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Supercooled liquids have been shown to be dynamically heterogeneous with different regions of the system
presenting dynamics that vary from each other even by orders of magnitude. Computer simulations have
confirmed such a picture by detecting that the mobile particles in model glass formers are not homogeneously
distributed within the system but arranged in clusters. More recently, the dynamics of small systems has been
characterized by demonstrating that their structural relaxation is not homogeneous in time, in the sense that it
does not evolve gradually but it is signed by rapid bursts of mobility characterized by relative compact clusters
of mobile particles. These events (which have been named d clusters) are fast and sparse and trigger the
transitions the system experiences between metabasins (MB) of its potential-energy surface. The MB residence
times are much larger than the time scales of occurrence of the d clusters, and it has been suggested that the
events that occur within them scarcely contribute to the structural relaxation of the system. Thus, the picture of
glassy relaxation that emerges would indicate that at any time a supercooled liquid may present different spatial
regions, each one characterized by different structural relaxation times. In turn, each of such regions would not
relax smoothly or gradually but by means of sporadic sharp relaxation events. Here, we assess for a model
glass former the relative relevance of the MB exploration events and of the d clusters both in small systems and
within regions of large systems, to show that the structural relaxation at the region level is indeed extremely
heterogeneous in time and utterly governed by the latter.
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I. INTRODUCTION

The understanding of the molecular basis of the dynami-
cal slowing down that emerges as a liquid is supercooled
under its melting point represents a main issue in condensed
matter [1-6]. This glassy regime is characterized by dynam-
ics that vary by orders of magnitude from one region of the
system to another [1-6] while the relaxation has been be-
lieved to proceed by means of cooperatively relaxing regions
whose time scales and sizes grow considerably as the tem-
perature is decreased [1-7]. The validity of a heterogeneous
scenario has been confirmed both experimentally and theo-
retically, since the existence of dynamical heterogeneities
[8—15] has been detected. Pioneering computational studies
for an archetypical glass former (the Kob-Andersen binary
Lennard-Jones mixture) identified that such system (for sys-
tem sizes of N=1000 and N=8000 particles) is most hetero-
geneous at a given time scale, named 7*, when the dynamics
significantly departs from that expected by a Brownian be-
havior [9]. Within such time scale, the dynamics has been
shown to be characterized by the presence of cooperative
motions of a small number of particles (a few percent) ar-
ranged in clusters and which move collectively, often in a
stringlike fashion, by a distance close to the particle diameter
[9]. This finding represented a confirmation that the dynam-
ics of the system within a structural relaxation time (7,
which is determined by the time when the incoherent self-
intermediate scattering function has decayed to some arbi-
trarily small value: most authors use 1/e, as we shall use
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here, while others consider the decay to 10%) is clearly het-
erogeneous in space. However, such studies focused on the
global displacement from t=0 to t=¢* and the clusters ob-
served need not develop gradually or concurrently. In fact,
the study of the time evolution of the large stringlike clusters
present within a large system indeed shows that they decom-
pose in different small stringlike movements which occur at
quite different times, thus indicating that the different regions
of the system relax asynchronically [16,17]. More recently,
focusing on small systems (N=150), the fact that the dynam-
ics of such systems is also quite heterogeneous in time has
been suggested by the finding of collective motions of a
significant fraction of the particles which form relatively
compact clusters [18]. This heterogeneity in time means that
the relaxation of such small systems is not homogeneous or
gradual since the dynamics presents sharp bursts of mobility
(that is, the trajectory is most of the time quite “inactive” to
then suffer sharp jumps). These very rapid and sporadic
events, which were termed “democratic motions” or d clus-
ters, drive the system from one metabasin (MB) of its
potential-energy surface (a group of similar closely related
structures [3,18-20]) to another, the time scale of the explo-
ration of the MBs being much larger than the MB transition
events, while the structural relaxation (the so-called « relax-
ation) is performed by a small number of such transition
events. These cooperatively relaxing units or d clusters have
been identified in different glassy systems like the aforemen-
tioned binary Lennard-Jones (LJ) [18] system and super-
cooled water [21] and represent natural candidates for the
cooperatively relaxing regions proposed long ago by Adam
and Gibbs [7]. A recent inhomogeneous mode-coupling
theory of dynamical heterogeneity has related them to the
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(fractal) geometrical structures carrying the dynamical corre-
lations at time scales commensurable with that of the « re-
laxation [22]. Additionally, a recent experimental and com-
putational work in a glassy polymer provided experimental
support to the MB-MB transitions and d clusters [23]. In
such study [23], the jumps in the fluorescence of an isolated
probe have been shown to be correlated with MB transitions
and d-cluster-like events. Since the probe is sensitive to the
movement and dipole change of its environment, the experi-
ment senses the relaxation dynamics of a single (relatively
small) region of the system and not the system as a whole
and thus is directly comparable with our computational re-
sults [18,23].

Differently from the situation in a small system, the dy-
namics in large systems does not show heterogeneity in time.
That is, the relaxation of the global system does not show
large inactive periods of times to evolve by means of sharp
events. Thus, the global outcome is gradual (perfectly
gradual in the thermodynamic limit). However, this does not
necessarily mean that the differently relaxing regions within
such a system are relaxing gradually, but that the times when
they present their rapid sporadic relaxation events (d clus-
ters) are different from that of the other regions. In other
words, the behavior detected in small systems would still
hold valid within small regions of the large system, but is
averaged out when we consider the system as a whole. Thus,
it is of interest to follow trajectories within a large system by
focusing at each time on single relaxing regions. The studies
in small systems of size comparable with the typical sizes of
such regions could be instructive in this sense (systems of
around a hundreds of particles would be useful since the
sizes of the typical relaxing regions within a large system
[18,24] are expected to be close to that value for certain
temperature regime within the supercooled regime; the size
of such regions is expected to grow as temperature dimin-
ishes). However, the methods used in Ref. [18], at variance
from the ones used in other studies aimed at detecting me-
tabasin transitions and relevant relaxation events, are directly
applicable to small-size subsystems immersed within a large
one. Thus, one of the aims of this work is to study the relax-
ation dynamics of large systems at the region level.

Another interesting piece of information in this context is
the demonstration that the structural constraints posed by the
initial configuration on the dynamics do not survive a d clus-
ter and fade at time scales shorter than the a-relaxation time
[25]. Thus, the distribution of the propensity for motion of
the particles (the tendency to be mobile when evaluated
within the isoconfigurational ensemble, that is, for an en-
semble of trajectories started form the same initial configu-
ration but changing the initial particle velocities [26,27])
changes after a MB transition event, a fact also consistent
with a recent appealing description of glassy relaxation in
terms of the localized low-frequency normal (soft) modes
[28]. This is so since many different MBs are available from
any given MB. This result supports a picture of the a relax-
ation as a random walk on MBs which had been previously
proposed given the lack of correlation found between succes-
sive MB waiting times [29].

All the above expounded findings suggest a scenario in
which the local dynamics in a supercooled liquid (the dy-
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namics within different regions of a large system) passes
through large periods of inactivity (in terms of the structural
«a relaxation) to suffer dynamical hot spots characterized by
the occurrence of the d clusters, which would thus account
for most of the local structural relaxation. Thus, the aim of
the present work is to explore the heterogeneity in time of
the a relaxation both in small systems and within regions of
a large system and to further assess the relative relevance of
the different dynamical events. In this respect, our present
results will demonstrate that the structural relaxation of the
system is in fact almost exclusively due to the d clusters. For
instance, we shall show that both the mean-squared displace-
ment (MSD) and the incoherent self intermediate scattering
function evolve mainly by means of such events.

II. MODEL SYSTEM AND METHODS
A. Dynamics of the binary Lennard-Jones system

We performed a series of molecular dynamics (MD)
simulations within the NVE microcanonical ensemble (that
is, constant number of particles, N, constant volume, V, and
constant energy, E) for a widely used model of fragile glass
former: the binary Lennard-Jones system consisting of a
three-dimensional mixture of 80% A and 20% B particles,
the size of the A particles being larger than the B ones
[9,18,30]. The interaction between two atoms of type A and
B is given by V,4(r)=4€,5(0,5/ 7‘)12—(0'0,5/ r)%}, where
a,Be{A,B}. The LJ parameters used are €,,=1.0, 044
=1.0, e453=1.5, 045=0.8, €55=0.5, and g33=0.88. These in-
teractions have been truncated and shifted at rqoi=2.50 4.
The equations of motion were solved for the NVE ensemble
at a particle density of 1.2, using the velocity form of the
Verlet algorithm with a time step of 0.02. All the presented
results correspond to the situation in equilibrium. To obtain
the inherent structure (IS) of a given configuration we em-
ployed the conjugate-gradient method. We shall show results
from systems at temperature 7=0.5, density of 1.2 and N
=150 particles [18]. This system size avoids the interference
of results from many different subsystems (metabasins)
while being free of finite-size effects, as shown in Ref. [18].
We shall also study systems with N=8000 particles. How-
ever, in order to look for MBs and d clusters at such tem-
perature, one has to focus on the behavior of subsystems (of
around 150 particles each) and thus the large system should
be decomposed in many small subsystems wherein to apply
the concept of MB [19,20]. If not, one expects that the re-
sults from different regions of the system would average out
the behavior expected for a single small region. Thus, be-
sides its simplicity as compared to other methods, the advan-
tage of the distance matrix (DM) method we shall employ, as
described below, is that it makes it possible to study portions
of any size from a large system since it relies only on particle
coordinates and not potential energy. This has also the ad-
vantage that for systems of size arbitrarily small there is no
need to modify the original potential of the Kob-Andersen
model, as demanded by other methods. Given this fact, part
of our work will be referred to a small system of N=150 and
for some cases we shall also show results for a system of size
N=8000 by focusing on small regions within it. At low tem-
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peratures (close and above the critical temperature predicted
by the mode-coupling theory of the glass transition, T
=0.435) this system presents dynamical heterogeneities
[9,18]: there are many particles that move more than what
would be expected on the basis of a Brownian behavior and
a small number of particles move cooperatively at a distance
that is comparable to the interparticle distance. These “fast
moving” (or “mobile”) particles are not homogeneously dis-
tributed throughout the sample but are arranged in clusters
usually made of stringlike groups of particles [9,18]. The
dynamics is most heterogeneous at time ¢* defined by the
maximum in the non-Gaussian parameter a,(f), a,(t)

=§:2j(,%%— 1, which measures the deviation of the self part of
the van Hove function [G,(r,?), the probability at a given
time ¢ of finding a particle at distance r from its initial posi-
tion] from a Brownian behavior [9]. This quantity is located
at the end of the S relaxation and beginning of the « relax-
ation (the crossover from the caging to the diffusive regime
in the mean-squared displacement (r*(¢)) plot) and consti-
tutes the characteristic time for dynamical heterogeneities (in
this case =400 for 7=0.50 [18]). Additionally, * depends
strongly on temperature and grows quickly as we move to-
ward T, [31]. However, not all the mobile particles within a
1" time span contribute decisively to the « relaxation, as we
have recently demonstrated [18]. Instead, the « relaxation is
driven by a series of a few MB-MB transitions which are
triggered by the occurrence of large compact clusters of
medium-range-mobility particles called democratic particles
[18]. Additionally, the typical residence time in a MB has
been estimated to be on the order of ¢ [18].

B. Distance matrix method, metabasins, and d clusters

We now describe briefly the distance matrix method to
study MB dynamics (see Refs. [18,25] for details): we per-
form an MD simulation and record equally spaced configu-
rations (for example 101 configurations, as in Refs. [18,25])
for a time larger than that of the a-relaxation time, 7,. The
total run time for the simulations is r=4000, while 7,~700
when evaluated as the time when the self intermediate scat-
tering function for the first peak of the structure factor has
decayed to 1/e (the definition we shall use here as most
authors do, while some other authors use the time scale of
the decay of such function to 10%, which in this case is
around 2900). Thus, consecutively recorded configurations
are separated in time by #=40(=10%r") and build the follow-
ing distance matrix [18,32], Rz(t’,t”)=%,Eﬁil|r,-(t’)—r,-(t") 2,
where r,(f) is the position of particle i at time ¢. Thus,
R?(t',1") gives the system-averaged-squared displacement
(ASD) of a particle in the time interval that starts at ' and
ends at 7. In other words, this distance matrix contains the
averaged-squared distances between each recorded configu-
ration and all the other ones. For this study (as all studies
dealing with MBs [18-20,32]), we must investigate small
systems, since for large systems the results originated from
different subsystems would obscure the conclusions
[18-20,32]. Thus, we study now a system of N=150 par-
ticles. However, we also found the same qualitative results
for small subsystems immersed in a big one, thus ruling out
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FIG. 1. Top: contour plot of the distance matrix R*(¢',"), DM,
for T=0.5. The gray levels correspond to the values indicated.
Middle: the distance matrix calculated at the inherent structure
level. Note the clear similitude between the two DMs. Bottom: the
averaged-squared displacement &(z, 6) for the same trajectory (gray
line) and the function m(z,#), which gives the fraction of demo-
cratic particles, i.e., particles that moved more than the threshold
value r;=0.25 in the time interval [z,7+ 6] (black bars). These
curves were obtained for the inherent dynamics and 6=40.

the possibility for finite-size effects (that is, we repeated the
study for subsystems of 150 particles within a large system
of 8000 particles, which means to focus on small portions of
a large system).

Figure 1 (top) shows a typical behavior for trajectories
with T=0.5. The gray level of the squares in R*(¢',") depicts
the distance between the corresponding configurations, the
darker the shading indicating the lower the distance between
them. Were the dynamics homogeneous in time, we would
expect a distance matrix with a dark main diagonal and a
continuous fading as we move away from such diagonal.
However, from the island structure of this matrix a clear MB
structure of the landscape is evident. That is, islands are
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made up of closely related configurations (low R?) which are
separated from the configurations of other islands by large
distances. In other words, the dynamics of the system is in-
homogeneous in time. We can estimate the typical residence
time in the MBs for this T (from island sizes) as qualitatively
on the order of 7*. Given the small system size we expect this
to be a good estimate (however, this time scale clearly de-
pends on system size, since for a large system different sub-
systems would be undergoing MB-MB transition events at
different times). Thus, MB-MB transitions (the crossings
from one island to another and which last 10-20% of ¢*) are
fast events compared to the times for the exploration of the
MBs. The study of MB-MB transition events has been done
previously [18], revealing the decisive role of large compact
clusters of medium-range-mobility particles (which we call d
clusters). These clusters are responsible for the « relaxation
(completed after a few of such events) and represent poten-
tial candidates for the cooperatively relaxing regions of
Adam and Gibbs [18]. The compact nature of these events
relevant to the « relaxation would be compatible with the
geometrical structure of the dynamics correlations at large
time scales on the order of 7,, as indicated in an inhomoge-
neous mode-coupling theory (at variance from the less dense
structures, compatible with stringlike motions, expected at
the shorter time scales of B-relaxation time) [22]. We also
show in Fig. 1 (middle) the distance matrix calculated for the
same trajectory but with the inherent structures instead of the
instantaneous or real configurations in order to filter out the
randomizing effect introduced by the thermal vibrations [3]
(this subtracting of the thermal motions makes the IS ap-
proach useful to better determine the relative contribution of
the different events to the structural relaxation and thus we
shall employ such method in most of our following work).
The ISs represent the closest local minimum of each instan-
taneous configuration within the potential-energy surface of
the system. Thus, each instantaneous structure represents a
thermal induced deformation of its corresponding IS. To lo-
cate the ISs we minimized the instantaneous configurations
by means of the conjugate gradient method (we had not ap-
plied this method for the MD simulations of this system in
our previous works within the NVE ensemble). Here we can
note that the results are analogous at both levels of descrip-
tion. However, since the (computationally more expensive)
IS method is more efficient for identifying dynamical events
(given the fact that the structural changes are free form the
masking effect of the thermal fluctuations) we shall employ
it for certain parts of the following analysis instead of simply
using the real dynamics.

The democratic particles that comprise the d clusters that
trigger MB-MB transitions were defined as that whose mo-
bility was greater than r,;=0.3 within the time interval 6
=40 at this temperature for the real dynamics (the chosen
cutoff represents roughly the value of r when the distribution
of particle displacements within a time interval characterized
by a MB transition event exceeds the van Hove function, that
is, the time-averaged behavior), and its fraction was repre-
sented by the function m(z, 6) [18]. Thus, for the system size
under study we found that on the order of 40-60 particles
were involved in a d cluster [18].

We also display in Fig. 1 (bottom) the function &%(z, 6),
the system-averaged-squared displacement of the particles
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within a time interval =40 (gray line). This function is de-
fined as

8(t,0)=R*t— 012, t+0/2), (1)

N
51,0 = 1%12 Iri(t—612) —rit+ 62). ()

i=1

Thus, 6%(t,60) is R*(¢',#") measured along the diagonal ¢’
=t"+ 6 and hence the average of this quantity over different
start times ¢ gives the usual mean-squared displacement for
time lag 6. We again note that the time scale #=40 is signifi-
cantly smaller than the a-relaxation time (7,=700) but still
sufficiently larger than the time of the microscopic vibrations
[=0(1)]. For some trajectories it is enough to calculate this
function with the instantaneous (real) configurations, as can
be seen in Ref. [18]. In some cases, however, the masking
effect of the thermal vibrations obscures a bit the results and
it is better to calculate the function at the inherent dynamics
(over the minimized configurations), as we have done here.
A comparison of this 6%(z,6) with Fig. 1 (top and middle)
shows that &°(¢,6) is showing pronounced peaks exactly
when the system leaves an MB. Thus, we see that changing
the MB is indeed associated with a rapid motion as measured
in 8°(t, 6). We define democratic particles as those which in
the time interval =40 have moved more than r,;,=0.25 for
the inherent dynamics (we use a lowest threshold than in the
real dynamics since in the inherent dynamics the contribu-
tion of the thermal fluctuations to the particles displacements
has been removed; we also note that while this threshold
value is arbitrary, the results are robust with respect to
changes of such value from around 0.1 to values much larger
than 0.25) and denoted the fraction of such particles by
m(z, 6). In Fig. 1 (bottom), we have also included such frac-
tion of democratic particles m(z, 6) at the inherent dynamics
as a function of time (black bars). The comparison with
&(t,0) shows that the fraction of these particles is indeed
large whenever the &%(t,6) increases rapidly. This fraction
is on the order of 30-50% of all the particles and, thus,
significantly larger than one would expect from the integra-
tion of (the self part of) the van Hove function 472G (r, 6)
(where G(r, )=N""ZY (8(r—|ri(6)-r,(0)])) is the averaged
distribution of particle displacements for time lag 6) from
r,, to infinity in the inherent dynamics that gives
Jo254mr2G(r, 6) ~0.09. Finally, we mention that the tem-
perature we use, 7=0.5, is one at which the MB structure of
the potential-energy landscape is valid (which coincides with
the prevalence of the dynamical heterogeneities, roughly be-
tween around 7=0.6 to T-=0.435). If we change tempera-
ture within such time interval the results are similar, improv-
ing a bit as 7 diminishes.

III. RESULTS
A. In-time heterogeneity of the correlation functions

This section is devoted to study in detail the time evolu-
tion of the transport properties in the above mentioned arche-
typical model glass former (the binary Lennard-Jones mix-
ture) in order to determine to which extent the dynamics for
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FIG. 2. The squared displacement function for a single trajec-
tory, R%(0,¢). The black solid line is this function calculated for a
system of N=8000 and 7=0.5. The gray solid lines correspond to
the calculation of such function for each of the 64 boxes in which
the system of N=8000 was divided. The inset shows a linear plot of
the same data. The average behavior of the gray curves coincides
with that of the large system.

small systems or within regions of a large system instead of
being gradual is heterogeneous in time. To that end, one of
the simplest time-dependent correlation functions to focus on
is the mean-squared displacement, MSD, function

g 3)

N
(P0) =3 ) 0
i=1

where r,(f) is the position of particle i at time ¢. To gather
enough statistics to yield a smooth curve, it is necessary to
calculate this function (usually for a large system size) aver-
aging over large times (much larger than the a-relaxation
time) or over many independent initial configurations. This
requirement is more stringent when one calculates the func-
tion for a small system size. However, this averaging washes
out the fingerprints of the time heterogeneity, as we shall see
later on. Thus, here we take a different approach and calcu-
late the mean-squared displacement for a single run (a single
trajectory for a given single initial configuration) of length
larger than the a-relaxation time (many of the plots we shall
show will thus be run dependent, but will illustrate typical
behaviors verified in many single runs). In other words, we
are going to plot the first row (or column) of the distance
matrix R*(¢',¢"), that is the function R*(0,7) (here, however,
we shall take configurations more closely spaced than that
used before for the distance matrix). This function thus mea-
sures the extent to which the given trajectory of the system
has moved away at time ¢ from its initial position at time ¢
=0 (as measured by the squared displacement averaged over
all the particles). When we plot such function for a large
system, the behavior is not very different from that of the
usual MSD plots for such system size, albeit with a bit
poorer statistics (see Fig. 2, which is very similar to the MSD
curve reported in the literature for this temperature by Kob
and Andersen [33]). Here in Fig. 2 we show such results for
N=8000 and a low temperature close to 7., T7=0.5. The
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FIG. 3. Top: the solid black line depicts the function R*(0,7) for
a system of N=150, corresponding to the same trajectory as that of
Fig. 1 displayed on a linear scale to better evidence the jumps
presented by the curve. The times when the curve exhibits impor-
tant jumps coincide with that of the islands transitions of Fig. 1. The
other two curves display the same function for single trajectories in
other two independent N=150 systems. Bottom: the same curves
but now displayed in a log-log fashion.

(logarithmic in time) function R?(0,7) shows at first a ballis-
tic regime (slope 2) and then a plateau (corresponding to the
caging of the particles by their first neighbors), followed by
the typical diffusive regime (slope 1). The time scale of
maximum inhomogeneous behavior, r* is located at end of
the plateau beginning of the diffusive regime, around the
onset of the « relaxation [9]. However, if the system presents
dynamical heterogeneities and d-cluster events, we expect
that the evaluation of R*(0,7) for a small system or for a
small subsystem (a small region within a large system) shall
present clearly different features. This is precisely the case,
as can also be seen from Fig. 2 gray lines and in Fig. 3. In
Fig. 2 (gray curves) we show the same function R*(0,7) (cal-
culated at the same times) but for 64 equal-size sub-boxes (of
around 125 particles each) in which we divided the same
large N=8000 system. We can clearly note that the dynamics
at distinct portions of the large system (within the different
subsystems) are quite different, with regions that are much
faster or slower than the average behavior of the whole sys-
tem (we note that if we average the curves of the different
subsystems we produce a curve that resembles very well that
for the large system).

A similar situation would also arise for a small isolated
system. We show in Fig. 3 (top), black line, the function
R?*(0,1) calculated for an isolated small-size system (N
=150). This curve corresponds to the same system of Fig. 1
and to the same trajectory, plotted in a linear time scale. We
also show in such graph the same function calculated for
other single trajectories in systems of N=150. From this plot,
and also from the ones that correspond to the subsystems
already analyzed (Fig. 2, gray curves), we can learn an in-
structive detail: the R%(0,¢) function is not a smooth curve
like the one for the large system of Fig. 2 (black line) or like
the typical MSD plots, but shows instants when it increases
markedly. In Fig. 3 (top) we have also included other two
R?*(0,1) functions calculated for other two single runs in a
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system of N=150. All these curves illustrate the typical be-
havior: the function shows large plateaus and relatively fast
increases (steps). In Fig. 3 (bottom), in turn, we have plotted
the same functions as that of Fig. 3 (top) but in a log-log
plot. Even with the poor statistics of single runs we can
appreciate the ballistic regime, the plateau and the diffusive
regime. However we can note that the diffusive slope 1 re-
gime is followed in zigzag given the plateau-jump or step-
wise nature of the curves (we also note that if we average
many curves like the ones shown, we shall recover a smooth
slope 1 linear regime). This behavior of the squared displace-
ment function constitutes a clear indication that the dynamics
is heterogeneous in time, a fact that has not been recognized
previously in former studies of large systems. This heteroge-
neous nature of the local dynamics (at the subsystem level)
reflects itself in a metabasin structure of the potential-energy
landscape such as that of Fig. 1, while the island structure
would disappear if the distance matrix were calculated for a
large (N=8000) system. The jumps in R%(0,7) in Fig. 3 sig-
naling the metabasin transitions (please compare the jumps
in the black line of Fig. 3 with the island transitions of Fig.
1) indicate the sparse and rapid nature of the d-cluster events
which are responsible for the advancement of the relaxation
(while the rest of the time the trajectory does not progress
significantly). In turn, the fact that the function R*(0,7) cal-
culated for a large system lacks any step-wise nature, as
previously seen, is due to the fact that in the different sub-
systems of the large system the times of the occurrence of
the d clusters are different. Thus, while the R*(0,7) curves
for each of the subsystems evolve by means of jumps, the
averaging over all the subsystems produces a curve with a
nice plateau and diffusive regime more typical of the MSD
one is used to see in the literature (the smoothness of the
curve increasing as N grows toward the thermodynamic
limit). The same averaging out of the heterogeneous behav-
ior occurs when we average the R*(0,7) functions of many
different independent small isolated systems or when one
calculates it for a very long run (by averaging the behaviors
over many different time intervals within such trajectory). A
note of caution must be placed, however, regarding the com-
parison of the behavior of small isolated systems and small
subsystems within a large one which we studied above.
Given the fact that the sub-boxes in which we divided the
large system have been arbitrarily placed, they might cut the
different d clusters that would occur within the large system
which might span through more than one single box. Thus,
the distance matrix for the sub-boxes, while still heteroge-
neous and presenting an island structure, would be less neat
than the ones for a small isolated system [a loss of quality
that also would affect the magnitude of the jumps in the
function R*(0,7)]. Thus, while both kinds of small systems
produce similar (time) heterogeneity, in most of the follow-
ing we shall employ small isolated systems to better single
out such behavior.

The other typical correlation function in this context is the
incoherent intermediate scattering function F(g,7), which is
usually calculated at the wave-vector g corresponding to the
maximum in the structure factor

N
Fy(q.0)=N"2 (expliq - [r;(t) - r;(0)]}). (4)
j=1
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FIG. 4. Top: self-intermediate scattering function Fj(q,t) for a
system of N=8000 at 7=0.5 (the same trajectory as that of Fig. 2.
Bottom: FZ(q,z) for a system of N=150 and the same temperature
(corresponding to the trajectory of Fig. 1 and the black lines of Fig.
3).

Such correlation function accounts for the loss in time of
the memory of the initial structural configuration and exhib-
its a first decay, corresponding to the caging regime, and a
second decay characteristic of the « relaxation. Here, we
again shall not calculate the typical F,(g,?) function, but we
shall compute the function Fj(q,t), which is the same math-
ematical formulation but calculated for a single trajectory of
length on the order of the a-relaxation time (from a single
initial structure). This is depicted in Fig. 4 (top) for a large
system size (N=8000). However, if the system presents dy-
namical heterogeneities and d-cluster events we expect, as
before, that when we evaluate such function for a small sys-
tem or for a small subsystem (a small region within a large
system) it shall present a roughly step-wise behavior. This is
precisely the case, as we can also learn from Fig. 4 (bottom)
where we show the results for the same N=150 system and
same trajectory as that of Fig. 1. From this figure (shown
with a linear time axis instead of the usual logarithmic one to
stress this point), we can also see that the curve is not smooth
(like the one for the large N=8000 system), but shows in-
stants when it decays markedly, a behavior consistent with
the stepwise nature of the R?*(0,7) function of Fig. 3, and a
clear indication that the dynamics is quite heterogeneous in
time.

To emphasize this point, we introduce now the function
AF!(q.t,6) as F(q,t+6/2)~F!(q,t—6/2), which gives the
change in the scattering function Fj(q,t) at time ¢ and for
time interval #=40. The behavior of this function is dis-
played in Fig. 5 (top) for a typical trajectory for a system of
N=150 particles [the same as that of Fig. 1 and the black line
of Fig. 3 and Fig. 4 (bottom)]. We can note that AFI(q,t, 0)
shows the presence of peaks which signal the abrupt decays
in Fj(q,t) and which coincide with that of the R*(0,7) func-
tion and the metabasin transitions (d clusters). This result
makes evident the fact that the dynamics is very heteroge-
neous in time since most of the decay of the correlation
function is performed at such events, the rest of times exhib-
iting poor contributions.
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FIG. 5. Top: the function AFI(q,t,ﬂ); Bottom: plot of
AR?(0,t, 6), in this case, evaluated at the inherent dynamics.

We also return now to real space to define the function
AR?*(0,1,60)=R*(0,1+6/2)—R*(0,t—6/2), that is, the change
in the squared displacement function R*(0,¢) at time ¢ and
evaluated for time interval #=40 (here we have used the
inherent dynamics to filter out the randomizing effect of the
thermal energy). In other words, we wish to investigate to
which extent the squared displacement of a single trajectory
is advanced at each time of the trajectory. Direct inspection
of Fig. 5 (bottom) confirms our conclusion that the MB tran-
sitions (d clusters) perform great contributions while the rest
of the time the MSD is not significantly advanced.

B. Assessing the relevance of the different
kinds of dynamical events

This section is devoted to determining the role of the d
clusters or MB transitions events and of the MB exploration
events to the structural relaxation of the system. We shall
show that the former are almost exclusively responsible for
the structural relaxation, while the latter do not contribute
appreciably. To better quantify this point we analyzed 60 MD
trajectories of length r=4000 at 7=0.5 for an isolated system
of N=150 and recorded 100 equally spaced configurations
for each trajectory. To locate MB transitions and the corre-
sponding d clusters we employed an automatic simplified
method: for each trajectory in the real dynamics we calcu-
lated the function m(z, ), that is, the fraction of particles that
moved more than r;,=0.3 within each of the #=40 time in-
tervals (between contiguously recorded configurations).
Whenever this value is larger than 0.3 we say that the trajec-
tory has undergone a d-cluster event. This approximate
method is based on our observation from many different tra-
jectories of the minimum number of particles that typically
move in such an event at this temperature [ 18] (we recall that
the integration of the van Hove function from r, to infinity
for the real dynamics gives only ~0.16 [18]). With this
method we find a total number of 168 d clusters, roughly an
average of three events per trajectory. We now calculate the
average change in the squared displacement during a d
cluster. That is, we calculate the value of (AR*(0,t,6))
=( R*(0,t+6/2))-R?*(0,t—6/2)), where the mean-squared
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FIG. 6. The function (R*(¢',t)) as calculated by averaging over
60 different trajectories (in a linear plot). 7=0.5 and we have made
use of the inherent structure dynamics. The lack of an inertial (bal-
listic) and a caging regime such as that usually seen in a typical
MSD curve is due to the fact that the inherent formalism is being
used [34] (these regimes do in fact emerge at the real dynamics).

displacement is evaluated for time intervals [r—6/2, t
+6/2], with 6=40, only when a d cluster occurs and the
average is performed over time and over all the 60 trajecto-
ries. That is, we average the advancement of the squared
displacement function over the 168 d clusters found. We em-
ploy now the IS formalism in order to be free of the masking
effect of the thermal vibrations, thus being able to better
discriminate the average contribution of these kind of events.
We do so since, as shall be made clearer later on in Fig. 6
and Fig. 7, the motion of the particles comprising the d clus-
ters does not depend too much on the kind of approach used,
real or inherent dynamics, while the (averaged over all time
intervals of length #) advancement in the squared displace-
ment of the trajectory is notably much larger for the real
dynamics (due mainly to the thermal motions). This last
value constitutes basically the contribution to the squared
displacement of the time intervals when no d cluster occurs,
given the sparse location of d clusters. Thus, the thermal
fluctuations would make the relative contribution of the d
clusters look a bit less relevant. With the above described
method, we find that an average increment in the squared
displacement of the trajectory of 0.09 occurs for a d cluster
during a =40 time interval in the inherent dynamics. For
comparison, we plot in Fig. 6 the function (R*(¢',f)) aver-
aged over the 60 different trajectories (in a linear plot). This
function calculates the squared displacement for a time inter-
val of length ¢ as calculated by moving the beginning of the

h

anr’ G, (t, 0)
N

[1] 0.2 0.4 0.6 0.8 1
r

FIG. 7. Van Hove function for time =40 for the instantaneous
configurations or real dynamics (solid dark gray line) and for the
inherent dynamics (solid light gray line). Particle displacements dis-
tribution for time intervals wherein a d cluster occurs (of length ¢
=40) for the real dynamics (line with filled squares) and for the
inherent dynamics (line with filled circles). Van Hove function for
t=7,=~700 (solid black line).
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time interval ¢’ over all times for each of the 60 trajectories,
evaluated at the inherent dynamics. The outcome is clearly
very similar to the usual MSD plot and the behavior at large
times is linear, as demanded by a diffusive regime. We find
that the value of this function at time =40 is only 0.007, an
order of magnitude less than for a d cluster. We can also
learn that the average advancement of the trajectory during a
d cluster (within a time interval of r=40) is close to that
performed during the whole time scale of the « relaxation,
7,~700. We note that in the calculation of the curve of Fig.
6, the contribution of the different d clusters that occur for
the different trajectories (many of them presenting a d cluster
before 7,) is not subtracted. Thus, this fact indicates that the
squared displacement is mostly advanced by the d clusters,
while the rest of the time, the trajectory contributes quite
modestly.

Similar information can be obtained from the study of the
van Hove function and the displacement distributions. The
van Hove function 47°G(r,t) gives the probability for a
particle to be located at a distance r from the origin after
time . In Fig. 7 we display this function evaluated at time
t=40 and t=7,~700 for the real dynamics (this function
gives the averaged displacement of the particles for a time
interval of length ¢, as averaged over all the 100 time inter-
vals of all 60 trajectories). We also show this function but
evaluated only at the 168 d clusters found (for time intervals
of length r=40 containing a d cluster event). Again we can
see that the displacement distribution for the d clusters is
very different from the behavior of the van Hove function for
t=40 (clearly displaced to the right and thus indicating a
great enhancement in particle motion) and similar to that
function evaluated at 7, (we again remind that in this last
case the contribution of the d clusters is also included since it
is averaged over all times). Thus, this reinforces the notion
that the MB exploration events do not contribute signifi-
cantly to the long-time structural relaxation, which is almost
exclusively governed by the d clusters. We have also in-
cluded the van Hove function for =40 evaluated at the in-
herent dynamics and the particle displacements distribution
for time intervals of length =40 wherein a d cluster occurs
also for the inherent dynamics. We can thus see that the
functions at the real and inherent dynamics give similar in-
formation but that the removal of the thermal fluctuations at
the IS level provides neater results. The curves of the van
Hove function and the displacement distributions at the
d-cluster events intersect at around r=0.25 and r=0.10 for
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the real and inherent dynamics, respectively. Thus, the d
clusters at the IS level are more evident than at the real
dynamics. If we calculate the excess of the distribution curve
for the particle displacements at the d clusters with respect to
the van Hove function (integrating both curves from the in-
tersection point to infinity and subtracting them) we find a
value of =0.45 at the IS level while it drops to roughly 0.3 in
the real dynamics. This gives further support to our former
choice of the inherent formalism (which subtracts the ther-
mal motions) to calculate the relative contribution of the
d-cluster events to the advancement of the correlation func-
tions, namely, R*(0,7) and FI(q,t).

IV. CONCLUSIONS

Different studies have suggested that the dynamics of
glass-forming systems is heterogeneous both in space and in
time, since for the different regions of the system the trajec-
tory is locally confined for long times within metabasins of
the potential-energy surface to experience abrupt metabasin
transitions characterized by significant molecular reorganiza-
tions or d clusters. In the present work we confirm this pic-
ture wherein the last mentioned relaxation events play a ma-
jor role in the long-time dynamics. We show that the
different correlation functions (the intermediate scattering
function and the particles squared displacements for a single
trajectory) for small systems or for small regions of a large
system present quite a different behavior than that typically
obtained when evaluated over a whole large system, display-
ing abrupt changes that reveal the presence of major relax-
ation events. We also show that relevant changes in such
functions are only produced whenever the system suffers a d
cluster, while the rest of the dynamics does not contribute
significantly. Thus, such functions are mainly advanced by
the indicated events and the average contribution of a d clus-
ter is shown to be close to that of the whole «-relaxation
time scale. In this sense, these findings reveal the metabasin
transition event (d cluster) as the basic mechanism respon-
sible for the long-time diffusion in the supercooled systems
under study.
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