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We investigate the recently proposed label-propagation algorithm �LPA� for identifying network communi-
ties. We reformulate the LPA as an equivalent optimization problem, giving an objective function whose
maxima correspond to community solutions. By considering properties of the objective function, we identify
conceptual and practical drawbacks of the label-propagation approach, most importantly the disparity between
increasing the value of the objective function and improving the quality of communities found. To address the
drawbacks, we modify the objective function in the optimization problem, producing a variety of algorithms
that propagate labels subject to constraints; of particular interest is a variant that maximizes the modularity
measure of community quality. Performance properties and implementation details of the proposed algorithms
are discussed. Bipartite as well as unipartite networks are considered.
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I. INTRODUCTION

There is great current interest in identifying communities
in networks. Informally, communities in networks, or graphs,
are subgraphs whose vertices are more strongly connected to
one another than to the vertices outside the subgraph. A va-
riety of approaches have been taken to make concrete the
idea of communities, giving rise to a number of efficient
methods for community identification �for useful overviews,
see Refs. �1–3��.

Recently, Raghavan et al. �4� introduced a label-
propagation algorithm �LPA� for identifying network com-
munities. Initially, each vertex in the graph is assigned a
unique numeric label. The label for each vertex is replaced
with the most frequent label from its neighbors. Relabeling
continues until a stable set of labels is reached. Network
communities are defined as the sets of vertices bearing the
same labels. The LPA offers a number of desirable qualities,
including conceptual simplicity, ease of implementation, and
practical efficiency—the algorithm rapidly �4,5� finds com-
munity assignments of high quality, as measured by the
popular modularity measure �6�.

The LPA was originally presented operationally, with
communities defined as the outcome of a specific procedure.
In this work, we consider an equivalent mathematical formu-
lation, in which community solutions are understood in terms
of optima of an objective function. We define an objective
function H based on the number of edges that connect verti-
ces with identical labels and show that the LPA identifies
local optima of H. This is formally equivalent to minimizing
the Hamiltonian for a ferromagnetic Potts model �7�. The
mathematical formulation exposes a number of interesting
properties of the LPA. A feature of conspicuous importance
is that the globally optimal solution for any network is the
uninteresting trivial solution in which all vertices are as-

signed the same label, with other solutions found by label
propagation corresponding to suboptimal local maxima of H.

The objective function optimized by label propagation
thus corresponds poorly to our conceptual understanding of
communities—an increase in H need not produce what we
would consider to be better communities. In particular, at-
tempts to improve on the label-propagation algorithm by fa-
cilitating its escape from local maxima in H may be counter-
productive. We demonstrate that this can create practical
difficulties for improvement on the standard LPA.

We next consider adding a term to the original objective
function that penalizes undesirable solutions, producing al-
gorithms that propagate labels subject to constraints. We ex-
amine several possibilities for the penalty term. Of special
interest is a penalty term that works to divide vertices into
groups of equal total degree, yielding a label-propagation
variant that strictly maximizes the modularity �6� while
maintaining the favorable computational complexity of the
standard LPA. We characterize the effectiveness of the sev-
eral label-propagation algorithms through application to a
model network and a selection of real-world networks.

The structure of the remainder of the paper is as follows.
In Sec. II, we briefly summarize the original operational pre-
sentation of the label-propagation algorithm �4�. In Sec. III,
we reformulate the label-propagation algorithm as a math-
ematical optimization problem and in Sec. IV consider draw-
backs of the LPA thus revealed. We address the drawbacks in
Sec. V by adding constraints to the optimization problem,
with attendant notes on implementation in Appendixes A and
B. Performances of several label-propagation variants are
compared in Sec. VI for both unipartite and bipartite net-
works. We conclude with a summary and discussion in Sec.
VII.

II. LABEL-PROPAGATION ALGORITHM

The identification of communities in networks is a topic
of great recent interest. Formulation of the problem presents*michael.barber@ait.ac.at
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two main challenges. First, the notion of community is im-
precise, requiring a definition to be provided for what con-
stitutes a community. Second, community solutions must
also be practically realizable for networks of interest. The
interplay between these challenges allows a variety of com-
munity definitions and community-identification algorithms
suited to networks of different sizes, as measured by the
number of vertices n or edges m in the network.

A prominent formulation of the community-identification
problem is based on the modularity Q introduced by New-
man and Girvan �6�. The quality of communities given by a
partition of the network vertices is assessed by comparing
the number of edges between vertices in the same commu-
nity to the number expected from a null model network.
Formally, this is

Q =
1

2m
�
i,j

�Aij − Pij���gi,gj� , �1�

where the Aij are components of the adjacency matrix for the
network and gi is the community for vertex i. The presence
of the Kronecker delta term ��gi ,gj� restricts the sum to
edges within communities. The probability of an edge exist-
ing between vertices i and j in the null model network is
given by Pij. The standard choice of null model takes the
probability of an edge to be proportional to the product of the
degrees ki and kj of the vertices, giving

Pij =
kikj

2m
. �2�

With this choice for Pij, the modularity becomes

Q =
1

2m
�
i,j
�Aij −

kikj

2m
���gi,gj� . �3�

Communities are then sought by finding partitions of the set
of vertices that have a high value for modularity. The global
maximum of Q is generally inaccessible as the number of
possible partitions for a set grows too rapidly to be feasibly
examined for all but the smallest networks, although effec-
tive heuristics exist for finding high modularity solutions. A
seminal example is the greedy agglomerative hierarchical al-
gorithm �8,9�, wherein pairs of communities are successively
merged so as to cause the largest possible increase in Q at
each step.

Recently, Raghavan et al. �4� introduced a LPA for iden-
tifying network communities. In contrast to the above
modularity-based approach, communities are defined in the
LPA as vertex partitions identified by a specific algorithm.
The algorithm is conceptually simple in its operation. Ini-
tially, each vertex in the graph is assigned a unique numeric
label. The label for each vertex is then replaced with the
most frequent label among its neighbors; when several labels
are equally frequent, the current label is kept if it is among
the most frequent, while otherwise a new label is chosen at
random from the most frequent. Vertices are repeatedly rela-
beled, with the algorithm terminating when the label for each
vertex is �one of� the most frequent of the labels for the
neighbors of the vertex. To avoid possible cycles and ensure
termination, Raghavan et al. �4� suggested updating the ver-

tex labels asynchronously and in random order. Network
communities are then associated with sets of vertices bearing
the same labels.

The LPA offers a number of desirable qualities. As de-
scribed above, it is conceptually simple, being readily under-
stood and quickly implemented. Communities found can be
of high quality, as assessed, e.g., by the modularity. The al-
gorithm is efficient in practice. Each relabeling iteration
through the vertices has a computational complexity linear in
the number of edges in the graph. The total number of itera-
tions is not a priori clear, but relatively few iterations are
needed to assign the final label to most of the vertices �over
95% of vertices in five iterations, see Refs. �4,5��.

Two related works are of particular note. First, Tibély and
Kertész �7� identified the label-propagation algorithm as for-
mally equivalent to minimizing the Hamiltonian for a kinetic
Potts model and used this to argue that, at least in some
networks, the identified communities may be meaningless.
Additionally, through empirical investigation of two real-
world networks, Tibély and Kertész showed that the number
of distinct community solutions may be very large—much
larger than the number of network vertices. Taken together,
these observations highlight the need for further assessment
of the quality of communities found using label propagation.

Second, Leung et al. �5� examined the LPA as a basis for
analyzing large networks, focusing on performance charac-
teristics and limitations. They suggested a number of exten-
sions and optimizations, resulting in a modified algorithm
that is able to find communities in a network with tens of
millions of edges in a few minutes using a desktop PC. This
study thus suggests that label propagation has tremendous
potential as an effective and efficient method for community
identification.

III. OBJECTIVE FUNCTION FOR LABEL PROPAGATION

Thus far, the LPA has been presented operationally—the
community solutions are defined as the outcome of a specific
procedure. Alternatively, an equivalent mathematical formu-
lation, first recognized by Tibély and Kertész �7�, can be
given, where community solutions are understood in terms of
the results of applying an optimization procedure to an ob-
jective function. The optimization procedure is the LPA,
while the objective function remains to be specified. The
mathematical reformulation thus requires defining the objec-
tive function, which provides an alternate means of under-
standing solutions found by the LPA.

To effect this reformulation, we first express the LPA op-
timization procedure as

lv� = argmax
l

�
u���v�

��lu,l� , �4�

where lu is the current label for vertex u, lv� is the new label
for vertex v, ��v� is the set of vertices neighboring v in the
network, argmaxl returns the label l that maximizes the sum,
and � is the Kronecker delta. In the event that multiple val-
ues would maximize the sum, the result of argmaxl should be
taken as for the procedural description of LPA, i.e., keep the
current label if it would satisfy Eq. �4�, otherwise take a label
at random that satisfies Eq. �4�.
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Equation �4� can be written in terms of the adjacency
matrix A for the network, giving

lv� = argmax
l

�
u=1

n

Auv��lu,l� , �5�

where n is the number of vertices in the network. Consistent
with the LPA, the adjacency matrix elements Auv are all el-
ements of �0,1	. However, the discrete nature of the Auv is
never made use of, so the form in Eq. �5� is equally appli-
cable to weighted networks.

Next, we introduce an objective function H that is maxi-
mized by the optimization procedure. Intuitively, we can
view the LPA as working to assign labels so as to increase
the number of edges that connect vertices with identical la-
bels. Formally, this number has the expression

H =
1

2�
v=1

n

�
u���v�

��lu,lv� . �6�

Equation �6� can be rewritten in terms of the network adja-
cency matrix, giving

H =
1

2�
v=1

n

�
u=1

n

Auv��lu,lv� . �7�

We note that maximizing H is equivalent to minimizing the
Hamiltonian for a ferromagnetic Potts model; this connection
has been previously recognized by Tibély and Kertész �7�.
The use of a Potts model Hamiltonian in network partition-
ing was explored in depth by Reichardt and Bornholdt �10�.

It remains to be verified that the optimization rule in Eq.
�4� does in fact maximize the objective function in Eq. �7�.
Consider updating the label for some vertex x. We rewrite
Eq. �7� to treat vertex x separately, yielding

H =
1

2
��

v�x
�
u�x

Auv��lu,lv� + �
u=1

n

Aux��lu,lx�

+ �
v=1

n

Axv��lx,lv� − Axx� . �8�

Taking advantage of the symmetry of the adjacency matrix,
we can simplify Eq. �8�, giving

H =
1

2��v�x
�
u�x

Auv��lu,lv� − Axx� + �
u=1

n

Aux��lu,lx� . �9�

The final term on the right-hand side of Eq. �9� is exactly of
the form maximized by the LPA optimization rule as ex-
pressed in Eq. �5�, while the other terms are independent of
the label on vertex x. Thus, the objective function never de-
creases under the action of the LPA, ultimately reaching a
local maximum or limit cycle.

An important property of the label-propagation algorithm
is immediately apparent from the form of H. For any net-
work, the LPA allows an uninteresting trivial solution in
which all vertices are assigned the same label �4�. From H,

we see that the trivial solution is in fact the globally optimal
solution. Other solutions found by label propagation corre-
spond to local maxima of H.

As the LPA optimization procedure in Eq. �5� produces
only local changes, the search for maxima in H is prone to
becoming trapped at a local optimum instead of the global
optimum. While normally a drawback of local search algo-
rithms, this characteristic is essential to the function of the
LPA: the trivial optimal solution is avoided by the dynamics
of the local search algorithm rather than through formal ex-
clusion.

IV. DRAWBACKS OF LABEL PROPAGATION

The label-propagation algorithm as a search scheme thus
depends on a certain degree of ineffectuality. A typical way
to attempt improvement of a local search algorithm is to
make it more able to escape from local maxima in H. Such
improvements to the LPA may be quite counterproductive, as
better solutions in terms of H—notably, the global
maximum—may be quite useless in practical terms. Despite
this, label propagation in practice can produce communities
that are of high quality in terms of, e.g., modularity: the local
maxima are frustrated equilibria, with localized groups of
well-connected vertices having the same label and with com-
paratively few edges between the groups.

Generally, there is a poor correspondence between H and
our conceptual understanding of communities. Maximizing
H, be it by label propagation or another approach, need not
produce better communities. Regardless, using the LPA
works by maximizing H, raising the question of whether, and
in what sense, we are improving community quality. Opera-
tionally, it is again unclear what it might mean to try improv-
ing the LPA. Does improving the search efficacy actually
give better communities? How do we prevent our optimiza-
tions from reaching the global maximum of H or other un-
interesting solutions with high values of H?

To illustrate the difficulties involved, we consider a pos-
sible optimization of the label-propagation algorithm. When
a vertex label is to be updated, it is necessary to handle the
case where multiple labels are equally frequent for the neigh-
boring vertices. In the standard LPA, these ties are broken by
keeping the current label for the vertex if it is one of the most
frequent or otherwise by selecting a label at random from the
most frequent. In our optimized version, we will always se-
lect a label at random from the most frequent; in light of this
additional randomization, we denote the modified algorithm
as LPAr. The tie-breaking rule for the standard LPA corre-
sponds to halting when a plateau in the H space is reached,
while LPAr corresponds to allowing a random walk on the
plateau in search of better solutions.

In Fig. 1, we show the number of communities found for
1000 applications of the standard LPA and the putatively
optimized LPAr to networks derived from the Southern
women data. The data were collected by �11� as part of an
extensive study of class and race in the Deep South. The
network represents interactions of a group of 18 women at
14 various events in and around Natchez, Mississippi during
the 1930s. This much-studied network is typically found to
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have two communities using methods of social network
analysis �12�, in accord with the conclusions from the origi-
nal ethnographic study. Unfortunately, our attempted optimi-
zation has a perverse result with the Southern women net-
work: the principal effect of the optimization is to drastically
increase the frequency at which the algorithm assigns the
same label to all vertices, failing to capture any aspect of the
known community structure.

At least in the Southern women network, several practical
drawbacks arise from the key conceptual drawback discussed
above. Optimization is made difficult, as seen in this case
based on comparison to a known community structure. Fur-
ther, the objective function optimized by LPA provides no
mechanism for testing the quality of the resulting community
solutions—we must instead assess quality through auxiliary
considerations such as the number of communities or, e.g.,
the modularity Q of the community solution.

V. CONSTRAINED LABEL PROPAGATION

A well-established approach for eliminating undesirable
solutions is to modify the objective function by adding a
constraint term that penalizes the undesirable solutions. De-
noting the modified objective function as H� and the penalty
term as G, we have

H� = H − �G , �10�

where � is a parameter that weights G against the original
objective function H. Numerous choices are possible for G;
we consider three possibilities below.

Within the specific area of communication identification,
the approach has been used at least since the landmark paper
by Fu and Anderson �13� applying methods of statistical me-
chanics to combinatorial optimization problems, including
graph bipartitioning. We base a first penalty term G1 on their
classic work. We seek to divide the vertices into groups of

the same size. In terms of the labels, we define

G1 =
1

2�
l=1

n ��
v=1

n

��lv,l��2

=
1

2�
u=1

n

�
v=1

n

��lv,lu� . �11�

The penalty term G1 produces the smallest value when all
vertices have unique labels and the largest value when all
vertices have the same label. Thus, the trivial global opti-
mum of H is penalized and hopefully avoided.

Alternatively, following a strategy that mirrors contempo-
rary methods for community detection, we can try to divide
the vertices into groups which have a similar total degree.
We define a second penalty term G2 to capture this idea. The
total degree Kl of the vertices with a given label l is

Kl = �
i=1

n

ki��li,l� , �12�

where ki is the degree of vertex i. A suitable definition for G2
is

G2 =
1

2�
l=1

n

Kl
2. �13�

As with G1, G2 is minimal when all vertices have unique
labels and maximal when all vertices have the same label,
working to avoid the trivial global optimum.

We can rewrite G2 in the form

G2 =
1

2�
l=1

n ��
v=1

n

kv��lv,l��2

=
1

2�
u=1

n

�
v=1

n

kukv��lu,lv� . �14�

Incorporating G2 into H�, we obtain

H� =
1

2�
u=1

n

�
v=1

n

�Auv − �kukv���lu,lv� . �15�

If we select

� =
1

2m
, �16�

where m is the number of edges in the network, the objective
function may be written as

H� = mQ . �17�

In Eq. �17�, Q is the standard modularity measure �6�.
Recalling that the label-propagation rule as given by Eq.

�5� requires only that a symmetric matrix be used, we can see
from Eq. �15� that modularity can be locally maximized by
the label-propagation algorithm; we denote this modularity-
specialized algorithm as LPAm. Implementation issues are
described in Appendix A. We note that LPAm, due to the
effect of G2, is well suited to aggressive optimization, but we
do not pursue such optimizations in the present work.

The penalty term G2 plays the same role as the null model
network used to define the modularity �see, e.g., Ref. �6��.
The idea holds quite generally: various null model networks
could be used to define specialized modularity measures or
penalty terms could equivalently be introduced into the ob-
jective function. This allows the interesting historical inter-
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FIG. 1. �Color online� An attempted optimization of the label-
propagation algorithm produces dubious gains for the Southern
women network. The modified LPAr frequently produces the trivial
solution, with all vertices assigned to the same community. In the
network considered, we expect at least two communities based on
the ethnographic study from which the data are drawn.
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pretation that Fu and Anderson �13� made use of a modular-
ity measure for community identification over 2 decades ago.

As a further example, we develop an analogous label-
propagation algorithm to maximize a recently introduced
�14� version of modularity adapted to the important special
class of bipartite networks. The vertices of a bipartite net-
work can be partitioned into two disjoint sets such that no
two vertices within the same set are adjacent; equivalently,
the vertices in a bipartite graph can be assigned one of two
colors, say red and blue, with no edges present between ver-
tices bearing the same color. There are thus two distinct
kinds of vertices, providing a natural representation for many
affiliation or interaction networks, with one kind of vertex
representing actors and the other representing relations.

The distinction between the two parts of the network can
be incorporated into a modularity measure by defining a suit-
able null network model. In contrast to the standard choice
given in Eq. �2�, the two kinds of vertices must be treated
separately, with nonzero probability of an edge only between
vertices belonging to different parts of the network. For a red
vertex i with degree ki and a blue vertex j with degree dj, the
null model is defined so that

Pij =
kidj

m
. �18�

Using Eq. �18�, the bipartite modularity QB is

QB =
1

m
�
i,j

��Aij −
kidj

m
���gi,gj� . �19�

The sums in Eq. �19� are to be interpreted as running over
the vertices in the two parts of the network, i.e., i is restricted
to run over only the red vertices, while j is restricted to run
over only the blue vertices.

For the present work, it is simpler to allow unrestricted
sums over all the vertices. To do this, for each vertex v, we
associate two degree measures: a red degree kv and a blue
degree dv. If vertex v is red, we require dv=0, while if it is
blue, we require kv=0. In either case, the nonzero degree is
the number of edges incident on the vertex. With this con-
struction, Eq. �19� becomes

QB =
1

2m
�
i=1

n

�
j=1

n �Aij −
2kidj

m
���gi,gj� , �20�

where now the sums run over all vertices.
We now define a penalty term G3 for bipartite networks as

G3 =
1

2�
l=1

n

KlDl, �21�

where

Kl = �
u=1

n

ku��lu,l� , �22�

Dl = �
u=1

n

du��lu,l� . �23�

Equations �21�–�23� adapt Eqs. �12� and �13� to bipartite
networks.

We can rewrite G3 as

G3 =
1

2�
l=1

n ��
u=1

n

ku��lu,l��
v=1

n

dv��lv,l�� =
1

2�
u=1

n

�
v=1

n

kudv��lu,lv� .

�24�

Writing the full objective function, we have

H� =
1

2�
u=1

n

�
v=1

n

�Auv − �kudv���lu,lv� . �25�

With

� =
2

m
, �26�

Eq. �25� becomes

H� = mQB. �27�

The label-propagation rule can again be used to maximize
the bipartite modularity; we denote the algorithm as LPAb.
Implementation issues for LPAb are treated in Appendix B.

VI. APPLICATIONS AND PERFORMANCE

A. Unipartite networks

We now turn to a comparison of the quality of solutions
found by the various label-propagation algorithms discussed
above. To quantify the solution quality, we will focus princi-
pally on the modularity Q, although it is not strictly opti-
mized except by LPAm. Along with the LPA, LPAr, and
LPAm variants discussed above, we will additionally con-
sider a hybrid algorithm, consisting of the standard LPA fol-
lowed by optimization with LPAm. The hybrid approach en-
sures that we are at a maximum in the modularity rather than
just finding a solution that hopefully offers a high value of Q.

To begin, we apply the algorithms to randomly generated
networks with a known community structure. The most typi-
cal such class of networks, introduced by Girvan and New-
man �15�, consists of four communities each containing 32
vertices. Edges exist between pairs of vertices belonging to
the same community with probability pin and between all
other pairs of vertices with probability pout. The probabilities
pin and pout are set so as to preserve the average degree 
k� of
the vertices at a value of 16, while varying the average num-
ber of edges zout between a vertex and members of other
communities. As zout increases, the communities become in-
creasingly difficult to identify. Although these model net-
works differ significantly from real networks with commu-
nity structure �16�, they do provide a simple initial test of
community-detection algorithms.

In Fig. 2, we show the modularity values for communities
found by the four algorithms. Each point shown gives the
average modularity from communities found in 1000 in-
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stances of the random network model. As expected, Q drops
as zout increases.

Since we know the actual communities for the model net-
works, we may additionally assess the accuracy of the label
assignments by directly comparing to the known values. We
use the normalized mutual information Inorm �2� for the com-
parison. Consider two schemes X and Y for dividing the n
vertices into community groups. The probability P�X
=x , Y =y� that a vertex is assigned to community x in
scheme X and to community y in scheme Y is taken to be
proportional to the size of the intersection between the sets
of vertices Cx and Cy constituting the communities, so that

P�X = x, Y = y� =
�Cx � Cy�

n
. �28�

Using the probability as defined in Eq. �28�, we can calculate
the normalized mutual information as

Inorm�X,Y� =
2I�X,Y�

H�X� + H�Y�
. �29�

Equation �29� is expressed in terms of the usual mutual in-
formation I�X ,Y� and entropies H�X� and H�X� �17�, defined
as

I�X,Y� = �
x,y

P�X,Y�log
P�X,Y�

P�X�P�Y�
, �30�

H�X� = − �
x

P�X�log P�X� , �31�

H�Y� = − �
y

P�Y�log P�Y� . �32�

In Eqs. �29�–�32�, we have made use of the common short-
hand abbreviations P�X=x , Y =y�= P�X ,Y�, P�X=x�= P�X�,

and P�Y =y�= P�Y�. The base of the logarithms in Eqs.
�30�–�32� is arbitrary as the computed measures only appear
in the ratio in Eq. �29�.

The normalized mutual information allows us to measure
the amount of information common to two different parti-
tioning schemes. Accordingly, we can explore the efficacy of
the algorithm by taking one of the partitions to be the known
modular structure of the model networks and the other to be
the structure found using label propagation. When the found
modules match the real ones, we have Inorm=1, and when
they are independent of the real ones, we have Inorm=0.
Thus, as zout increases, we expect Inorm to decrease. In Fig. 3,
we present values of Inorm from comparison of the real com-
munities to the same community solutions used for the Q
calculations in Fig. 2, observing the expected decrease from
Inorm=1 to Inorm=0.

From Figs. 2 and 3, it is tempting to conclude that LPAm
is superior to the other label-propagation variants. However,
this conclusion is not borne out when the algorithms are
applied to real networks. In Table I, we list several networks
that we have investigated using the label-propagation algo-
rithms. The networks considered are a network of friendships
between members of a university karate club �18�, a network
of frequent associations between dolphins living near Doubt-
ful Sound, New Zealand �19�, a network of collaborations
between jazz musicians �20�, a network of coauthorships for
scientific papers concerning networks �21�, and a network of
coauthorships for scientific preprints posted to the
condensed-matter archive �22� between the years 1995 and
2003 �8�. We give their sizes in terms of the number of
vertices n and number of edges m. To indicate the degree to
which the networks feature community structures, we also
provide the modularity Q, as determined using a greedy ag-
glomerative hierarchical �GAH� method based on that of
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The hybrid algorithm consists of allowing the standard LPA to run
its course and find a solution, followed by application of LPAm to
the LPA solution in order to ensure that a local maximum of Q is
reached. Error bars are smaller than the points.
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FIG. 3. Accuracy of community solutions from random net-
works with known community structures. Accuracy is quantified by
the normalized mutual information Inorm between the found and
actual community solutions. Each point shows the normalized mu-
tual information Inorm over 1000 instances of the random networks
in relation to the average number zout of intercommunity links for
each vertex. The hybrid algorithm consists of allowing the standard
LPA to run its course and find a solution, followed by application of
LPAm to the LPA solution in order to ensure that a local maximum
of Q is reached. Error bars are smaller than the points.
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Clauset et al. �9�, wherein pairs of communities are succes-
sively merged so as to cause the largest possible increase in
Q at each step. While edge weights are available in some
cases, in this work we uniformly treat all network edges as
unweighted.

For each of the networks, we identify communities using
each of the algorithms LPA, LPAm, and LPAr. Additionally,
we consider a hybrid algorithm consisting of LPA followed
by LPAm, thus ensuring that we are at a maximum of the Q.
We applied each of the four algorithms 100 times to each of
the networks. In Table II, we show the maximum modularity
found in the samples, suggesting the potential performance,
while in Table III, we show the mean modularity, revealing
the expected performance. From the tables, we can see that
no algorithm variant is clearly superior, suggesting that the
four variants all explore slightly different portions of the so-
lution space. Interestingly, the LPAr variant, which worked
poorly when applied to the Southern women network �Sec.
IV�, provides the best results on the two large coauthorship
networks. We note that the label-propagation variants pro-
duce community solutions with modularity values similar to
those found with the GAH approach and shown in Table I.

B. Bipartite networks

As we did above for unipartite networks, we next quantify
the quality of community solutions found in bipartite net-
works. We measure community quality using the bipartite
modularity QB, calculating values for the LPA, LPAr, and
LPAb variants. Again, we consider a hybrid algorithm, con-

sisting of LPA followed by LPAb, ensuring that the solutions
are at maxima in QB.

We examine the performance using four real-world bipar-
tite networks. The networks are the Southern women net-
work, described above in Sec. IV; a network describing cor-
porate interlocks in Scotland, based on the membership of
boards of directors for Scottish firms during 1904–1905 �23�;
and bipartite versions of the condensed matter and network
science coauthorship networks considered in Sec. VI A, in-
cluding authors and their papers as the two parts of the net-
work. In Table IV, we indicate the size and extent of com-
munity structure in the networks. We show the size using the
number of vertices p and q in the two parts of the networks,
as well as the number of edges m. We show the extent of
community structure using the bipartite modularity QB, as
determined using a greedy agglomerative hierarchical
method, analogous to that commonly used for unipartite net-
works �8,9�.

To each network, we apply each label-propagation algo-
rithm 100 times. The maximum and mean values found for
QB are given in Tables V and VI, respectively. For the South-
ern women network, we note that LPAr is clearly the worst
of the algorithms considered, consistent with its tendency to
assign the same label to all vertices, as seen in Fig. 1. Fur-
ther, the improved performance of LPAb on the Southern
women network in terms of the average QB indicates that the
inclusion of G3 reduces the frequent appearance of the trivial
solution with all vertices in the same community.

Despite the success of LPAb on the Southern women net-
work, it is less successful on the other networks. Perfor-

TABLE I. Basic properties of networks used to test label-
propagation algorithm variants. The sizes of the network are de-
scribed by the number of vertices n and number of edges m. Each
network has significant modular character, as indicated by the
modularity Q.

Network n m Q

Karate 34 78 0.3807

Dolphins 62 159 0.4923

Jazz 198 2742 0.4389

Network science 1589 2742 0.9555

Condmat 2003 31163 120029 0.6885

TABLE II. Maximum modularity Q found for network commu-
nity assignments. Values were calculated using 100 samples for
each network for each of the standard LPA, LPAm, LPAr, and a
hybrid approach consisting of maximization with LPA followed by
maximization with LPAm.

Network LPA LPAm LPAr Hybrid

Karate 0.4156 0.4000 0.4156 0.4198

Dolphins 0.5237 0.5157 0.5265 0.5253

Jazz 0.4424 0.4448 0.4428 0.4442

Network science 0.8924 0.8723 0.9163 0.8934

Condmat 2003 0.6228 0.5947 0.6578 0.6360

TABLE III. Mean modularity Q found for network community
assignments. Values were calculated using 100 samples for each
network for each of the standard LPA, LPAm, LPAr, and a hybrid
approach consisting of maximization with LPA followed by maxi-
mization with LPAm. The uncertainty of the final digit, calculated
as the standard error of the mean, is shown parenthetically.

Network LPA LPAm LPAr Hybrid

Karate 0.366�6� 0.347�3� 0.352�9� 0.386�4�
Dolphins 0.484�4� 0.4956�8� 0.484�5� 0.495�3�
Jazz 0.336�9� 0.4351�9� 0.34�1� 0.366�7�
Network science 0.8792�6� 0.8618�5� 0.9046�5� 0.8806�6�
Condmat 2003 0.6073�6� 0.5828�4� 0.6420�6� 0.6139�9�

TABLE IV. Basic properties of bipartite networks used to test
label-propagation algorithm variants. The sizes of the network are
described by the numbers of vertices p and q in the two parts of the
network and by the number of edges m. Each network has signifi-
cant modular character, as indicated by the bipartite modularity QB.

Network p q m QB

Southern women 14 18 89 0.3430

Scotland interlocks 108 136 358 0.6969

Network science 959 1588 2580 0.9695

Condmat 2003 31162 47055 134600 0.8700
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mance is quite similar for LPA and LPAb on the Scotland
corporate interlocks network, but LPAb is otherwise outper-
formed by the other label-propagation variants. Indeed, LPAr
provides the best results for the larger networks, in contrast
to its poor results for the Southern women network. Values
of QB for community solutions found using the label-
propagation variants are generally somewhat less than the
values, shown in Table IV, for communities found using a
greedy agglomerative hierarchical approach.

VII. DISCUSSION

We have examined the label-propagation algorithm as an
optimization problem, identifying community solutions that
it finds with the maxima of an objective function. The objec-
tive function, which is just the number of network edges
connecting vertices with the same labels, has the significant
conceptual drawback that increasing the objective function
need not produce what we would consider to be better com-
munities. Markedly, the globally optimal solution is com-
pletely uninformative, with all vertices in the same commu-
nity. Label propagation thus depends on reaching one of the
large number of local maxima in the objective function to
avoid the trivial global solution. Attempts to improve on the
algorithm may be counterproductive, giving less information
while reaching nominally better solutions. By modifying the
objective function, we defined several label-propagation al-
gorithms that are constrained to avoid assigning all vertices
to the same community. One of the constrained label-
propagation algorithms, LPAm, finds local maxima in the
modularity Q; another, LPAb, finds local maxima in a modi-
fied modularity QB for bipartite networks.

Although formally equivalent, there are important con-
ceptual differences between the usual definition of the modu-
larity Q in terms of a null model network and the version
based on constraints presented here. For example, the param-
eter � seems quite arbitrarily chosen in the constraint-based
version. In fact, the community solutions found by LPAm are
not especially sensitive to the choice of �. The value can, for
instance, be cut in half to �=1 /4m with significant change
only in the case of the mean modularity for Zachary’s karate
network—in which the mean modularity value actually in-
creases by about 10%.

More significantly, the constraint as given in Eq. �13�
makes clear that modularity favors communities of similar
size, with size measured by the total degree of the vertices in
the community. As the distribution of community sizes may
be far from uniform �see, for example, Fig. 3 in Ref. �9��, the
constraint approach points immediately toward a practical
difficulty in detecting community by maximizing modularity.
In contrast, difficulties due to varying community sizes were
recognized �24� only some time after the original introduc-
tion of modularity using a null model.

Corresponding properties hold in the case of the bipartite
modularity QB. Again, � seems arbitrarily chosen; halving
the parameter value to �=1 /m again only causes a signifi-
cant change for the small Southern women network, increas-
ing the mean bipartite modularity found by about 10%. In the
bipartite case, communities of similar size are also favored,
but the relevant size is now the geometric mean of the total
degrees within the community for the two parts of the net-
work, as seen in Eq. �21�. We thus expect that community-
identification methods based on maximizing QB will also
have difficulties with networks consisting of communities of
diverse sizes. Although this latter fact has been anticipated
�14� based on parallels to the unipartite case, it has not been
previously demonstrated.

In light of the results for the real-world networks �Tables
II and III for unipartite networks, Tables V and VI for bipar-
tite networks�, it seems clear that the main label-propagation
variants we have considered—LPA, LPAm, LPAr, LPAb—all
give good community results. The performance differences
indicate that the algorithm variants explore slightly different
portions of the community solution space. No variant is
clearly superior, which is not surprising given that we are
trying to identify communities without prior information on
their number, size, or nature.

When compared to the modularity values for community
solutions generated by greedy agglomerative hierarchical
methods, the label-propagation variants appear to provide no
advantage or, in the case of bipartite networks, to entail a
distinct disadvantage. We stress that the difference in modu-
larity values should not be overvalued for two main reasons.
First, the modularity measure, while popular, is not the only
possibility, nor is it without drawbacks �see, e.g., Ref. �25��.
Second, the algorithms are quite different, so no single point
of comparison will be determinative in general. A more thor-
ough characterization of performance is needed to establish
reliable guidelines for choosing appropriate algorithms to
analyze particular networks; this will be the subject of future
work.

The performance of LPAm is especially interesting: al-
though it is the only variant directly maximizing Q, other

TABLE V. Maximum bipartite modularity QB found for bipar-
tite network community assignments. Values were calculated using
100 samples for each network for each of the standard LPA, LPAb,
LPAr, and a hybrid approach consisting of maximization with LPA
followed by maximization with LPAb.

Network LPA LPAb LPAr Hybrid

Southern women 0.3212 0.3192 0.3184 0.3257

Scotland interlocks 0.5782 0.5783 0.6552 0.5975

Network science 0.8137 0.7807 0.8948 0.8172

Condmat 2003 0.6378 0.6179 0.7232 0.6587

TABLE VI. Mean bipartite modularity QB found for bipartite
network community assignments. Values were calculated using 100
samples for each network for each of the standard LPA, LPAb,
LPAr, and a hybrid approach consisting of maximization with LPA
followed by maximization with LPAb.

Network LPA LPAb LPAr Hybrid

Southern women 0.19�1� 0.250�3� 0.17�1� 0.27�1�
Scotland interlocks 0.543�1� 0.548�2� 0.633�1� 0.568�1�
Network science 0.788�1� 0.7624�6� 0.8733�8� 0.7986�8�
Condmat 2003 0.6314�3� 0.6142�1� 0.7183�2� 0.6536�2�
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variants produce better results in terms of Q for some of the
networks considered. This appears to be due to a fundamen-
tal difference in the role played by the modularity in the
algorithm variants. Lacking an objective function, Raghavan
et al. �4� used the modularity of the final community solution
to assess the acceptability of their LPA, as did we when
assessing LPAr in the present work. Thus, in LPA and LPAr,
the modularity is used diagnostically to select a best result
from candidate solutions produced based on other consider-
ations. In contrast, the modularity plays an essential role in
LPAm, impacting the final community solution as well as the
intermediate community states reached during the course of
the algorithm. The dynamical path followed through the
space of label assignments is driven to favor states where all
communities are similar in total degree, although there is
little reason to believe such paths are universally ideal or
particularly free of local maxima. Thus, the null model net-
work used in defining the modularity—regardless of its suit-
ability as a model of the final communities—may be an im-
practical model of the intermediate communities. This might
be addressed by varying G, gradually introducing the penalty
term G2 and thus the null network mode. Similar consider-
ations hold for LPAb and the corresponding null network
models for bipartite networks.

Overall, we have found the label-propagation algorithm to
be a promising approach to understanding networks, with a
number of desirable qualities. Label propagation seems well
suited as a basis for more specialized community-detection
methods, as well as application to other aspects of networks
besides community structure. A clear understanding of the
drawbacks of label propagation, as well as its strengths, will
help to avoid problems and facilitate further applications.
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APPENDIX A: A LABEL-PROPAGATION ALGORITHM
FOR MAXIMIZING MODULARITY

The label-propagation algorithm presented by Raghavan
et al. �4� has desirable performance properties. Each relabel-
ing iteration through the vertices has a computational �time�
complexity O�m� linear in the number of edges m in the
graph. For many networks, the number of vertices n scales
with the number of edges, so the computational complexity
for each relabeling step can instead be given as O�n�.

As seen in Sec. V, the objective function for the LPA can
be constrained to reproduce the modularity. Consequently, it
is necessary to adapt the algorithm itself to obtain an effi-
cient procedure for maximizing the modularity. Modifica-
tions can be made so as to maintain the O�m� time complex-
ity. Here, we consider the constraint G2 given in Eq. �14�,
i.e., we implement LPAm.

First, consider the objective function from Eq. �7�. Recall
that the LPA update rule �Eq. �5�� can be applied with any
symmetric matrix Buv playing the role of the adjacency ma-
trix Auv �see Sec. III�. Further, it is clear that the objective
function may be shifted by adding an arbitrary constant C
without altering the locations of the maxima in the space of
label assignments. By setting C=−�u=1

n Buu, we eliminate the
diagonal elements Buu from consideration, producing an ob-
jective function

H = �
v=1

n

�
u�v

Buv��lu,lv� �A1�

and update rule

lv� = argmax
l

�
u�v

Buv��lu,l� . �A2�

The above transformation eliminates constant self-interaction
terms.

Next, identify Buv as Auv−�kukv to match the LPAm vari-
ant, giving

lv� = argmax
l

�
u�v

�Auv − �kukv���lu,l� �A3�

or, equivalently,

lv� = argmax
l

��
u�v

Auv��lu,l� − �kv �
u�v

ku��lu,l�� . �A4�

The first sum in Eq. �A4� corresponds to the counting of
labels on neighboring vertices in the original label-
propagation algorithm. Write this as

Nvl = �
u�v

Auv��lu,l� . �A5�

The second sum in Eq. �A4� can be rewritten as

�
u�v

ku��lu,l� = Kl − kv��lv,l� , �A6�

where

Kl = �
u=1

n

ku��lu,l� . �A7�

Analogously to the volume of a graph, Kl can be viewed as a
sort of volume for the labels.

Incorporating Eqs. �A5� and �A7� into Eq. �A4�, we obtain

lv� = argmax
l

�Nvl − �kvKl + �kv
2��lv,l�� . �A8�

The modified label-propagation rule, as expressed in Eq.
�A8�, can be readily implemented so that each pass through
the vertices requires O�m� worst-case time complexity.

The algorithm is initialized by assigning a unique numeri-
cal label l to each vertex and by setting Kl to the degree of
the vertex. The first term, Nvl, requires that the labels of the
neighbors for each vertex be counted and is thus O�m�; this
is unsurprising as it is equivalent to the unmodified label-
propagation algorithm, which is O�m�. The second term ap-
pears to require that each possible label be checked for each
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vertex, giving O�n2�. However, it is only necessary to con-
sider the labels of the neighbors for each vertex—no other
label can make a positive contribution to the modularity, but
a zero contribution can be had by assigning an unused label.
A list of unused labels can be kept, allowing O�1� access.
Additionally, the Kl must be updated if the label changes, but
this is also O�1� for each vertex. In total, checking and up-
dating the Kl terms for all vertices is O�m�. The final term in
Eq. �A8� is O�n� in total. With all three terms taken into
account, the modified algorithm thus has worst-case O�m�
time complexity.

APPENDIX B: A LABEL-PROPAGATION ALGORITHM
FOR MAXIMIZING BIPARTITE MODULARITY

In Eq. �25�, we have presented an objective function cor-
responding to the bipartite modularity QB, with form

H� =
1

2�
u=1

n

�
v=1

n

�Auv − �kudv���lu,lv� . �B1�

We cannot directly apply the label-propagation update rule
from Eq. �5�, as Auv−�kudv is in general asymmetric. Despite
this, we can define a label-propagation rule for H�.

We rewrite Eq. �25� by first taking advantage of the sym-
metry of Auv and ��lu , lv�, giving

H� =
1

2�
u=1

n

�
v=1

n

�Avu − �kudv���lv,lu� . �B2�

Next, we switch the dummy indices u and v, resulting in

H� =
1

2�
u=1

n

�
v=1

n

�Auv − �kvdu���lu,lv� . �B3�

Averaging Eqs. �B1� and �B3�, we obtain

H� =
1

2�
u=1

n

�
v=1

n �Auv −
�

2
�kudv + kvdu����lu,lv� , �B4�

which is in terms of a symmetric matrix and thus suitable for
use with Eq. �5�.

The objective function, as expressed in Eq. �B4�, can be
converted into the LPAb label-propagation rule for bipartite
modularity in a fashion directly parallel to that presented in
Appendix A. The resulting update rule has the form

lv� = argmax
l

�Nvl −
�dv

2
Kl −

�kv

2
Dl +

�

2
kv

2��lv,l�

+
�

2
dv

2��lv,l�� , �B5�

where

Kl = �
u=1

n

ku��lu,l� , �B6�

Dl = �
u=1

n

du��lu,l� . �B7�

By updating Kl and Dl when labels change, the algorithm can
be implemented efficiently. The details, omitted here, are
similar to those given in Appendix A and result in the same
O�m� worst-case time complexity for each iteration of LPAb.
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