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We study the localization properties of eigenvectors of the Google matrix, generated both from the world
wide web and from the Albert-Barabdsi model of networks. We establish the emergence of a delocalization
phase for the PageRank vector when network parameters are changed. For networks with localized PageRank,
eigenvalues of the matrix in the complex plane with a modulus above a certain threshold correspond to
localized eigenfunctions while eigenvalues below this threshold are associated with delocalized relaxation
modes. We argue that, for networks with delocalized PageRank, the efficiency of information retrieval by
Google-type search is strongly affected since the PageRank values have no clear hierarchical structure in this

case.
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The world wide web (WWW) is an enormously large net-
work with about 10!'" web pages all over the world. Informa-
tion retrieval in such a huge database is, therefore, a formi-
dable task. An efficient method to search this database,
known as the PageRank algorithm (PRA), was put forward
by Brin and Page [1], and formed the basis of the Google
search engine, by far the most popular one. The PRA is
based on the construction of the Google matrix G, which
sums up the network structure in a tractable way and can be
written as (see, e.g., [2] for details)

G=aS+(1-a)E/N. (1)

The matrix S is constructed from the adjacency matrix of the
network. For a directed network of N nodes, the N X N adja-
cency matrix A is defined by A;;=1 if there is a link from
node j to node i, and A;;=0 otherwise. For networks with
undirected links, A is a real symmetric matrix. However, the
WWW corresponds to a network with directed links and here
A is not symmetric. Matrix §;; is built from A by normaliz-
ing each nonzero column through §;;=A;;/2;A;; and replac-
ing by 1/N the elements of columns with only zero elements.
The matrix S can be viewed as the mathematical description
of a surfer on the network. At each iteration he leaves a node
by randomly choosing an outgoing link with equal probabil-
ity, and in the absence of such links he goes to an arbitrary
node at random. The Google matrix G defined by Eq. (1)
(with matrix E such that all E;=1) can be interpreted as a
modification of S where with finite probability 1—a the
surfer might jump to another node at random. Usually the
PRA uses a@=0.85 and we concentrate our studies on this
case.

The matrix G has only one maximal eigenvalue A=1. The
corresponding PageRank eigenvector with components p;
gives the stationary distribution of the random surfer over the
network. All p; are positive real numbers normalized by
2p;=1. All nodes in the WWW can be ordered by decreasing
pj values, and thus this PageRank vector is of primary im-
portance for ordering of web sites and information retrieval.
The vector can be found by iterative applications of G on an
initial random vector. This PRA works efficiently due to the
relatively small average number of links in the WWW. The
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WWW is indeed described by a very sparse adjacency matrix
A, with only about ten nonzero entries per column.

Numerical studies of the PageRank vector for large sub-
sets of the WWW have shown that it is satisfactorily de-
scribed by an algebraic decay p;~ 1/ jP, where j is the or-
dered index, and thus the number of nodes N, with
PageRank p scales as N,~ 1/p” with numerical values v
=1+1/B=2.1 and B~0.9 [3]. This implies that the PageR-
ank vector is not ergodic, displaying certain localization
properties over specific sites of the network. The localization
properties of eigenvectors of real symmetric matrices de-
scribing various complex networks have been studied re-
cently. For systems of small-world type it was shown that
eigenvectors display a transition from localized to delocal-
ized states when the density of long-range links is changed
[4,5]. Such delocalization transition has certain similarities
with the Anderson transition for waves in systems with dis-
order [6]. More specific studies were performed for the sym-
metric adjacency matrix of the internet network, showing
that the localization of eigenvectors strongly depends on the
eigenvalue location in the spectrum, and allows identification
of isolated communities [7]. The global localization proper-
ties averaged over the spectrum were also recently consid-
ered in [8] for various undirected networks. The studies
above were performed for symmetric adjacency matrices of
undirected networks, characterized by real eigenvalues. In
contrast, the Google matrix is constructed on the basis of
directed links, and thus its spectrum is generally complex.
We note that the case of complex spectra in quantum me-
chanics was studied in relation to poles of scattering prob-
lems (see, e.g., [9]) but it remains less explored than the case
of real spectra.

In this paper, we study the localization properties of the
Google matrix G for models of realistic directed networks
and actual subsets of the WWW. We characterize the prop-
erties of right eigenstates ¢; (Gi;=\;¥;) as a function of the
complex eigenvalue \. Special emphasis is given to the prop-
erties of the PageRank vector, which is of great importance
for the Google search. Our findings show that eigenstates
with complex N are generally delocalized over the whole
network. At the same time, the PageRank vector may be
localized or delocalized depending on the properties of the

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.026107

GIRAUD, GEORGEOT, AND SHEPELYANSKY

0.2,
0.0 ; .
—0.21

0.2
0.0
-0.2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. (Color) Distribution of eigenvalues \; of Google matri-
ces in the complex plane. Color is proportional to the PAR ¢ of the
associated eigenvector ¢;. Top panel: AB model with ¢=0.1 for N
=2 for N,=5 random realizations (see text), & varies from £=32
(blue) to ¢€=1656 (red); middle panel: same with ¢g=0.7, & varies
from £=1169 (red) to £=3584 (purple); bottom panel: data for a
university network LIMU with N=13 578; here in order to get sta-
tistically significant data the WWW network was randomized and

data correspond to N,=5 random realizations (see text), & varies
from &=7 (blue) to £E=1177 (red).

network. Such delocalization may seriously affect the effi-
ciency of the ranking through the PRA. We note that the
PRA has recently found new types of applications, e.g., for
academic ranking from citation networks [10]. It is rather
probable that the PRA will find broad application for classi-
fication in various types of complex networks [11], and
hence, the understanding of global properties of the Google
matrix becomes very important.

To generate Google matrices G we use data from real
subsets of the WWW, namely, university networks taken
from [12]. In addition, we generate networks with directed
links using the Albert-Barabdsi (AB) procedure [13] to con-
struct the associated G matrix. AB networks are built by an
iterative process. Starting from m nodes, at each step m links
are added to the existing network with probability p, or m
links are rewired with probability ¢, or a new node with m
links is added with probability 1 —-p—g. In each case the end
node of new links is chosen with preferential attachment, i.e.,
with probability (k;+1)/Z(k;+1), where k; is the total num-
ber of incoming and outgoing links of node i. This mecha-
nism generates directed networks having the small-world and
scale-free properties, depending on the values of p and gq.
The results we display are averaged over N, random realiza-
tions of the network to improve the statistics. In our studies
we chose m=35, p=0.2, and two values of g corresponding to
scale-free (¢=0.1) and exponential (¢=0.7) regimes of link
distributions (see Fig. 1 in [13] for undirected networks). For
our directed networks at g=0.1, we find properties close to
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the behavior for the WWW with the cumulative distribution
of ingoing links showing algebraic decay P(k)~1/k and
average connectivity (k)=~6.4. For ¢=0.7 we find P.'(k)
~exp(—0.03k) and (k)= 15. For outgoing links, the numeri-
cal data are compatible with an exponential decay in both
cases with P2"(k) ~exp(-0.6k) for ¢=0.1 and P"“(k)
~exp(—0.1k) for g=0.7. We checked that small variations in
parameters m,p,q near the chosen values do not qualita-
tively affect the properties of G matrix.

To characterize localization properties of eigenvectors ;,
we use the participation ratio (PAR) defined by ¢
=[Z ()PP Z ()" 1t gives the effective number of
nodes on which an eigenstate is localized. In Fig. 1 we show
the distribution of eigenvalues together with the PAR for the
AB model and the WWW. In the latter case, each available
matrix corresponds to a different network of different size. In
order to get statistically significant data, we used the proce-
dure proposed in [14], which consists of randomizing the
links of the network keeping fixed the number of links at any
given node. Starting from a single network, this creates an
ensemble of networks of same size and where each node has
the same number of ingoing and outgoing links as the origi-
nal network. In all cases the spectrum consists of an isolated
eigenvalue A=1 together with an approximately circular dis-
tribution centered at A=0 (a significant fraction of about
30-50 % states has A=0). In all three cases there are circu-
lar rings of states with high PAR indicating that in this region
the states become delocalized in the limit of large matrix
sizes. The delocalized domain is largest for AB model at ¢
=0.7, where almost all states have high PAR, including the
PageRank vector. By contrast, at ¢g=0.1 the PageRank has
small PAR while large PAR appears only in a ring centered at
A=0. We observe a similar behavior for the WWW data
where the ring of delocalized states is narrower and the Pag-
eRank has even smaller PAR.

In Figs. 2 and 3 we study the dependence on system size
N. We computed the normalized density of states W(y)
[[oW(y)dy=1], where y=-2 In|\| is the relaxation rate to
the equilibrium PageRank state. For AB model in both cases
the density W(+y) appears to be independent of system size.
Although we cannot exclude from our data a slow variation
with system size, we think that this indicates that we have
reached the asymptotic regime of large networks. The char-
acteristic features of the density are the appearance of a gap
between y=0 and y=vy,~2 (7, corresponds to the second
largest eigenvalue), followed by a sharp increase with a
maximum around y=3-4 and a slow decrease for larger y.
The three models have a similar structure of W(vy), with v,
being not very sensitive to the value of a. We note that the
presence of « in Eq. (1) ensures that y,= vy,=2|In o [2]. For
a=0.85 this gives y,=~0.33, which is significantly smaller
than the numerical value of 7. This means that all three
models have an intrinsic gap that explains the stability of v,
to variations in a. It is known that for WWW networks usu-
ally y,=v,. Indeed, we found that for university networks
taken by us from [12] most often this relation was approxi-
mately satisfied [including for Liverpool J. Moores Univer-
sity (LJMU)]. However, randomization of links following the
procedure of [14] generally increases the size of the gap (see
Fig. 1). In order to test the effect of a smaller gap on our
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FIG. 2. (Color online) Normalized density of states W (top
panel) and PAR (bottom panel) as a function of y. Data for AB
model with g=0.1 are shown by full curves from bottom to top at
y=4 with corresponding N=2' (N,=100 random realizations)
(black), 2'' (N,=50) (red), 2'> (N,=20) (green), 23 (N,=10)
(blue), and 2'* (N,=5) (violet). Symbols give the PageRank value
of ¢ in the same order: circle, square, diamond, triangle down, and
triangle up. All curves coincide on the top panel. Dashed curves
show the data from the WWW (LIMU network, parameters of Fig.
1). Here and in other figures the quantities shown are
dimensionless.

results, we also considered a modification of the AB model
where nodes are labeled by an additional “color” index,
which leads to appearance of additional eigenvalues in the
gap. This model gives qualitatively similar results to the
models presented here and will be discussed elsewhere.

While in Figs. 2 and 3 W(y) is not sensitive to matrix
size, the PAR clearly grows with N for y> vy,, where y, can
be viewed as a delocalization edge in . For AB model at
q=0.7, y,=0 since even the PageRank PAR grows with N.
By contrast, for g=0.1, the PageRank stays constant and vy,
is close to but larger than y,~2. Data from WWW show a
similar behavior of PAR for fixed matrix size N.

A detailed analysis of dependence of PAR on N is shown
in Fig. 4, for PageRank and bulk states with y> v,. For bulk
states we find that PAR grows with N as é~N* with u
~0.9 (AB model) and u=~0.5 (WWW data). WWW data in
Fig. 4 are taken from actual links of various university net-
works without any randomization, which explains a stronger
dispersion of data (largest not randomized case N=13 578
corresponds to the network LIMU used in Figs. 1 and 2).
The data definitely show that delocalization takes place in
the bulk states. By contrast, the PageRank remains localized
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FIG. 3. (Color online) Same as in Fig. 2 for AB model at ¢
=0.7.
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FIG. 4. (Color online) Dependence of ¢ on matrix size N for AB
model at ¢g=0.1 (triangles), g=0.7 (circles), and for WWW data
without randomization (squares). Full symbols are for PageRank &
values, empty symbols are for eigenvectors with 3<y<4 (AB
model) or for the ten eigenvectors with highest ¢ and y<<10
(WWW data). For AB model the number of random realizations N,
is as in Fig. 2 and N,=5 for N>2'4 (statistical error bars are smaller
than symbol size). Dotted blue lines give linear fits of WWW data,
with slopes, respectively, of 0.01 and 0.53. Upper dashed line indi-
cates the slope of 1. Logarithms are decimal.

for WWW data (u=0.01<<1) and for AB model at g=0.1
(u=0.1<1), while for g=0.7 the PageRank is clearly delo-
calized (u=0.8).

The distribution of the eigenvector components is shown
in Fig. 5 for AB model. For g=0.1 the PageRank is only
slightly modified when N is increased by a factor of 32
showing a decay i, (j) ~ j~# with fitted value 5=0.8, close to
the WWW value 8=0.9 [3]. The cumulative PageRank dis-
tribution P (p;) displayed in the inset also shows a good
agreement with WWW data. By contrast, for g=0.7, the Pag-
eRank shows a flat distribution over a number of nodes that
increases with system size, corresponding to a delocalization
regime. The states in the bulk are delocalized for both values
of g.

FIG. 5. (Color online) Dependence of eigenvectors i;(j) of AB
model on index j ordered in decreasing PageRank values p; [with
normalization Ej|¢i(j)|2=1 and ¥;p;=1]. Full smooth curves are
PageRank vectors for N=2'4, dashed smooth curves for N=2',
Nonsmooth curves are eigenvectors (N=2'%) within 3 <y<4 with
|W,(j)|? averaged in this interval. States are averaged over N,=5
random networks. Black is for ¢=0.1, red/gray for ¢=0.7. Inset:
cumulative distribution P.(p;) normalized by P.(0)=N for AB
model (N=2'% and N,=5) at g=0.1 (full black) and ¢g=0.7 (dashed
red/gray), and for LIMU nonrandomized data (full red/gray).
Dashed straight line indicates slope 1-w=-1. Logarithms are
decimal.
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Hence, the systems studied above numerically display a
delocalization transition both in the spectrum of the Google
matrix for fixed system parameters, and for the PageRank
vector when parameters are varied. A somewhat similar tran-
sition between localized and delocalized eigenstates can be
seen in the Anderson model of electrons in a random poten-
tial [6] when the Fermi energy crosses the mobility edge.
However, there are still many differences between our sys-
tems and the Anderson type models of disordered systems
[6] and small-world networks [4,5]. In the latter case the
localized eigenstates show generally exponential decay
rather than algebraic behavior, and the associated spectrum is
real rather than complex. It is, therefore, unclear whether the
same mechanisms are at work in the two models. Definitely
the complex nature of the eigenvalue spectrum appearing in
our models generates a number of qualitatively unique fea-
tures compared to the Anderson transition with real spec-
trum.

The obtained results show that localization properties of
the PageRank vector depend on the type of networks. Even
rather similar networks described by the same AB model
with just one parameter changed show two qualitatively dif-
ferent behaviors. In one case, which is closer to scale-free
networks, the localized PageRank is distributed essentially
on a finite number of nodes (finite PAR) while in the other
case, which is no more scale-free but still of small-world
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type, the delocalized PageRank is spread on a number of
nodes that grows indefinitely with system size. The transition
between the two regimes can be viewed as a delocalization
transition in the Google matrix. Our studies show that actual
WWW networks are located in the localized phase. The tran-
sition to the delocalized phase can drastically affect the effi-
ciency of the Google search. Indeed, in the delocalized phase
the PRA still efficiently converges to a well-defined PageR-
ank vector, which is, however, homogeneously spread prac-
tically over the whole network. In such a situation the clas-
sification of nodes by PageRank values remains possible but
gives almost no significant information. We note that this
delocalization transition can take place even in presence of a
large gap in the spectrum of the Google matrix. The above
transition takes place for the PageRank when changing pa-
rameters of the network. For fixed parameters, we also ob-
serve a delocalization transition in the complex plane of ei-
genvalues N. This means that the modes that describe
relaxation to the PageRank are generally delocalized over the
whole network for a broad range of relaxation rates . This
transition is reminiscent of the Anderson transition near the
mobility edge in energy eigenvalues. Further studies are re-
quired in order to fully understand the physical origins of
these transitions and their dependence on the characteristics
of the networks.
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