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Agent-based model for friendship in social networks
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A model is proposed to understand the structuring of social networks in a fixed setting such as, for example,
inside a university. The friendship formation is based on the frequency of encounters and mutual interest. The
model shows distinctive single-scale behavior and reproduces accurately the measurable experimental quanti-
ties such as clustering coefficients, degree distribution, degree correlation, and friendship distribution. The
model produces self-organized community structures and can be described as a network of densely intercon-
nected networks. For the friendships, we find that the mutual interest is the dominant factor, which optimizes
the network and that the number of encounters determines the statistically relevant distributions.
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I. INTRODUCTION

In statistical physics complex networks have recently at-
tracted a considerable interest [1,2]. Barabdsi and Albert
(BA) [3] introduced a prototypical growing network model
(BA model), which exhibits scale-free properties for the de-
gree distribution P(k)~ k™. The main ingredients for this
model are growth and preferential attachment, which seem to
be able to explain and describe various observations in social
science. Preferential attachment corresponds to the Mathew
effect that the “rich get richer.” However, friendship is fun-
damentally different from the behavior of other social net-
works in that they are single-scale networks and show a
small-world effect [4]. It has been observed that preferential
attachment is sufficient to establish a power-law behavior in
the growing model; however, for nongrowing networks with
a constant number of nodes the degree distribution is un-
stable and converges to a Gaussian distribution upon satura-
tion [1]. It was shown however that also in a fixed-setting
network scale-free behavior can be found [5-8]. In these
models random weights were introduced. Gonzélez et al. [9]
presented a model based on a system of moving particles,
which by colliding form links between each other. While this
model was able to recover degree distribution, clustering co-
efficients, and other quantities for a large database of empiri-
cal friendship networks, it has also two drawbacks: (i) it is
not apparent why the simulations are carried out in a two-
dimensional space and (ii) a collision in this system auto-
matically leads to a “friendship,” which is generally not the
case with a random encounter.

In this paper we present a model for a friendship network,
which reproduces known quantities of empirical networks
such as degree distribution, clustering coefficients, and
friendship distributions. Similar to Ref. [9], the community
structure emerges naturally, without the need of prelabeling
the community for each agent as in Ref. [10].

II. MODEL DESCRIPTION

Our model defines N, agents with no initial connections.
This setting is comparable to a large group of students en-
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rolling at the same time in a college or a high school. At
every step two agents are chosen to have an encounter. In the
beginning the encounters are random; however, in time, due
to preferential selection, eventually some agents form
connections—friendships—which are based on two criteria:
(1) the number of contacts with the same individual and (ii)
the mutual interest. We have assumed here that friendship is
reciprocal. An extension of the model to unidirectional (prof-
iting) connections will be discussed elsewhere. In time, the
number of contacts with different agents increases up to a
largest number, which is an individual property of the agent.
Further contacts are then only possible by “forgetting” pre-
vious contacts. This is similar to the concept of aging of
Amaral ef al. [4]. Despite the similarity, there is however an
important difference: in Ref. [4] the agents were aging until
they died. In contrast, here, the agent will accept new con-
nections throughout the simulation, however, at the expense
of dropping the old ones as will be shown below in detail.

Each agent i possesses several individual properties: (i)
the maximal acquaintance parameter \;, which relates to the
maximal possible number of other agents with which it can
have contacts (in network terms this corresponds to the
maximal possible degree of a particular node); (ii) the actual
number of contacts with different agents k;, which corre-
sponds to the degree; and (iii) the “specific degree” or popu-
larity II;=k;/2k;, which defines the probability to be se-
lected for being added into another agent’s contact list,
where II; corresponds to the preferential attachment of the
BA model. (iv) Each agent keeps a list of the encounters with
other agents. This list contains the total number of encoun-
ters, n;j, between agent i and any particular agent j. The list
also contains the relative desire p;; to meet a given agent j
again.

The friendship f;; between two agents i and j is defined as

a function of the total number of contacts n;;,

fii=flny) =1-e™i, (1)

where we have chosen an exponential saturation, meaning
that another agent will become a better friend the more often
the two agents meet; however, after many encounters the
total number does not play such an important role any more.
A visual representation of such a friendship network with
100 agents is shown in Fig. 1. One could imagine that a
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FIG. 1. (Color online) Friendship network of N=100 agents.

generalization like f(n;;)=1-e ", where 7 defines the
number of times until the friendship reaches a value of 1
—e¢7! would be more appropriate. It turns out, however, that
the results do not substantially differ from the ones obtained
with Eq. (1). All further simulations were thus performed
with Eq. (1).

Each relative probability for meeting already known con-
tacts is calculated as p;;=f;;/2;fy. The maximal acquain-
tance parameters \; are chosen to be normally distributed
around one with a variance o. \; represent the willingness of
an agent i to make new connections. Not every agent is
equally involved in this system (e.g., at a university) since it
might possess some friends already, which are outside the
system. We assume as a first approximation a normal distri-
bution.

An agent can choose to meet either yet unknown agents or
agents in the contact list. The probability for agent i to meet
an agent in the contact list is given by

p=1-enk, (2)

where k; is the degree, i.e., the number of encounters with
different other agents. Thus the probability to meet a yet
unknown agent outside the contact list is 1 —p, which is de-
caying strongly with increasing size of the contact list.
Depending on the agent’s \;, the contact list increases in
time. The probability to meet outside agents decreases ac-
cordingly but never vanishes. However, in order to prevent
an unbounded growth of the list, which would lead eventu-
ally to a fully connected network, a fixed threshold 6,
=1/ \e"ﬂe‘“ o was introduced, which is the largest number of
contacts the agent can have. This threshold corresponds to
the distance 1/+/o from the expectation value of the normal
distribution. For p>1-6,, new contacts are not accepted
any more. Thus the agent has built up its individual social
community. In real life, this corresponds to the fact that the
time to meet other students is limited and that therefore there
is a natural limit on how many friends a particular person can
have. Newly met agents are only admitted to the agent’s list
if they present an added value; then the new contact replaces
an old one. This threshold prevents social isolation and ac-
counts for beneficial random encounters since the probability
to meet new agents does not drop below this threshold. As
the contacts are chosen probabilistically, it may happen that

PHYSICAL REVIEW E 80, 026113 (2009)

an agent I tries to make an acquaintance with an agent j,
which has already a full contact list. Agent j can then decide
to reject the contact or conversely accept it in case that the
possible friendship f;; is larger than one of f’s in the contact
list of j. Then the old weak contact is dropped in favor of the
new link with agent i.

The current choice of the functional form of Egs. (1) and
(2) is considered to be a first approximation since the exact
relations are to the authors’ knowledge not known. As will be
shown, these approximations seem however to be surpris-
ingly successful in describing the empirical data collected
from social studies on friendship networks.

Intuitively, one finds that the number of encounters alone
cannot be the only objective quantity, which defines friend-
ship. Otherwise, the people we meet every day such as work-
ing colleagues, neighbors, schoolmates, newspaper agents,
etc. would all be part of our best friends. While meeting
people often naturally leads to a certain familiarity, friend-
ships do not necessarily develop. Thus, we introduce a sec-
ond characteristic—the affinity a; of an agent i with a;
€[0,1]—which summarizes the agent’s fields of interest.
The affinities can be distributed according to any kind of
distribution P,. An agent tends to optimize its friends in the
contact list with respect to its own interest a; while maintain-
ing the maximal possible number of contacts.

Thus, in terms of networks, each node optimizes its inter-
est under the constraint of a fixed degree distribution (node-
wise optimization). We introduce, as a first approximation, a
decaying interest match function that favors matching inter-
ests and penalizes differences in interests

1

(el -, (3)

fm(ahaj) =

which is essentially a rescaled exponential decay, so that it
becomes 1 for |a;—a;|=0 and 0 for |a;—a;=1. By multiply-
ing the friendship function with the match function

fij =f(nij)fm(ai7aj)a (4)

we have introduced a friendship optimization. Hence, with
time, every agent optimizes the contacts, which fit to its own
taste, and local self-organized social communities of com-
mon interest naturally emerge.

III. RESULTS
A. Measurable network quantities

First we study the model independently on the interests a;
by using the friendship function of Eq. (1). Figure 2 shows
the degree distribution for the averaged data of 84 schools in
USA where questionnaires from 90 118 students were evalu-
ated [11]. These data are compared to the model of Ref. [9]
(thick lines) and the present model (thin line). The results for
the present model have been averaged over 20 000 realiza-
tions for N,=1000 and 500 realizations for N,=10 000 for
o=2.8. It can be seen that the calculated results fit the data
much better than exponential or Poisson distributions and is
in agreement with the calculations of Ref. [9]. However, the
data of Ref. [9] fit the experiments only up to a degree of
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FIG. 2. (Color online) Degree distribution P(k) vs k: experimen-
tal data (triangles), calculated data from the model of Ref. [9] (thick
line), and the present model (fine lines) together with exponential
and Poisson fits of the data. While the predictions of Ref. [9] fit the
data well for k<15, a deviation is observed for larger k. The
present model fits the data in the whole range accurately. The pa-
rameters used are N=1000 and 10 000 and o=2.8.

k=15; for higher degrees, a substantial deviation is observed.
For the present model with N,=1000 and N,=10 000, the
whole range of experimental data is predicted accurately.
The experimental data in Fig. 2 are averaged over all 84 high
schools. In Fig. 3 the degree correlation K,,,(k) is shown. It
can be seen that the calculated results match well to the
experimental ones.

In Fig. 4 the normalized cumulative friendship distribu-
tion is plotted against the total number of being chosen to be
a friend. The experimental data of the friendship network of
417 Madison Junior High School students were taken from
Refs. [4,12]. The connectivity distribution shows no power-
law regime but can be fitted well with a Gaussian distribu-
tion showing the single-scale character of the network. The
number of links in this network corresponds to the number of
times a student was chosen by another student as one of his
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FIG. 3. (Color online) Degree correlation K,,(k)
=3,/ P(k|k")k' from experimental data and simulations with the
present model. The parameters used are N=1000 and o=2.8.
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FIG. 4. (Color online) Friendship distribution normalized: con-
nectivities for the friendship network of 417 high school students,
where the number of links corresponds to the number of times a
student is chosen by another student as one of his or her two best
friends. The experimental data (triangles) were taken from Refs.
[4,12]. The calculated data of the present model are superimposed.
The distribution is Gaussian and is in excellent agreement with the
experiments.

or her two best friends. The simulations with the present
model indicate a Gaussian distribution as well. The simu-
lated results are in accordance with the experimental data.

In Fig. 5 the clustering coefficient of the experimental
data of the 84 high schools is plotted as a function of the
average degree. The thick solid line indicates the results ob-
tained with the proposed model using the same range of
values of (k) averaged over 50 realizations. The parameters
used are N,=800 and o e[1,4]. For comparison the data
obtained by Gonzélez et al. [9] using the mobile agent ap-
proach are plotted as well. It can be seen clearly that both
models reproduce well the clustering coefficient within the
error bars for the same average degree.
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FIG. 5. (Color online) Clustering coefficient of the 84 high
schools as a function of the average degree. Superimposed are the
results of Gonzalez et al. [9] and the results of the present model.
The clustering coefficient is well predicted by the model.
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FIG. 6. (Color online) Probability distribution of a;—a, for all
agents i: the friendships are optimized according to Eq. (4).

B. Interest—network optimization

The model so far reproduces all the statistically measur-
able quantities, which can be determined from a purely sta-
tistical approach. Now, we study the influence of the affini-
ties in the friendship by using the friendship function defined
in Eq. (4).

For the sake of simplicity, we have assumed here a uni-
form distribution of a; € [0, 1]; however, the results seem to
hold for arbitrary distributions P,. In Fig. 6 the friendship
optimization of Eq. (4) is shown for different numbers of
sweeps for the parameters 0=2.8 and N,=1000. The decay
of the function f,, of Eq. (3) determines the time scale at
which the agents optimize their friendships. Any monotoni-
cally decreasing function will eventually optimize. Figure 6
also shows that the initial distribution is close to triangular as
expected for friendship independent of a;, which indicates
that the optimization sets in only once some of the agents
have a full contact list. In the beginning of the simulation, it
is more favorable to meet many new contacts than to replace
existing contacts. Once all agents have a fully occupied con-
tact list, optimization is the only way to change the network.
Thus, two regimes can be distinguished: (i) creation of the
network, where all agents meet new agents mostly indepen-
dently on their mutual interest, since every agent still has
free contact capacities and (ii) in the subsequent regime most
or all agents have a filled contact list, with not necessarily
favorable contacts. In the search of optimizing the individual
community, the agents start replacing existing contacts with
more valuable ones until eventually an optimum network
structure is found. In comparison with filling up contact lists
by meeting arbitrary agents, the optimization process is
much slower. Thus, as in real life, meeting many people is
easy and is usually a quick process. However, sieving
through the contacts to identify and cultivate new friendships
takes much more time.

C. Community structure

In Figs. 7(a) and 7(b) a network with N,=100 and 500
agents is shown, respectively. The layout has been calculated
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FIG. 7. (Color online) Network after 30 000 sweeps for (a) N,
=100 and (b) N,=500. The symbols correspond to the interest a;
e[0,1], where g; 5 € [0,%), a; @€ [%,%), anda; g € [%, 1]. The lay-
out has been calculated with the Kamada-Kawai algorithm. It can
be seen that the nodes arrange in communities of common interest.
Superimposed are the results of the community structure detection
of the Girvan-Newman algorithm [14]. The communities of interest
match well with the ones found by the Girvan-Newman algorithm.

by the Kamada-Kawai algorithm [13], which connects the
agents by springs, whose interaction force is proportional to
the shortest path in the network. The positions of the indi-
vidual agents are calculated by finding the minimum-energy
configuration of the spring system. The affinities a; are plot-
ted with different symbols. For better visibility only three
categories of interest have been chosen: a; € [0%) [%,% s
and [% ,1]. As can be seen the communities that formed after
30 000 sweeps separate the triangle, circle, and square sym-
bol agents rather well. Superimposed are the results of a
conventional community detection algorithm (Girvan-
Newman [14]). The detection led to only three respective
two major communities, which separate the groups of tri-
angles, circles, and squares in Fig. 7(a) and the groups of
triangles and circles-squares in Fig. 7(b). The community
boundaries are in accordance with the communities formed
by interest; however, the latter creates a much finer commu-
nity detection and separation, in particular with a finer bin-
ning of agents.

IV. DISCUSSION AND CONCLUSIONS

We introduce a model based on nonmoving agents, who
build up connections based on preferential attachments in the
beginning, and—Ilater when the contact lists are filled
up—on the emerging social community stored in the contact
list. This model seems to build a bridge between the results
obtained by the mobile agent calculations of Ref. [9] and the
more traditional network structure models, in that it repro-
duces all the experimental results and is inherently single
scale. Yet it is composed of standard elements and tools com-
monly used in the field of social networks. It is especially
worth noting that the later stage development of the network
is essentially a densely interconnected set of BA networks
which, as a whole, show static converged distributions. In
this sense it can be considered as a network of interconnected
networks, which reproduces accurately experimental data.
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The present model remedies some inconveniences of the
mobile agent model. In particular no spatial topology is im-
posed and the notion of friendship is clearly defined by Eq.
(4) and distinguished from simple encounters. Our model is
capable of reproducing experimental data and is in excellent
agreement with measured degree distributions, clustering co-
efficients, and friendship distributions. The choice of the
functional form of Egs. (1) and (2) was successful in describ-
ing empirical results. Future studies will concentrate on the
robustness of the results on variations in these choices to
establish ultimately the broad validity of this friendship
model.

Friendship emerges from a local optimization process,
which takes place under a constant degree distribution. The
emerging communities based on the interest are in accor-
dance with conventional community detection algorithms.
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The simulations show that the buildup of acquaintances is
a much faster process than finding friends: one possible net-
work is created which fills up all the possible contact lists.
Optimization of the friends takes place only after this initial
stage. Thus, finding good friends is much harder than acquir-
ing acquaintances. Agents are forced to find friends in the
environment they are placed in. If the selection is too lim-
ited, no friends or rather in absolute values of a particular
agent only “bad friends” are found. The total number of good
friends is directly related to the number of acquaintances an
agent can have since it increases the probability to meet
other agents. In particular the number of encounters provides
the statistical framework for the comparison with experimen-
tal data, whereas the mutual interest optimizes the network to
form matching community structures.
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