Then we stop the
algorithm and choose, as the estimate of the VaR, −Q�

=−Qn��1+�Q�. �c� If W−Q is below the confidence interval,
we proceed as in �b�, but with a negative increment �Q�0
until we are within or above the confidence interval.

Figures 6–8 show the VaR for the three assets discussed
in the preceding figures. Each figure consists of three panels.
In panel �a�, we show the negative returns −Ri. For transpar-
ency, we only highlight those negative returns with a return
period above 10. We consider as extreme events returns with
return period above 100 which is shown as straight line in
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FIG. 5. �Color online� ROC curves quantifying the prediction
efficiency obtained in the linearly uncorrelated MRC record, �a� for
RQ=10 and �b� for RQ=70, based on the PRT for k=2 ���, 3 ���,
and 6�+� as well as on RIA, Eq. �3� ���. Similar curves are pre-
sented in �c,d� for the Dow Jones returns, in �e,f� for the IBM stock
and in �g,h� for the British Pound vs U.S. Dollar exchange rate. In
�c–h� ROC-curves are shown for k=1 ��� and 2 ��� for pattern
database obtained from the MRC model and for k=1 ��� and 2 ���
for the pattern database obtained directly from the observational
record.

FIG. 6. �Color online� Value-at-Risk estimates for the Dow
Jones index. �a� A fragment of the DJ daily returns sequence from
09/10/1934 until 04/10/1940. �b� VaR estimates for the exceedance
probability q=1 /100 for each day, obtained from Eq. �4� by using
the global distribution �straight line� or the local distribution of the
last 100 days �diamonds�. �c� VaR estimates based on the return
interval approach �circles�.
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the figures. In panel �b� we show an estimate of the VaR for
each day i. We employ Eq. �4� with q=1 /100 and choose the
�local� distribution of the returns from the last 100 days. In
this case, the VaR for day i is identical to the maximum
negative return between day i−100 and i−1. In panel �c�, we
show the estimate of the VaR by the RIA, obtained by the
iterative procedure described above. The confidence interval
was chosen between 0.0099 and 0.0101, and the size of the
Q increments was chosen as 
�Q
=0.025.

V. CONCLUSION

In summary, we have used two techniques, a PRT known
in signal analysis and a RIA to estimate the risk in multifrac-
tal records in the absence of linear correlations. We have
applied both methods to financial records and have shown
that the RIA which is able to exploit long-term memory is
superior to the conventional precursory pattern recognition
approach that focuses solely on short-term memory. A major
additional advantage of the return intervals approach is that it

does not require extensive learning or tuning procedures
which are needed in the pattern recognition technique, and
thus it is considerably easier to implement. Finally, we em-
ployed the RIA to estimate the VaR, which is the standard
tool of risk estimation in finances. We showed explicitly that
the RIA gives significantly better estimates than conventional
methods, which are either based on the global or the local
distribution of the returns. We like to note that the formalism
can also be applied to multifractal data with concomitant
linear correlations that can be used to model physiological
rhythms, turbulent flows, precipitation, river flows, and net-
work traffic where it also leads to an improved risk
prediction.
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