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Natural selection and random drift are competing phenomena for explaining the evolution of populations.
Combining a highly fit mutant with a population structure that improves the odds that the mutation spreads
through the whole population tips the balance in favor of natural selection. The probability that the spread
occurs, known as the fixation probability, depends heavily on how the population is structured. Certain topolo-
gies, albeit highly artificially contrived, have been shown to exist that favor fixation. We present a randomized
mechanism for network growth that is loosely inspired in some of these topologies’ key properties and
demonstrate, through simulations, that it is capable of giving rise to structured populations for which the
fixation probability significantly surpasses that of an unstructured population. This discovery provides impor-
tant support to the notion that natural selection can be enhanced over random drift in naturally occurring

population structures.
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I. INTRODUCTION

Networks of agents that interact with one another underlie
several important phenomena, including the spread of epi-
demics through populations [1], the emergence of coopera-
tion in biological and social systems [2—4], the dynamics of
evolution [5,6], and various others [7,8]. Typically, the dy-
namics of such interactions involves the propagation of in-
formation through the network as the agents contend to
spread their influence and alter the states of other agents. In
general, the underlying network structure affects agent be-
havior greatly and also the global properties that emerge as a
consequence of agent interaction. As demonstrated in
[6,9—14], subtle structural changes can lead to important
variations. The centrality of network structure also occurs in
several other areas, such as those surveyed in the chapters of
[15,16] and in [17].

In this paper, we focus on the dynamics of evolving popu-
lations, particularly on how network structure relates to the
ability of a mutation to take over the entire network by
spreading from its node of origin. In particular, we target the
growth of networks and its possibilities regarding the spread
of mutations. The study of network growth can be traced
back to the work of Erdds and Rényi on the emergence of the
so-called giant component under the steady increase of the
network’s density of randomly placed edges [18]. In the con-
text of agent networks representing biological or social sys-
tems, considerable effort has been dedicated to the study of
network growth to account for the appearance of the so-
called small-world phenomena [19] and of neighborhood-
size distributions of the power-law type [20].

One of the earliest techniques for the creation of a net-
work in a biological or social domain is that of altering an
initial lattice by the removal of randomly selected nodes and
connections [21]. Beginning with a lattice has also been
shown effective in giving rise to the reduced average dis-
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tance between nodes that is typical of small-world networks.
The key alteration now is the replacement of a randomly
selected fraction of the connections, leading in the limit in
which all connections are altered to the networks known as
random regular graphs [22,23]. Further alterations have also
been explored [24,25], resulting in networks with the addi-
tional small-world property of tightly clustered neighbor-
hoods.

Other than network creation by alteration of an initial lat-
tice, some prominent methods have been proposed which
grow a network by annexing to it one new node at a time,
along with connections between the new node and some of
the nodes already in the network. The most well-known of
these is the so-called method of preferential attachment [20],
which selects the nodes for connection to the new node in
proportion to a nondecreasing function of how many nodes
they are already connected to. The case of a linear function
leads to a power-law distribution of neighborhood size [20],
but this is lost if the function is nonlinear [26]. Some varia-
tions of preferential attachment have appeared that promote
the appearance of some desirable properties in real-world
networks [27,28] and likewise other methods that succeed in
giving rise to similar power laws without resorting to any
form of preferential attachment [29,30].

The method we introduce for network growth is rooted in
some of the structural properties of networks that are known
to influence the probability that a mutation gets spread. We
begin with a discussion of these properties and then go on to
introduce the method and evaluate it computationally.

II. FIXATION PROBABILITY

In evolutionary dynamics, the probability that a mutation
occurring at one of a population’s individuals eventually
spreads through the entire population is known as the muta-
tion’s fixation probability, p. In an otherwise homogeneous
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population, the value of p depends on the ratio r of the mu-
tant’s fitness to that of the other individuals and it is the
interplay between p and r that determines the effectiveness
of natural selection on the evolution of the population, given
its size. In essence, highly correlated p and r lead to a promi-
nent role of natural selection in driving evolution; random
drift takes primacy, otherwise [31].

Let P be a population of n individuals and, for individual
i, let P; be any nonempty subset of P that excludes i. We
consider the evolution of P according to a sequence of steps,
each of which first selects i € P randomly in proportion to i’s
fitness, then selects j € P; randomly in proportion to some
weighting function on P;, and finally replaces j by an off-
spring of 7 having the same fitness as i.

When P is a homogeneous population of fitness 1 (except
for a randomly chosen mutant, whose fitness is initially set to
r#1), P;=P\{i} (where \ denotes the set difference), and
moreover the weighting function on every P; is a constant
(thus choosing j € P; occurs uniformly at random), this se-
quence of steps is known as the Moran process [5]. In this
setting, evolution can be modeled by a simple discrete-time
Markov chain, of states 0,1, ...,n, in which state s indicates
the existence of s individuals of fitness r, the others n—s
having fitness 1.

In this chain, states O and n are absorbing and all others
are transient. If s is a transient state, then it is possible either
to move from s to s+1 or s—1, with probabilities p and ¢,
respectively, such that p/g=r or to remain at state s with
probability 1 -p—g. When r>1 (an advantageous mutation),
the evolution of the system has a forward bias; when r<1 (a
disadvantageous mutation), there is a backward bias. And
given that the initial state is 1, the probability that the system
eventually reaches state n is precisely the fixation probabil-
ity, in this case denoted by p; and given by

1-1/r
I V7

P (1)
(cf. [31]). The probability that the mutation eventually be-
comes extinct (i.e., that the system eventually reaches state
0) is 1—p;. Because p; <1, extinction is a possibility even
for advantageous mutations. Similarly, it is possible for dis-
advantageous mutations to spread through the entirety of P,
although in this case the fixation probability decreases expo-
nentially with the size of the population.

In order to consider more complex possibilities for P;, we
introduce the directed graph D of node set P and edge set
containing every ordered pair (,;) such that j € P;. The case
of a completely connected D (in which every node connects
out to every other node) corresponds to the Moran process.
But in the general case, even though it continues to make
sense to set up a discrete-time Markov chain with 0 and » the
only absorbing states, analysis becomes infeasible nearly al-
ways and p must be calculated by computer simulation of the
evolutionary steps.

The founding work on this graph-theoretic perspective for
the study of p is [6], where it is shown that we continue to
have p=p; for a much wider class of graphs. Specifically, the
necessary and sufficient condition for p=p; to hold is that
the weighting function be such that, for all nodes, the prob-
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abilities that result from the incoming weights sum up to 1
(note that this already holds for the outgoing probabilities,
thus characterizing a doubly stochastic process for out-
neighbor selection). In particular, if the weighting function is
a constant for all nodes and a node’s in-degree (number of
in-neighbors) and out-degree (the cardinality of P; for node i,
its number of out-neighbors) are equal to each other and the
same for all nodes, as in the Moran case, then p=p;.

Other interesting structures, such as scale-free graphs
[20], are also handled in [6], but the following two observa-
tions are especially important to the present study. The first
one is that, if D is not strongly connected (i.e., not all nodes
are reachable from all others through directed paths), then
p>0 if and only if all nodes are reachable from exactly one
of D’s strongly connected components. Furthermore, when
this is the case, random drift may be a more important player
than natural selection, since fixation depends crucially on
whether the mutation arises in that one strongly connected
component. If D is strongly connected, then p>0 necessar-
ily.

The second important observation is that there do exist
structures that suppress random drift in favor of natural se-
lection. One of them is the D that in [6] is called a K-funnel
for K=2 an integer. As n—o, the value of p for the
K-funnel approaches the ratio that we denote by pg, given by

_M (2)
PR= 1k

Thus, in asymptotic terms the K-funnel can be regarded as
functionally equivalent to the Moran graph with rX substitut-
ing for the fitness r. Therefore, the fixation probability can be
arbitrarily amplified by choosing K appropriately, provided
r>1.

Noteworthy additions to the study of [6] can be found in
[32,33]. In these works, analytical characterizations are ob-
tained for the fixation probability on undirected scale-free
graphs, both under the dynamics we have described (in
which j inherits i’s fitness) and the converse dynamics (in
which it is i that inherits j’s fitness). The main find is that the
fixation probability is, respectively for each dynamics, in-
versely or directly proportional to the degree of the node
where the advantageous mutation appears. There have also
been analytical characterizations of the fixation probability
as relatively parsimonious systems of linear equations, both
for directed [34] and some simple undirected [35] graphs.

III. NETWORK GROWTH

In this paper, we depart from all previous studies of the
fixation probability by considering the question of whether a
mechanism exists for D to be grown from some simple initial
structure in such a way that, upon reaching a sufficiently
large size, a value of p can be attained that substantially
surpasses the Moran value p; for an advantageous mutation.
Such a D might lack the sharp amplifying behavior of struc-
tures such as the K-funnel, but being less artificial might also
relate more closely to naturally occurring processes. We re-
spond affirmatively to the question, inspired by the observa-
tion discussed above on the strong connectedness of D and
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FIG. 1. The 3-funnel for b=3. Edges connect back to the nodes
in layer 2 from the single node in layer 0.

using the K-funnel as a sieving mechanism to help in looking
for promising structures. It should be noted, however, that
since other amplifiers exist with capabilities similar to those
of the K-funnel (e.g., the K-superstar [6]), alternatives to the
strategy we introduce that are based on them may also be
possible.

In a K-funnel, nodes are organized into K layers, of which
layer k contains b* nodes for some fixed integer b=2 and
k=0,1,...,K-1. It follows that the K-funnel has
(b%¥=1)/(b-1) nodes. A node in layer k connects out to all
nodes in layer k—1 (modulo K, so that an edge exists di-
rected from the single node in layer O to each of the H%!
nodes in layer K—1). A K-funnel is then, by construction,
strongly connected. An illustration is given in Fig. 1 for
K=b=3. For a given value of n, our strategy for growing D
is to make it a layered graph like the K-funnel, but letting it
generalize on the K-funnel by allowing each layer to have
any size (number of nodes), provided no layer remains
empty.

Graph D is the graph that has n nodes in the sequence
Dy,Dy,... of directed graphs described next. Graph D, has K
layers, numbered O through K—1, each containing one node.
The node in layer k connects out to the node in layer k—1
(modulo K). For t=0 an integer, D, is obtained from D, by
adding one new node, call it 7, to a randomly chosen layer,
say layer k, according to a criterion to be discussed shortly.
Node i is then connected out to all nodes in layer k—1
(modulo K) and all nodes in layer k+1 (modulo K) are con-
nected out to node i. Graph D, is then strongly connected for
all 7. The addition of node i to D, is illustrated in Fig. 2. We
note that there are as many possibilities for the D that results
from the sequence as for partitioning n indistinguishable ob-
jects into K nonempty, distinguishable sets arranged circu-
larly, provided we discount for equivalences under rotations
of the sets. A lower bound on this number of possibilities is
(x)/n, which for K<n is roughly n®~1/K!.

Before we describe the rule we use to decide which layer
is to receive the new node, i, it is important to realize that the
double stochasticity mentioned earlier implies that p=p; for
D,. However, this ceases to hold already for D; and may not
happen again as the graph gets expanded. So, whatever the
rule is, we are aiming at higher p values by giving up on the
doubly stochastic character of the process whereby fitness
propagates through the graph.
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FIG. 2. D, is the graph comprising all nodes but i and all solid-
line edges. Adding node i to layer 1 and the edges shown as dotted
lines yields D,,;. Edges connect back to the nodes in layer 2 from
the single node in layer O.

For t=0 and k any layer of D,, if we consider the layers
in the upstream direction from k, we call k* the first layer we
find whose successor has at most as many nodes as itself. In
particular, if the successor of layer k does not have more
nodes than k, then k*=k. Now let d(k*,k) be the distance
from layer k* to layer k in D, (i.e., the distance from any
node in k* to any node in k).

Layer k is selected to receive node i to yield D,,; with
probability

pr o [K—d(k*, k)] A3)

for some a=1. This criterion is loosely suggested by the
topology of the K-funnel. It seeks to privilege first the
growth of each layer € such that k*=¢ for some k, then the
growth of the layer & that is immediately downstream from
€, provided k*=¢, and so on through the other downstream
layers.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

In our simulations, we use n=1000 nearly exclusively
and grow a large number of D samples. The calculation of p
for a given D involves performing several independent simu-
lations (we use 10 000 in all cases), each one starting with
the fitness-r mutant substituting for any of the n nodes and
proceeding as explained earlier until the mutation has either
spread through all of D’s nodes or died out (we use constant
weighting throughout). The fraction of simulations ending in
fixation is taken as the value of p for that particular D. It is
important to note that this method to calculate p mimics the
evolution of population P rather closely by simulating the
evolutionary steps. We then expect the resulting value to ap-
proximate the real p faithfully, provided sufficiently many
independent simulations are conducted. In [6], this has been
confirmed to hold for some of the graphs discussed above for
which the fixation probability is p; and also to hold increas-
ingly well as n grows for some of the graphs whose fixation
probability approaches py asymptotically.

This calculation of the fixation probability can be very
time-consuming, so we have adopted a mechanism to decide
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FIG. 3. (Color online) Simulation results for K=5. Each graph
D for which C(X,Y)>0.9 is represented by its fixation probability
and by the slope S(X,Y). For each combination of n and r, 500
graphs are shown, corresponding roughly to 12% of the number of
graphs that were grown. Dashed lines mark p; through p; for
r=1.1, p; for r=2.0.

whether to proceed with the calculation for a given D or to
discard it. Our mechanism is based on establishing a corre-
lation threshold beyond which D is declared sufficiently
similar to the K-funnel to merit further investigation. The
measure of correlation that we use is the Pearson correlation
coefficient between two sequences of the same size, which
lies in the interval [-1,1] and indicates how closely the two
sequences are to being linearly correlated (a coefficient
of 1 means a direct linear dependence). For sequences X
and Y, the coefficient, denoted by C(X,Y), is given by
C(X,Y)=cov(X,Y)/oxoy, where cov(X,Y) is the covariance
of X and Y, and oy and oy their respective standard
deviations.

In our case, X and Y are length-K sequences. If we renum-
ber the layers of D so that the layer with the greatest number
of nodes becomes layer K—1, the one immediately down-
stream from it layer K—2, and so on through layer 0, then we
let the sequences X and Y be such that X;=k and Y;=In ny,
where n;, is the number of nodes in layer k. Notice that, when
D is the K-funnel itself, then n,=b* with b=2, whence
Y,=(n b)X; and C(X,Y)=1.

Every D whose sequences X and Y lead C(X,Y) to sur-
pass the correlation threshold is as close to having n; given
by some exponential of k as the threshold allows. However,
the near-linear dependence of the two sequences is not
enough, since the base of such an exponential, which we
wish to be as large as possible, can in principle be very small
(only slightly above 1), for very gently inclined straight
lines. On the other hand, a steeper straight line indicates a
faster reduction of layer sizes as we progressively move to-
ward layer O from layer K—1 through the other layers. In the
analysis that follows, then, we also use the slope of the least-
squares linear approximation of Y as a function of X, denoted
by S(X,Y) and given by S(X,Y)=cov(X, Y)/af(. For C(X,Y)
close to 1, the base of the aforementioned exponential ap-
proaches ¢5X:¥),

Our simulation results are summarized in Fig. 3, where
K=5, n=500,1000, and r=1.1,2.0. For each combination
and each of four a values (a=1,2,3,4), a scatter plot is
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FIG. 4. (Color online) Simulation results for the 3-funnel.
Dashed lines mark the values of ps.

given representing each of the graphs generated by its fixa-
tion probability and the slope S(X,Y) for its two sequences,
provided C(X,Y)>0.9. We see that, in all cases, strengthen-
ing the layer-selection criterion by increasing a has the effect
of moving most of the resulting graphs away from the Moran
probability (p,) and also away from the near-0 slope.

It is important to notice that, in the absence of the slope
indicator for each graph, we would be left with a possibly
wide range of fixation probabilities for the same value of a,
unable to tell the true likeness of the best graphs to the
K-funnel without examining their structures one by one. In a
similar vein, the results shown in Fig. 3 emphasize very
strongly the role of our particular choice of a rule for select-
ing layers, as opposed to merely proceeding uniformly at
random. To see this, it suffices that we realize that uniformly
random choices correspond to setting a=0 in the expression
for p, and then we can expect the graphs that pass the cor-
relation threshold to be clustered around the points of
p~p; and S(X,Y)~0.

We also note a sharp variation in how the fixation prob-
abilities of the graphs relate to the asymptotic fixation prob-
abilities of the K-funnel as a mutant’s fitness is increased.
For r=1.1, the graphs exhibiting the highest fixation prob-
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FIG. 5. (Color online) Simulation results for K=10, n=10 000,
and r=1.1. Each graph D having C(X,Y)>0.9 is represented by its
fixation probability and by the slope S(X,Y). There are 100 graphs,
corresponding roughly to 0.04% of the graphs that were grown.
Dashed lines mark p; through p;.
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abilities, and also the highest slopes, are such that p is some-
where between p, and p;. For r=2.0, though, this happens
between p; and p, (=0.75, not shown), therefore providing
considerably less amplification. Part of the reason why this
happens may be simply that the more potent amplifiers are
harder to generate by our layer-selection mechanism as r is
increased. But it is also important to realize that, even for the
K-funnel, achieving a fixation probability near pg requires
progressively larger graphs as r is increased. This is illus-
trated in Fig. 4 for K=3 and the same two values of r.

Additional simulation results, for the much larger case of
K=10 and n=10 000, are presented in Fig. 5 for r=1.1 and
a=1,2,3,4. Computationally, this case is much more de-
manding than those of Fig. 3, owing mainly to the number of
distinct networks that can occur, as discussed earlier (in fact,
for K=10 and n=10 000, this number is at least of the order
of 10%). Consequently, many fewer graphs surpassing the
0.9 correlation threshold were obtained. Even so, one pos-
sible reading is that results similar to those reported in Fig. 3
can be expected, but this remains to be seen.
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In summary, we have demonstrated that strongly con-
nected layered networks can be grown for which the fixation
probability significantly surpasses that of the Moran process.
The growth mechanism we use aggregates one new node at a
time and chooses the layer to be enlarged by the addition of
the new node as a function of how far layers are from those
whose populations are the closest upstream local maxima. A
great variety of networks can result from this process, but we
have shown that correlating each resulting K-layer network
with the K-funnel appropriately works as an effective filter to
pinpoint those of distinguished fixation probability. Further
work will concentrate on exploring other growth methods
and on targeting the growth of more general structures.
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