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We analyze the ferromagnetic Ising model on a scale-free tree; the growing random tree model with the
linear attachment kernel Ak=k+�. We derive an estimate of the divergent temperature Ts below which the
zero-field susceptibility of the system diverges. Our result shows that Ts is related to � as tanh�J /Ts�
=� / �2��+1��, where J is the ferromagnetic interaction. An analysis of exactly solvable limit for the model and
numerical calculation supports the validity of this estimate.
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I. INTRODUCTION

Many real-world systems range from the structure of In-
ternet or www to social relationship between human society
or prey-predator relationship in food webs are described to-
pologically as scale-free networks �SFNs� �1–3�. In a SFN,
the degree distribution P�k�, where degree k is the number of
edges connected to a node, has a power-law decay P�k�
�k−�. The degree exponent � takes 2���3 in many real
networks �4�. SFN studies have been carried out actively in
recent years, including various processes taking thereon, e.g.,
network failure, spread of infections, or interacting systems,
which attract numerous applications and fundamental inter-
ests about critical phenomena �2,3,5�. Among them, the fer-
romagnetic Ising model on SFNs is a basic prototype to un-
derstand how network topology influences cooperative
behaviors on SFNs. Indeed, previous studies have demon-
strated the extreme influence of the network topology
�6–15�. For example, Dorogovtsev et al. �9� analyzed the
Ising model on uncorrelated SFNs by the Bethe approach to
show that the phase transition exists at a finite temperature
for ��3, while the system remains in the ferromagnetic
phase at any finite temperature for ��3, and its critical ex-
ponents vary depending on �.

While various systems on uncorrelated SFNs, in which
the Bethe approach is very effective, have been studied to
show simple and interesting pictures, many works have re-
ported that the systems on some growing networks show
quite different phase transitions from those on uncorrelated
SFNs �5,11,12,16�. The effects of growth mechanisms on
phase transitions are still unclear. In this paper, we analyze
the Ising model on a simple growing tree model to investi-
gate this problem. It is well known that the ferromagnetic
Ising model on trees has no spontaneous magnetization at
any finite temperature in contrast to that on regular lattices,
while its zero-field susceptibility remains to diverge below a
certain temperature Ts �we call it the divergent temperature�
�17–24�. In other words, the system is extremely sensitive to
the external field below Ts. How does the so-called preferen-

tial attachment in a growth process influence the sensitivity
of a resulting tree to the external field? The aim of this paper
is to clarify the relation between the divergent temperature Ts
and the degree distribution P�k�.

In this paper, we use the growing random tree �GR tree�
�the Dorogovtsev-Mendes-Samukhin model �25�� introduced
by Krapivsky and co-workers �26�. The GR tree is probabi-
listically generated as a sampled tree TN with N nodes as
follows. One starts with one isolated node. At each time step,
a new node is added and links to one of pre-existing nodes.
The probability that the new node links to a node with degree
k is proportional to the attachment kernel Ak. In this paper,
we focus on the linear attachment kernel Ak=k+� ���−1�.
The degree distribution of resulting trees depends on offset �
in the attachment kernel. For the infinite offset �→�, the
degree distribution reduces to the exponential form P�k�
=2−k. For finite offset �, the degree distribution satisfies a
power-law decay P�k��k−�, where the degree exponent is
�=3+� �26�. Particularly, the GR tree with no offset �=0
corresponds to the so-called Barabási-Albert tree �27–30�,
which has the degree exponent �=3. We investigate how the
divergent temperature Ts is related to �. Our results show
that, like the transition temperature of the Ising model on
uncorrelated SFNs, Ts on the GR tree is larger as the degree
exponent � is smaller and reaches the infinity for ��3.

This paper is organized as follows. In Sec. II, we intro-
duce the Ising model on the GR tree. In Sec. III, we derive
the exact expression for the system susceptibility and the
divergent temperature for the infinite offset case �→�. In
Sec. IV, we give an estimate of Ts for finite offset cases. In
Sec. V, we show our numerical results to support the validity
of our estimate and suggest that for no offset case, Ts di-
verges and an unusual scaling exists. Section VI is devoted
to the summary.

II. MODEL

In this section, we introduce our model: the Ising model
on the GR tree. The Hamiltonian is

H = − J�
�ij�

SiSj − h�
i

Si, �1�

where J��0� is the ferromagnetic interaction, h is the exter-
nal magnetic field, and Si�=	1� is the Ising spin variable on
the node i. The first sum is over all edges, and the second one
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is over all nodes. In the following sections, we focus on the
zero-field susceptibility of this model. The zero-field suscep-
tibility is expressed in terms of the spin-spin correlation
functions as 
sys= 1

N�i,j=1
N �SiSj�, where the angular bracket

denotes the usual thermal average. For trees, the correlation
function between two Ising spins Si and Sj on a sampled tree
TN is given as �21�

�SiSj� = tdi,j�TN�, �2�

where t=tanh��J�, �=1 /T, T being the temperature, and
di,j�TN� is the path length between the nodes i and j on the
tree TN. Accordingly, the one-spin susceptibility 
i�TN� of a
spin on the node i of a sampled tree TN is


i�TN� = ��
j=1

N

tdi,j�TN�, �3�

and the system susceptibility


sys�TN� =
1

N
�
i=1

N


i�TN� =
�

N
�
i,j=1

N

tdi,j�TN�. �4�

Note that the system susceptibility is related with the so-
called average correlation volume �V �5�: �V=T
sys.

III. INFINITE OFFSET CASE

In this section, we consider the GR tree with the infinite
offset �→�. We derive the exact form for the mean system

susceptibility 
sys�N ,T� and Ts. Here Ā=�TN
P�TN�A�TN�,

and P�TN� is the normalized probability of a tree TN. Sup-
pose that TN+1 is created by attaching the �N+1�th node to
the nth node of a pre-existing tree TN. Then the distance from
the new node to all others is given as di,N+1�TN+1�
=dN+1,i�TN+1�=1+dn,i�TN� for 1� i�N �30�. The diagonal
element is zero: dN+1,N+1�TN+1�=0. Note that for trees, a path
between each pair of nodes is unique, so the matrix elements
do not change their values once formed during a growth
process. So we obtain the following recursion relation for the
averaged total susceptibility �VN=N
sys�N ,T�:

VN+1 = �
TN+1

P�TN+1� �
i,j=1

N+1

tdi,j�TN+1�

= �
TN+1

P�TN+1� �
i,j=1

N

tdi,j�TN+1�

+ 2 �
TN+1

P�TN+1��
i=1

N

tdi,N+1�TN+1� + 1. �5�

The first term of the right-hand side is

�
TN+1

P�TN+1� �
i,j=1

N

tdi,j�TN+1� = �
TN

P�TN� �
i,j=1

N

tdi,j�TN� = VN, �6�

and the second term is

�
TN+1

P�TN+1��
i=1

N

tdi,N+1�TN+1�

= �
TN

P�TN��
n=1

N

P�n�TN��
i=1

N

t1+di,n�TN�. �7�

Here we use P�TN+1�= P�TN�P�n �TN�, where P�n �TN� is the
conditional probability that the newly added node links to a
pre-existing node labeled as n on the tree TN. Combining
Eqs. �6� and �7� with Eq. �5� gives the evolution of VN as

VN+1 = VN + 1 + 2t�
TN

P�TN��
n=1

N

P�n�TN��
i=1

N

tdi,n�TN�. �8�

Although it is hard to solve VN explicitly for finite offset
cases since the probability P�n �TN� is proportional to the
kernel Ak, the infinite offset case is within reaching distance.
In this case, the conditional probability is independent of
which node is attached: P�n �TN� for any n. Thus, Eq. �8� is
evaluated as

VN+1 = VN + 1 +
2t

N
�
TN

P�TN��
n=1

N

�
i=1

N

tdi,n�TN� = 1 + 	1 +
2t

N

VN.

�9�

This recursion equation is solved explicitly to obtain the
mean system susceptibility as


sys�N,T�
�

=
VN

N
= 1 + t + 2t�

m=2

N−1
1

m�m + 1� �
k=1

m−1 	1 +
2t

k

 .

�10�

By evaluating the temperature below which the system sus-
ceptibility �10� diverges, we find that the divergent tempera-
ture is given as �see Appendix A�

tanh�J/Ts� =
1

2
. �11�

Moreover, expanding Eq. �10� around the divergent tempera-
ture, we obtain the finite-size scaling form for the infinite
offset case,


sys�N,T� � �ln N�f��T − Ts�ln N� , �12�

where f�x� is a scaling function in this case.

IV. FINITE OFFSET CASE

In this section, we proceed to finite offset cases. We give
an estimate of Ts by calculating a lower bound of the system
susceptibility. First, we can calculate approximately the one-
spin susceptibility of the initial node 
1. Let us assign a level
to each node of the GR tree according to the distance l from
the initial node. The initial node is placed at the zeroth level,
and a new node which links to a node at the lth level is
placed at the �l+1�th level �27�. Let nN

�l� denote the mean
number of nodes at the lth level on trees with N nodes. Then
the total degree of nodes at the lth level is equal to nN

�l�
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+nN
�l+1�. When the new node is added to a tree with N nodes,

the probability that the new node links to any node at the lth
level is approximately �nN

�l�+nN
�l+1�+�nN

�l�� / ��2+��N−1�.
Here, this new node is stationed at the �l+1�th level, so we
obtain

nN+1
�l+1� = nN

�l+1� +
c1nN

�l� + nN
�l+1�

c2N − 1
�l 
 1� , �13�

where c1=1+�, c2=2+�, and the initial condition is nN
�0�

=1 for all N. Now, we introduce the generating function

GN�t� = �
l=0

�

nN
�l�tl. �14�

Note that GN�t� is related to 
1 as 
1=�GN�t�. From Eq.
�13�, we obtain the recursion relation for the generating func-
tion as follows:

�c2N − 1�GN+1�t� = �c2N + c1t�GN�t� − 1. �15�

It is easily solved that

GN = 1 + t
��2 − c2

−1�
��1 + c2

−1c1t� �
M=1

N−1
��M + c2

−1c1t�
��M + 1 − c2

−1�
. �16�

For N�1, the summation of the second term can be approxi-
mated as

�
M=1

N−1
��M + c2

−1c1t�
��M + 1 − c2

−1�
� �

M=1

N−1

M�c1t+1/c2�−1 � N�c1t+1�/�c2�,

�17�

so that

GN�t� � N�c1t+1�/�c2�. �18�

Thus, we obtain the one-spin susceptibility of the initial node
as


1�N,T� = �GN�t� � �N�1+�1+��t�/�2+��, �19�

which diverges for any T and any ���−1�.
Now, we evaluate a lower bound of the system suscepti-

bility. We consider a subtree which consists of a node at the
sth level and its descendants. Assuming that the numbers of
offspring of the nodes at the same level are all the same, the
number of nodes at the �s+ l�th level in the subtree is given
as nN

�s+l� /nN
�s�. Among the total susceptibility of the subtree,

the contribution from the node pairs whose paths go through
the level s is GN,s

2 − �nN
�s+l� /nN

�s��t2GN,s+1
2 , where

GN,s = �
l=0

�
nN

�s+l�

nN
�s� tl �20�

corresponds to the one-spin susceptibility of the node at the
sth level. The total susceptibility of the whole tree is evalu-
ated as

NT
sys�N,T� = �
s=0

� 	GN,s
2 − t2GN,s+1

2 nN
�s+l�

nN
�s� 
nN

�s�

= nN
�0�GN,0

2 + �1 − t2��
s=0

�

nN
�s+l�GN,s+1

2 . �21�

The second term is non-negative for 0� t�1, so we obtain a
lower bound of the system susceptibility as

T
sys�N,T� 

1

N
nN

�0�GN,0
2 =

1

N
GN

2 � N
2��1+c1t�/�c2�−1��.

�22�

Note that the exponent includes t. By evaluating where this
bound diverges, we obtain an estimate of Ts,

tanh�J/Ts� =
�

2�� + 1�
, �23�

which reduces the exact solution �11� for the infinite offset
�→�. This relation indicates that as the offset is smaller, the
divergent temperature is higher. Particularly, we immediately
find that Ts diverges for −1���0.

V. NUMERICAL CALCULATIONS

In this section, we calculate the zero-field susceptibilities
numerically for the GR trees with several values of offset �.
We generate trees for a given offset and calculate their sus-
ceptibilities by using Eq. �2�. First, we show the results for
the infinite offset case �→�. Figure 1 compares the numeri-
cal result for the system susceptibility with the analytical
forms �Eq. �10��. For convenience, we set J=1. We find that
the analytical forms agree well with the numerical ones. Fig-
ure 2 plots the finite-size scaling �12� around the divergent
temperature. The number of nodes is taken from 210 to 213.
The system susceptibilities are averaged over 100 samples.
We find that the scaling works quite well.

1 2 3 4 5
T

2

4

6

8

log�ΧT�

FIG. 1. �Color online� The system susceptibility for the infinite
offset by the analytical results �Eq. �10�� �lines� and the numerical
ones �points�. The numbers of nodes are taken N=210�red�,
211�green�, 212�blue�, and 213�black�, from bottom to top. The av-
erage is taken over 100 samples.
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Next, we turn to finite offset cases. We assume that a
finite-size scaling form for finite offset cases follows that for
the infinite offset case �12�. Figures 3 plots the finite-size
scaling around our estimate Ts for the mean system suscep-
tibility with the offsets 6, 4, and 1. As a result, we find that
our finite-size scaling similar to that for the infinite offset
�12� is quite well fitted as long as an offset is not small.
These results support that our estimate gives the exact diver-
gent temperature. On the other hand, our scaling does not
work well for the small offsets, e.g., �=1 or 2, where scaling
exponents there may depend on the offset strongly.

Finally, we consider no offset case. In Fig. 4�a�, we plot
the mean system susceptibilities ln�
sys�N ,T�� with several
nodes from N=210 to 215. Now we rescale these susceptibili-
ties as ln�T
sys�N ,T�� / lnN. The rescaled system susceptibili-
ties are quite well fitted for very wide temperature range as
seen in Fig. 4�b�. This indicates that T
sys�N ,T� goes to the
infinity as N→�. In addition, our result means that the fol-
lowing unusual scaling for the system susceptibility �in other
words, for the average correlation volume �V� is satisfied:

T
sys�N,T� = �g�T��ln N, �24�

where g�x� is a scaling function. This relation is derived
partially by the following approximation. The expected num-
ber El of shortest paths of length l for the Barabási-Albert
tree with N nodes is given as

El �
N2

2

1
�2� ln N

e−��l − ln N�2/�2 ln N��, �25�

for N�1 �28�. The system susceptibility is approximately
evaluated as

T
sys�N,T� =
1

N
�
l=0

N−1

Elt
l

�
N

2

1
�2� ln N

�
0

N−1

e−��l − ln N�2/�2 ln N��tldl

�
1

2
eln N�1+ln t+�1/2��ln t�2�, �26�

for ln t�−1. This approximation shows that the system sus-
ceptibility T
sys�N ,T� holds the scaling relation �24� at least
in a low-temperature region. Interestingly, this scaling form
remains to be satisfied even at a high temperature where this
approximation �26� is not valid.

VI. SUMMARY

In this paper, we investigated the zero-field susceptibility
of the Ising model on the GR tree with the attachment kernel
Ak=k+�. Our main finding of this paper is that the divergent
temperature Ts of the GR tree with offset � is given by
tanh�J /Ts�=� /2��+1� �Fig. 5�. The exact expression of the
susceptibility for the infinite offset and the finite-size scaling

�4 �2 2
�T�Ts�log N

2

3

4

Χ �log N

FIG. 2. �Color online� Finite-size scaling �12� of the system
susceptibility around Ts for the infinite offset. The numbers of
nodes are taken N=210�red�, 211�green�, 212�blue�, and 213�black�,
from top to bottom. The average is taken over 100 samples.
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�T�Ts�log N
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�T�Ts�log N

�2
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8

log� Χ � log N�
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16384.

8192.

4096.

2048.

1024.

�20 �10 10 20
�T�Ts�log N

�3

�2

�1

1

2

log�Χ � log N�

32768.

16384.

8192.

4096.

2048.

1024.

(c)

FIG. 3. �Color online� Finite-size scaling of the system suscep-
tibility around our estimate Ts �Eq. �23�� for offset �= 6 �top�, 4
�center�, and 1 �bottom�. The number of nodes is taken from N
=210 �top� to 215 �bottom�. The average is taken over 100 samples.
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of the susceptibilities for finite offsets support that our esti-
mate is exact. The finite-size scaling form �12� implies that
ln N can be regarded as the characteristic system length L, so
that Eq. �12� can be read as 
sys�L�f��TL1/�� with �=1, �
=1.

It is worthwhile to mention the relation between Ts and
underlying network’s structure. From Appendix B, the excess
degree kex���k2−k�� / �k� of the GR tree is given by kex
=2��+1� /�, so that tanh�J /Ts�=1 /kex. Interestingly, a simi-
lar relation holds for the transition temperature Tc of uncor-
related SFNs, below which the spontaneous magnetization
appears, tanh�J /Tc�=1 /kex �9�. The GR tree has no ordered
phase, but just its susceptibility diverges. The present situa-
tion may be similar to the Ising model on the regular Cayley
tree. The Ising model on the Cayley tree undergoes a se-
quence of transitions �18�. These transitions are only seen in
the field dependence of the free energy and the mth and
higher derivatives of the free energy with respect to the field
diverge at the critical temperature Tm. The sequence interpo-
lates between a first-order transition at T1=0 and an infinite
order transition at the Bethe-Peierls transition temperature
T�=TBP �0=T1�T2�T3� ¯ �T�=TBP�. Above T=T�, all
derivatives are finite. The divergent temperature Ts in this
work corresponds to T2. Where is the transition point T� of

the GR tree if a similar sequence exists? The susceptibility
�19� of the initial node diverges irrespective of T and �, so
sufficiently high-field derivatives of the free energy should
diverge and, thus, T� reaches the infinity. We think that this
is also true on any GR tree and the growth mechanism takes
T� to the infinity.

Finally, we point out that even with same degree distribu-
tion, not all trees may behave like the above scenario. The
GR tree belongs to growing random trees with the infinite
Hausdorff dimension and the small-world property �31�. But
there also exist random connected trees which can be scale
free, while having the finite Hausdorff dimension and not
small-world property in the statistical ensembles of maxi-
mum entropy trees �equilibrium random connected trees�
�32�. The latter has quite different geometry from the former.
Maximum entropy trees favor to generate many long
branches and less compact than growing random trees. It
would be interesting to examine how spins on such trees
behave.
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APPENDIX A: THE DERIVATION OF THE DIVERGENT
TEMPERATURE OF THE GR TREE WITH THE

INFINITE OFFSET

In this appendix, we derive the divergent temperature of
the GR tree with the infinite offset �→�. We rewrite the
system susceptibility �10� as

vN = 1 + t + 2t�
m=2

N−1
1

m�m + 1�
Qm, �A1�

where

2 4 6 8 10 12
T

0.2

0.4

0.6

0.8

1

log T / log N

32768.

16384.

8192.

4096.

2048.

1024.
χ

(b)

2 4 6 8 10 12
T

2.5

2.5

5

7.5

10

log

32768.

16384.

8192.

4096.

2048.

1024.

-

χ

(a)

FIG. 4. �Color online� �a� The system susceptibility ln
sys and �b� ln�T
sys� / ln N on the GR tree for no offset �=0. The number of nodes
is taken from N=210 to 215. The results are averaged over 100 samples.

-1 1 2 3 4 5
α

Ts

0

2

4

6

8

10

12

14

FIG. 5. �Color online� The relation between the divergent tem-
perature Ts and offset � of the Ising model on the GR tree. The
red-solid line denotes the relation �23� between � and Ts. The blue-
dot line denotes Ts for the infinite offset �. In the blue-colored
region, the system susceptibility diverges.
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Qm = �
k=1

m−1 	1 +
2t

k

 . �A2�

One immediately finds that the divergence occurs at t
1 /2
as follows. At t=1 /2, one finds

Qm = �
k=1

m−1
k + 1

k
= m , �A3�

to reduce the system susceptibility �A1� to

vN = 1 + t + 2t�
m=2

N−1
1

m + 1
= �

m=1

N
1

m
, �A4�

and the system susceptibility diverges in the limit N→�.
Since vN increases monotonously with t for any N, the sys-
tem susceptibility diverges at least for t
1 /2. Now we show
that the system susceptibility cannot diverge for t�1 /2.
From Eq. �A2�, we obtain the following relations for Qm:

�
m=2

N−1
1

m�m + 1�
Qm = �

m=2

N−1 	 1

m
−

1

m + 1

Qm, �A5�

and

Qm+1 − Qm =
2t

m
Qm. �A6�

The iterative substitutions of Eqs. �A5� and �A6� allow one
to the following transformation:

�
m=2

N−1
1

m�m + 1�
Qm =

1

2
Q2 + �

m=2

N−2
2t

m�m + 1�
Qm −

1

N
QN−1

=
1 + 2t

2
Q2 + �

m=2

N−3
�2t�2

m�m + 1�
Qm

−
2t

N − 1
QN−2 −

1

N
QN−1

= ¯ =
1

2 �
m=2

N−2

�2t�m−1 − �
m=2

N−1
�2t�N−m−1

m + 1
Qm.

�A7�

In the end, one finds

vN = 1 + t +
1

2 �
m=1

N−2

�2t�m−1 − �
m=2

N−1
�2t�N−1−m

m + 1
Qm

� 1 + t +
1

2 �
m=1

N−2

�2t�m−1. �A8�

This upper bound converges for t�1 /2, so vN does not di-
verge there. Thus, we find that the divergent temperature Ts
is decided by tanh�J /Ts�=1 /2.

APPENDIX B: DERIVATION OF THE EXCESS DEGREE
OF THE GR TREE

In this appendix, we derive the excess degree kex��k2

−k� / �k� of the GR tree. Nk�N� is defined as the average num-
ber of nodes with degree k for trees with N nodes. In network
growths, the rate equation for Nk�N� is as follows:

Nk�N + 1� = Nk�N� −
k + �

�2 + ��N − 1
Nk�N�

+
k − 1 + �

�2 + ��N − 1
Nk−1�N� + �k,1. �B1�

For N�1, the recursion relation for the stationary degree
distribution nk=Nk�N� /N is

�k + 2� + 2�nk = �k + � − 1�nk−1 + �2 + ���k,1. �B2�

Introducing the generating function G�x�=�k=1
� nkx

k, G�x� is
given as

�2� + 2 − �x�G�x� = �x2 − x�
dG�x�

dx
+ �2 + ��x . �B3�

One can easily calculate it to obtain

G�x� = �� + 2�
�1 − x��+2

x2�+2 �
0

x

du
u2�+2

�1 − u��+3 . �B4�

Setting 1−x�y, 1−u�v, and v�yt, we obtain

F�y� � G�1 − y� =
2 + �

�1 − y�2�+2�
1

1/y

dt
�1 − yt�2�+2

t�+3 .

�B5�

Here limy→0+F�y�=�k=1
� nk, limy→0+F��y�=−�k=1

� knk, and
limy→0+F��y�=�k=1

� k�k−1�nk, so we expand F�y� up to the
second term in y,

F�y� � �2 + ���1 + 2�� + 1�y

+ �� + 1��2� + 3�y2��
1

1/y dt

t�+3 �1 − 2�� + 1�yt

+ �� + 1��2� + 1�y2t2�

� �2 + ���1 + 2�� + 1�y

+ �� + 1��2� + 3�y2�	 1

� + 2
− 2y

+
�� + 1��2� + 1�

�
y2
 . �B6�

As a result, we obtain F�y� �y=0=1, F��y� �y=0=−2, and
F��y� �y=0=4��+1� /�, so we obtain an excess degree kex of
the GR tree with offset � as

kex =
�k2� − �k�

�k�
= 2

� + 1

�
. �B7�
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