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Cardiac alternans, a beat-to-beat alternation of cardiac electrical dynamics, and ventricular tachycardia,
generally associated with a spiral wave of electrical activity, have been identified as frequent precursors of the
life-threatening spatiotemporally chaotic electrical state of ventricular fibrillation �VF�. Schemes for the elimi-
nation of alternans and the stabilization of spiral waves through the injection of weak external currents have
been proposed as methods to prevent VF but have not performed at the level required for clinical implemen-
tation. In this paper we propose a control method based on linear-quadratic regulator �LQR� control. Unlike
most previously proposed approaches, our method incorporates information from the underlying model to
increase efficiency. We use a one-dimensional ringlike geometry, with a single control electrode, to compare
the performance of our method with that of two other approaches, quasi-instantaneous suppression of unstable
modes �QISUM� and time-delay autosynchronization �TDAS�. We find that QISUM fails to suppress alternans
due to conduction block. Although both TDAS and LQR succeed in suppressing alternans, LQR is able to
suppress the alternans faster and using a much weaker control current. Our results highlight the benefits of a
model-based control approach despite its inherent complexity compared with nonmodel-based control such as
TDAS.
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I. INTRODUCTION

Ventricular fibrillation �VF�, a state of turbulent electrical
activity of the heart, is one of the leading causes of sudden
cardiac death �1�. Experimental evidence has established that
re-entrant waves underlie the vast majority of these cardiac
arrhythmias �2–4�. Although many different mechanisms for
the initiation and destabilization of reentrant waves have
been postulated theoretically �5–9�, it has been difficult to
verify experimentally which mechanisms are important dur-
ing the induction and development of fibrillation �10–14�.
One of the mechanisms that has been the subject of much
study is electrical alternans �15,16� at the cellular level, a
long-short beat-to-beat alternation in action potential dura-
tion �APD� that arises at fast pacing rates. At the onset of this
bifurcation and in small tissues, all the cells go through the
same phase of the sequence, either “short” or “long,” on each
beat �known as concordant alternans�. At faster rates or in
much larger tissues, adjacent tissue regions with opposite
phases can develop �discordant alternans� �17–19�. Further
increases in the rate can produce conduction block �9,18,20�,
which often can subsequently develop into reentry and
fibrillation �21�.

At the scale of the entire heart, cellular alternans is be-
lieved to be manifested on the electrocardiogram as QRS
and/or T-wave alternans �17,19�, although recent evidence
suggests this association may not be complete �22�. It has
been found that patients exhibiting even small T-wave alter-
nans that is not visually apparent �microvolt T-wave altern-
ans� are at a higher risk of developing ventricular arrhyth-
mias �23�, and a number of studies have led to the
establishment of T-wave alternans as an important marker of
susceptibility to sudden cardiac death �24�. Therefore, it
would be desirable to have methods to suppress alternans

when they develop in tissue, before they can evolve to
fibrillation.

Several feedback control methods for the suppression of
alternans and re-entrant arrhythmias based on the application
of external electrical stimuli of small intensity have been
proposed as methods for the prevention of VF. As of this
time, however, none of these methods are close to the stage
of development required for clinical implementation. Histori-
cally, the first schemes were based on time-delay autosyn-
chronization �TDAS� control. What makes these methods ap-
pealing is the ease of their implementation: the calculation of
the timing and intensity of the control current is computa-
tionally inexpensive and no knowledge of the laws govern-
ing the system dynamics is required. In the context of cardiac
tissue, TDAS was originally proposed as a way to suppress
alternans by Rappel et al. �25�. They investigated models of
both one-dimensional �1D� and two-dimensional �2D� tissue
and concluded that a grid of control electrodes was necessary
to stabilize the normal heart rhythm �nonalternating time-
periodic solution�. Echebarria and Karma �26� showed that
alternans in short �a few cm� open 1D fibers could be sup-
pressed using single-electrode TDAS. Their findings were
later verified experimentally by Christini et al. �27�.

More recently, researchers have turned toward more sys-
tematic approaches in which knowledge of the laws govern-
ing the system dynamics �in the form of a model� is used in
the design of the control protocol. One such approach based
on quasi-instantaneous suppression of the linearly unstable
modes was proposed by Li and Otani �28� for single cells
and by Allexandre and Otani �29� for 2D tissue. A significant
limitation of this approach is that it is aimed at systems with
only one pair of unstable modes. It is unclear whether �and
how� it can be generalized to situations where multiple un-
stable modes coexist and, as we show in this paper, it tends
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to produce conduction block for a 1D model with only one
pair of unstable modes.

Dubljevic �30� and Dubljevic et al. �31� introduced a con-
trol method for 1D fibers based on the amplitude equation
formalism �32�. Since the amplitude equation formalism is
only valid when the action potential duration varies over
distances much larger than the wavelength of the spatially
periodic solution, the applicability of this approach to cardiac
tissue of realistic dimensions is questionable. A canine
Purkinje fiber �which is a few cm long�, for instance, cannot
fit even a single wavelength. For reference, the shortest
wavelength of action potential can be estimated as the prod-
uct of the minimum APD, 120 ms �33�, and the minimum
conduction velocity, 200 cm/s �34�, or about 24 cm.

To address the limitations of these approaches, we present
a method based on linear-quadratic regulator �LQR� control
�35,36�. Our main goal in this paper is to compare the per-
formance of different control methods—for a particular
model and particular geometry—with the aim of establishing
the advantages and disadvantages of model- and nonmodel-
based control approaches to the suppression of instabilities
of the normal heart rhythm.

We start in Sec. II by describing the ionic model of the
tissue and the geometry used in this study. TDAS control is
presented in Sec. III. The bifurcation analysis of the model is
performed in Sec. IV, with Sec. V devoted to model-based
control. Finally, our conclusions are presented in Sec. VI.

II. MODEL EQUATIONS

The focus of this paper is to compare and contrast differ-
ent control approaches, rather than to study a particular
physiological condition. Therefore, we choose the simplest
model and geometry. Specifically, we will describe cardiac
tissue dynamics using the three-variable Fenton-Karma
model �37� in a 1D ring geometry. The evolution equation
can be written in compact form as

�tz = D�x
2z + F�z� − y . �1�

The system state z�x , t�= �u�x , t� ,v�x , t� ,w�x , t�� includes the
voltage variable u and two gating variables v and w, D is a
3�3 matrix whose only nonzero entry is D11=1.171
�10−3 cm2 /ms �38�, the nonlinear term F�z� describes the
local cell dynamics, and y= �j�x , t� ,0 ,0�, where j�x , t� is an
applied external current density. The ring geometry is ac-
counted for by periodic boundary conditions: z�0, t�=z�L , t�
for all t, where L is the ring length �circumference�. Except
where stated otherwise, we use the model parameters from
Ref. �39�. �Table 1, column labeled MBR�.

We excited action potentials on rings of different lengths
by application of a bipolar current. For values of L above the
critical value Lc=10.03 cm �to be discussed in more detail in
Sec. IV�, the action potential approaches asymptotically a
traveling-wave solution z̃�x , t� that propagates on the ring
with constant speed c and constant shape zp�x�,

z̃�x,t� = zp�x − ct� . �2�

This traveling-wave solution has periods L and T=L /c in
space and time, respectively, and represents normal heart
rhythm.

The evolution of the action potential is most conveniently
represented in a reference frame that moves along the ring
with speed c �co-moving reference frame�. The coordinates
in the co-moving reference frame �primed� are related to the
stationary reference frame coordinates �unprimed� by x�
= �x−ct�mod L. In the co-moving frame, after a short tran-
sient, the traveling-wave solution �2� becomes stationary for
L�Lc, as Fig. 1 illustrates. We therefore choose the co-
moving reference frame to present all our results below.

For L�Lc, the system state asymptotically approaches a
limit cycle characterized by oscillation of the action potential
duration �in the stationary frame� or width �in the co-moving
frame�. An example, as observed in the co-moving reference
frame, is shown in Fig. 2. This solution, which is time peri-
odic in the co-moving reference frame, will appear as quasi-
periodic in the stationary reference frame since the frequency
with which the pulse propagates around the ring is generally
incommensurate with the frequency with which its width os-
cillates. This is consistent with the results of Courtemanche
et al. �40� and Comtois and Vinet �41�.

In order to quantify the oscillation amplitude, we will
define the width of the action potential, W�t�, as the length of
the spatial domain for which the transmembrane voltage u is
above some threshold uth. In this work we set uth=0.4 �see
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FIG. 1. Evolution of the transmembrane voltage u on a ring of
length L=10.57 cm. Here and everywhere below the spatial posi-
tion x refers to the co-moving reference frame.
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FIG. 2. Evolution of the transmembrane voltage on a ring of
length L=9.94 cm. The asymptotic state corresponds to fully de-
veloped alternans.
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Fig. 3�. For reference, u is defined so that it varies approxi-
mately between 0 and 1: u= �V−V0� / �Vfi−V0� where V is the
transmembrane voltage in physical units, V0=−85 mV is the
resting membrane voltage and Vfi=+15 mV is the Nernst
potential of the fast inward current. For consistency with this
scaling of the voltage, the Fenton-Karma model uses a scaled
current-density j= I / �Cm�Vfi−V0��, where I is the current
density in physical units and Cm=1 �F /cm2 is the mem-
brane capacitance.

It should be noted that although the average conduction
velocity of the oscillating pulse does depend on the oscilla-
tion amplitude �and the ring length�, near Lc we find it to
coincide to numerical precision with the conduction velocity
c of the �unstable� stationary pulse. This can be seen in Fig.
2, where the position of the front of the pulse oscillates, but
does not drift, as a function of time.

The observed transition between stationary and oscillatory
solutions of the Fenton-Karma model on a ring is qualita-
tively similar to the transition between normal rhythm and
alternans in cardiac tissue. For instance a train of traveling
pulses can be created in a Purkinje fiber by pacing it periodi-
cally at one end. When the pacing rate is sufficiently low, the
pulses propagate without changing shape. If the pacing rate
is increased beyond some threshold, the shape oscillates as
the pulses travel down the fiber. When the voltage is re-
corded at a fixed location on the fiber, these oscillations of
the pulse shape appear as a beat-to-beat alternation of the
APD. For comparison, Fig. 3 represents such a recording for
our model. Since the wave speed does not vary significantly,
the increase in the pacing rate is equivalent to a decrease in
the wavelength. In our model the wavelength is determined
by the ring length; therefore, we can identify the limit-cycle
oscillation of the pulse width with the state of alternans and
the steady state with the normal rhythm.

The ring geometry also can serve as a model for the study
of instabilities of reentrant arrhythmias leading to VF. For
instance, functional re-entry is often associated with a spiral
wave. In Ref. �29�, several instabilities producing oscilla-
tions of the thickness of the spiral wave �there called “alter-
nans modes”� were demonstrated. Away from the tip, each
segment of the spiral wave can be thought of as a traveling

wave on a ring. Therefore, although the spiral wave dynam-
ics in 2D is richer, some of the results obtained in the 1D
ring geometry might still be of relevance.

Having determined the dynamical regimes, we next turn
our attention to the control problem. Specifically, the objec-
tive is to suppress the oscillatory dynamics using spatially
localized feedback representing current injection through an
electrode implanted into the cardiac tissue.

III. NONMODEL-BASED (TDAS) CONTROL

We begin with the TDAS control as implemented in Ref.
�25�. To model an experimental setup, we take the current-
density j�x , t� to be spatially localized at the position of a
single �unipolar� control electrode fixed relative to the tissue
at x0:

j�x,t� = j0�t�g�s�x − x0�� , �3�

where j0�t� is the control current, g�s� is a normalized Gauss-
ian of width ��L, and the shift function s�x�= ��x
+L /2�mod L�−L /2 takes into account the periodic boundary
conditions. In the calculations reported here �=0.17 cm.

The control current was calculated in two ways: using
bidirectional feedback

j0�t� = ��u�t� , �4�

and using unidirectional feedback

j0�t� = ��u�t�	��u�t�� , �5�

where �u�t�=u�x0 , t�−u�x0 , t−
�, � is a tunable parameter,
and 
 is the time delay calculated as in Ref. �25�. Note that
the feedback current is computed based solely on the mea-
surements of the voltage and does not require a model of the
dynamics. The TDAS control therefore can be classified as
nonmodel-based.

TDAS control was tested by simulating the evolution of
the system subject to the feedback law �4� or �5�. The evo-
lution Eq. �1� was integrated numerically using the explicit
Euler method on a uniform mesh of 2000 points �this
amounts to a mesh size of about 5�10−3 cm�. Finite-
differences approximation was used for the diffusion term.
The time step was set to 8.25�10−4 ms.

It was argued in Ref. �25�. that unidirectional feedback �5�
effectively restricts the application of the control current to
times during which the cells are passing through the repolar-
ization phase of the action potential, eliminating conduction
block. This effect was not observed in the model considered
here. In particular, the unidirectional feedback �5� produced
nonzero control current in both the repolarization and depo-
larization phases. Furthermore, we found no relation between
the phase of the action potential and the sign of �u. In some
cases, while using the bidirectional feedback �4�, the sign of
�u alternated from positive to negative from one period to
the next in both the depolarization and repolarization phases.
This behavior is partially illustrated by Fig. 4 �bottom�,
which shows the control current calculated via Eq. �4�. No-
tice the alternating sign of the narrow spikes corresponding
to the depolarization phase. Also, notice how the small
bumps associated with the repolarization phase are initially
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FIG. 3. Transmembrane voltage at a fixed location on a ring of
length L=9.94 cm. One can see a pattern of alternation between
long and short APD, characteristic of alternans.
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negative but become positive in later stages. Bidirectional
feedback was generally found to perform better than unidi-
rectional and was therefore chosen for the remainder of this
study.

There are many potential reasons why our findings differ
from those of the earlier study �25�. Here, only one control
electrode is used, while Rappel et al. simulated the action of
multiple electrodes. Moreover, the earlier study also used
different models of cardiac dynamics. Our results suggest
that the effect of bi- and unipolar feedback currents on the
emergence of conduction block requires further investiga-
tion.

To investigate the performance of time-delay feedback
control, we investigated the evolution of the system dynam-
ics using the state of fully developed alternans shown in Fig.
2 as an initial condition, with the ring length L=9.94 cm.
This corresponds to c=42.3 cm /s and T=235 ms. The evo-
lution of the action potential �for optimal values of x0 and �,
as explained below� is shown in Fig. 5. The action potential
gradually approaches a stationary state with W�t�=W0.
Hence, successful suppression of alternans is achieved.

In order to quantify how quickly alternans is suppressed,
we define the control time tc as the smallest time after control
is turned on at t=0 for which the absolute value of the varia-
tion in the width, �W�t�=W�t�−W0, falls below some thresh-
old, �Wth, to never go above it again. Here we set �Wth
=0.05�W, where �W is the maximum value of ��W�t�� for
the state of fully developed alternans without control. For the
value of L used, �W�0.22W0.

Keeping the gain � fixed at a value of 0.034 ms−1 cm, we
determined the initial position of the control electrode x0
giving rise to the lowest value of tc �this is equivalent to
choosing the phase of the oscillation at the instant when the
control is turned on�. Setting x0 at that optimal value, we
explored the performance of control with different values of
�. As Fig. 6 shows, for TDAS the control time achieves the
smallest value tc�16.3T=3.83 s for ��0.034 ms−1 cm.

As the system approaches the asymptotic state, �u�t� and,
as a result, the control current j0�t� vanishes. This indicates
that the asymptotic state is a steady solution �in the absence
of control current� of the evolution Eq. �1�; i.e., it is the
target state �2�. In the next section we will show that this
state is unstable for L�Lc, and hence the dynamics will
spontaneously revert to alternans in the absence of control.

IV. BIFURCATION ANALYSIS

The availability of a model allows one to analyze the
dynamics and solve the control problem in a systematic,
rather than ad hoc, way. In particular, the results in Sec. II
can be easily understood by performing a linear stability
analysis of the traveling-wave state �2�. Its stability is easiest
to describe in the co-moving reference frame, where the evo-
lution Eq. �1� takes form

�tz = N�z� − y�, �6�

where
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FIG. 4. Control current density at the location of the control
electrode �I�x0 , t� as seen in the stationary reference frame� as a
function of time for LQR �top� and TDAS �bottom�.
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FIG. 5. Evolution of the transmembrane voltage u under TDAS
control for the ring of length L=9.94 cm. Parameters � and x0 were
set to the optimal values as described in the text. The initial condi-
tion is the state of fully developed alternans shown in Fig. 2.
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FIG. 6. Control time as a function of control parameters � for
TDAS �crosses� and r0 for LQR �circles� with l=4 subintervals �see
Sec. V B�.
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N�z� � c�x�z + D�x�
2 z + F�z� , �7�

y�= �j��x� , t� ,0 ,0�, and j��x� , t�� j�x�+ct , t� is the control
current density transformed to the co-moving reference
frame. To simplify the notation, we will drop the primes, so
that, below, x will refer to the coordinates in the co-moving
reference frame.

The traveling wave �2� is a stationary solution of the evo-
lution Eq. �6� in the absence of the control current:

N�zp� = 0. �8�

We calculated zp by solving Eq. �8� with periodic boundary
conditions using the variational method �42�. The method
was modified to obtain a higher density of mesh points in the
region where the variables change faster. This allowed the
back and the front of the pulse to be accurately resolved
while allowing a more sparse sampling of the plateau and the
unexcited region.

In order to determine the mechanism leading to the emer-
gence of a limit-cycle oscillation �alternans�, we construct
the bifurcation diagram for the partial differential Eq. �6�.
Although bifurcation analysis has been performed previously
for single cells, their dynamics are described by ordinary
differential equations �43,44�, so the results cannot be gener-
alized for the tissue model considered here.

In order to determine which solutions are selected by the
dynamics for different ring lengths, we use the linearization

�t�z = JN�z − y�x,t� �9�

of Eq. �6�, where �z�x , t�=z�x , t�−zp�x� is the deviation from
the stationary state,

JN = c�x + D�x
2 + JF, �10�

and �JF�ik��Fi /�zk �zp
. In order to avoid the singularity in the

elements of JF introduced by the nondifferentiability at zero
of the step functions f�s�=a	�s�+b	�−s� �where 	�s� is the
Heaviside step function� in the original Fenton-Karma
model, their smoothed analogues f�s�=�+
 tanh�s /k� were
used instead, where a=�−
, b=�+
, and k=0.03.

The stability of zp is determined by the eigenvalues �i of
the differential operator JN,

JNei�x� = �iei�x� , �11�

where ei�x� are the corresponding eigenfunctions. The lead-
ing eigenvalues and eigenfunctions were found numerically
by discretizing Eq. �11� on the mesh used in the variational
method. The advection and diffusion terms in JN were ap-
proximated by finite differences. The corresponding matrix
eigenvalue problem was then solved via the implicitly re-
started Arnoldi iteration method �45� implemented by the
MATLAB �Mathworks, Inc.� routine eigs.

The real parts of the five leading eigenvalues are shown in
Fig. 7 as functions of the ring length L. The trivial eigen-
value, �1=0, is independent of the ring length L, with e1
=�xzp. This is a reflection of the translational symmetry of
Eq. �6�: zp remains a stationary solution if shifted by an
arbitrary distance. The other four are pairs of complex-
conjugate eigenvalues. For L�Lc�10.03 cm, all eigenval-
ues except for �1 have a negative real part, such that zp is

stable, in agreement with the result presented in Fig. 1. The
first complex pair, �2=�3

� acquires a positive real part for L
�Lc, indicating that a Hopf bifurcation takes place at Lc,
giving rise to an oscillatory solution shown in Fig. 2. The
target state zp becomes linearly unstable, with small pertur-
bations �z growing until the system reaches the state of fully
developed alternans with amplitude saturated by
nonlinearities.

The amplitude of the alternans, AW�maxt W�t�
−mint W�t�, shown in Fig. 8 as a function of L is well fitted
by a square-root law AW=b�L−Lc��

1/2 �solid line�, character-
istic of a supercritical Hopf bifurcation. The fitting param-
eters were found to be b=6.53 cm1/2 and Lc�=10.04 cm us-
ing the method of least squares, in agreement �up to the third
significant figure� with the value of the critical ring length Lc
found via linear stability analysis.
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FIG. 7. Real part of the five leading eigenvalues of JN as a
function of the ring length L. Zero eigenvalue �1 �squares� is asso-
ciated with translational symmetry. The first pair of complex-
conjugate eigenvalues �2=�3

� �circles� becomes unstable at L=Lc
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FIG. 8. Amplitude of alternans as a function of the ring length
L. The solid curved line is the least-squares fit, AW=b�L−Lc��

1/2,
computed using the four middle points. The horizontal solid
�dashed� line corresponds to the stable �unstable� steady-state zp.
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Previous investigations �46,47� discovered that often the
state of alternans possesses memory; that is, the alternans
produced by an increase in the pacing rate persist even when
the rate is subsequently decreased below the threshold at
which it was induced. This hysteretic behavior suggests that
for a range of pacing rates a stable state of alternans and a
stable normal rhythm state coexist �bistability�. The super-
critical Hopf bifurcation found here shows that the Fenton-
Karma model on a ring does not possess the memory effect
�the latter being consistent with a subcritical Hopf bifurca-
tion�.

V. MODEL-BASED CONTROL

Now the objective of control can be formulated. Our strat-
egy aims to alter the stability of the target state by applying
an external current j0�t� in such a way that for L�Lc the
controlled system will evolve toward zp, even when the ini-
tial condition corresponds to the state of fully developed al-
ternans.

To facilitate direct comparison, the control current in Eq.
�6� is assumed to have the same spatial distribution �3� as
that used in TDAS. An electrode fixed with respect to the
tissue will appear moving, in the co-moving reference frame,
with position given by xe��x0−ct�mod L. Therefore, the
current density can be written as

j��x�,t� = j0�t�g�s�x� − xe�� . �12�

Although Eq. �9� is an infinite-dimensional system, for L
sufficiently near Lc, it possesses a small number of unstable
eigenmodes, with stable ones rapidly decaying, so the dy-
namics of �z can be described reasonably accurately by a
Galerkin projection onto the subspace spanned by a finite �in
fact, rather small� number of the leading eigenfunctions of
JN. In order to perform this projection we need the eigen-
functions f j of the adjoint operator JN

† ,

JN
† f j�x� = � j

�f j�x� . �13�

With the appropriate normalization, the eigenfunctions f j and
ei satisfy the biorthogonality condition

�f j,ei	 � 

0

L

�
k=1

3

f j,k
� �x�ei,k�x�dx = � ji, �14�

where �· , ·	 denotes the inner product.
The adjoint eigenfunctions fi were computed by approxi-

mating Eq. �13� by a matrix eigenvalue problem. The matrix
representation of JN

† was obtained by discretizing the equa-
tion that defines the adjoint of JN �48�,

�JNz�,z�	 = �z�,JN
† z�	 , �15�

for all z� and z�. From Eq. �15� the matrix elements of JN
† are

found to be related to the matrix elements of JN by

�JN
† �ik = hi

−1hk�JN�ki
� , �16�

where hi is the length of the interval between the mesh points
i and i+1.

Let �i denote the coefficients in the expansion of �z as a
linear combination of the eigenfunctions ei,

�z�x,t� = �
i=1

�

�i�t�ei�x� . �17�

From Eqs. �14� and �17� we find that

�i�t� = �fi,�z�t�	 . �18�

Substituting Eq. �17� into Eq. �9� and applying the operation
�f j , ·	 to each side of the resulting equation, we obtain

�̇ j = � j� j − �f j,y	, j = 1, . . . ,m , �19�

where m is the number of modes considered.

A. Quasi-instantaneous suppression of unstable modes
(QISUM)

We start by considering a feedback control method pro-
posed in Refs. �28� and �29� the idea of which is to eliminate
the unstable modes by applying a short current stimulus. We
should point out that this is essentially a particular imple-
mentation of dead beat control �49�. Suppression of alternans
using this method was investigated both for single cells and
for 2D tissue. In the latter case the target state was a spiral
wave that appears stationary when observed in a rotating
reference frame. In this sense it is analogous to the traveling-
wave solution on the ring considered here.

The effect of a constant control current j0�t�= j0
n acting

during a brief time interval �tn , tn+�t� can be calculated by
integrating Eq. �19� over that interval

�i�tn + �t� = �i�tn� + �i

tn

tn+�t

�i�t�dt − j0
n


tn

tn+�t

�i�x0 − ct�dt ,

�20�

where

�i�x0 − ct� = 

0

L

f i,1
� �x�g�s�x − xe�x0 − ct��
dx . �21�

Assuming the interval is short enough ��i�t�1 and c�t
�a�, Eq. �20� can be approximated by

�i�tn + �t� − ��tn� = − j0
n�t�i�x0 − ctn� . �22�

The method requires the feedback current to be chosen such
that

�i�tn + �t� = 0 �23�

for all unstable modes i.
It is clear that at most one pair of unstable modes can be

eliminated by an appropriate choice of j0
n. Therefore, the

method may only work for ring lengths L2�L�Lc �see Fig.
7�. Therefore, we set the ring length to be the same as that
used previously in TDAS control, L=9.94 cm. For the
complex-conjugate unstable modes e2=e3

� and f2= f3
� �recall

that the real mode 1 has a zero growth rate�. Since �z is real,
we should have �2=�3

� at all times. Therefore, for the feed-
back current

GARZÓN, GRIGORIEV, AND FENTON PHYSICAL REVIEW E 80, 021932 �2009�

021932-6



j0
n�t =

�2�tn�
�2�x0 − ctn�

=
��2�tn��

��2�x0 − ctn��
ei��x0,tn�, �24�

where � is the complex phase difference

��x,t� = arg��2�t�� − arg��2�x − ct�� , �25�

eliminating mode 2 automatically eliminates mode 3 as well.
One finds that �2 and �2 rotate in the complex plane with
different angular speeds and in general have different com-
plex phases �see Fig. 9�a��. Hence, the right-hand side of Eq.
�24� is generally complex, while the left-hand side is always
real. We must, therefore, choose x0 and/or tn such that the
right-hand side is real; i.e.,

��x0,tn�mod � = 0. �26�

Equation �26� has an infinite number of solutions. That
freedom can be used to perform some limited optimization
�28�. In particular, we find that over one period of the oscil-
lation, ��2� varies much less than ��2�. Therefore, for the ini-
tial control stimulus, n=0, the control current can be mini-
mized by choosing x0 and t0 such that ��2�x0−ct0�� achieves
its largest value. Since g�s� is a narrow Gaussian ���L�,
��2�x����f2,1�x��. We can, therefore, choose

�x0 − ct0�mod L = xmax, �27�

where xmax�0.8L is the location at which �f2,1� achieves its
maximum value �see Fig. 10�. Similar arguments were used
in Ref. �29�. to place the current injection aimed at suppress-
ing alternanslike dynamics of a spiral wave. From Eq. �26�
we see that t0 is a solution of arg��2�t0��=arg��2�xmax��
+�k with some integer k and x0= �xmax+ct0�mod L. The so-
lution corresponding to k=0 is shown in Fig. 9�b�. At t= t0
we have xe=x0−ct0=xmax, which means that it is optimal to
apply the control current at the early plateau phase �see Fig.
10�. This conclusion is consistent with the results of Ref.
�28�.

We have investigated the performance of this control al-
gorithm using the initial condition shown in Fig. 2, similar to
TDAS. The explicit Euler method becomes unstable for Eq.

�6� due to the presence of the advection term. For that rea-
son, Eq. �6� was integrated using an operator-splitting
method. The finite-differences approximation and the Crank-
Nicolson method were used for the diffusion and advection
terms, while the reaction terms were advanced by Heun’s
method �50�. A uniform mesh with 2000 points was used.
The time step was set to 2�10−3 ms.

Fig. 11 shows the evolution of �2�t� leading to and fol-
lowing the initial control stimulus at t0=0.78T. The effect of
the feedback current was simulated by instantaneously
changing u�x , t0� by −j0�tg�s�x−xe�x0−ct0��
 with j0 com-
puted from Eq. �24�, which corresponds to the limit �t→0.
One discovers that although �2=�3=0 �to numerical preci-
sion� following the control stimulus, both unstable modes
quickly grow to a magnitude comparable to that preceding
the current injection. This is due to the so-called control
spillover effect �51�: the feedback that is aimed at suppress-
ing the unstable modes will generically excite the modes that
would be stable in the absence of feedback �e.g., modes 4, 5,
etc.�. The nonlinearities contained in the ionic model couple
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FIG. 9. Trajectories followed in the complex plane by �2 �dashed line� in the state of alternans and �2 �solid line� over the time interval
�0,TA�, where TA�1.72T is the period of alternans. Arrows are drawn to help identify the angles of �2 and �2 at a particular time instance.
�a� Generically ��x0 , t0�mod ��0. �b� By an appropriate choice of x0 and t0 both Eqs. �26� and �27� can be satisfied. Note that �2 is shown
rescaled by a factor of 2 to aid visualization.
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FIG. 10. Transmembrane voltage u of the target state zp �solid
line� and �f2,1� �dashed line�. Notice that the maximum of �f2,1�
corresponds to the early part of the action potential plateau follow-
ing depolarization.
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the dynamics of different modes, leading to a relatively quick
regrowth of the unstable modes and re-emergence of the
alternans.

One way to address this problem is by iterating the con-
trol current injections indefinitely. However, for the applica-
tion of the second �and subsequent� control stimulus there is
no longer the freedom to chose x0 as it is impractical to move
the electrode relative to the tissue. The feedback current
should be injected through the electrode located at x0 at time
tn satisfying Eq. �26�. In general we will have xe�tn�
= �x0−ctn�mod L�xmax and hence ��2� may be significantly
reduced compared to its maximum value. In particular, when
the control electrode is located near a minimum of �f2,1� �the
extreme case being x�0.35L, as Fig. 10 shows� the control
current magnitude will have to be increased by two orders of
magnitude compared with the optimal choice described pre-
viously, with a high likelihood of producing conduction
block. This is indeed what we observed. We applied several
control stimuli separated by a minimum time of T. This delay
was introduced to allow the stable modes to relax following
the previous control stimulus. Regardless of the choice of the
phase difference �0 or ��, conduction block was observed
after the application of fewer than 10 control stimuli. Figure
12 shows results obtained for the case in which the shortest
interval �tn− tn−1� between the control stimuli was chosen.
Conduction block was observed at t�14T=3.29 s.

B. LQR control

Alternatively, the feedback law could be derived system-
atically by using a standard control theoretic approach, such
as linear-quadratic regulator or LQR. We will limit our focus
here to the time-discrete version of LQR. A continuous ver-
sion of this method is more computationally intensive, but
also more efficient.

We start by reducing Eq. �19� to a stroboscopic map that
evolves the amplitudes of the leading modes �i in time steps
of duration T. On each interval �tn , tn+1�, tn�nT, n
=0,1 ,2 , . . . we will assume the control current to be piece-

wise constant. Specifically, each period of the stroboscopic
map will be subdivided into l subintervals S�n ,k�= �tn
+ �k−1��T , tn+k�T�, k=1, ¯ , l of equal duration �T=T / l,
so that

j0�t� = j0
n,k, t � S�n,k� . �28�

The stroboscopic map truncated to the m leading modes is
obtained by integrating Eq. �19� over the interval �tn , tn+1�
which, taking into account Eqs. �12� and �28�, yields

�n+1 = A�n + Bj0
n, �29�

where �n= ��1�tn� , ¯ ,�m�tn��, j0
n= �j0

n,1 , ¯ , j0
n,l�, A is an m

�m diagonal matrix with elements Aii=exp��iT�, and B is an
m� l matrix with elements

Bik = − exp��iT�

S�0,k�

exp�− �i
��i�x0 − c
�d
 . �30�

LQR control is computed as the solution j0
n minimizing a

quadratic cost function

G = �
n=1

�

���n�†Q�n + �j0
n�†Rj0

n� , �31�

subject to the constraint �29�. Q and R are arbitrary positive-
definite constant matrices that can be chosen to achieve a
particular optimization goal. In particular, setting Qik
= �ei ,ek	 /L2 and choosing R as a multiple of the l� l unit
matrix reduces Eq. �31� to the form

G = �
n=1

�
1

L2 ��z�tn��2
2 + r0�

n=1

�
1

l �k=1

l

�j0
n,k�2, �32�

which respects the translational invariance of the evolution
equation in space and time. By varying the scalar parameter
r0 one can obtain the feedback which either minimizes the
control current or increases the convergence speed to the
target state; r0 is analogous to the parameter � of TDAS.
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FIG. 11. Trajectory followed by �2�t� in the complex plane be-
fore and after the application of a control stimulus j0�t at t
=0.87T. The dashed line indicates the instantaneous cancellation of
�2. The state at t=0 is that of fully developed alternans �see Fig. 2�.
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FIG. 12. Evolution of the transmembrane voltage u under
QISUM control for the ring of length L=9.94 cm. The initial con-
dition is the state of fully developed alternans shown in Fig. 2. The
control method was turned off after the occurrence of conduction
block.
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It can be shown �35� that Eq. �31� achieves its minimum
when

j0
n = − K�n, �33�

where the feedback gain matrix K is related to the solution
of a matrix Riccati equation which incorporates matrices A,
B, Q, and R. We computed it using the function dlqr of
MATLAB. Substituting Eq. �33� into Eq. �29�, one obtains the
closed-loop map

�n+1 = �A − BK��n, �34�

where the matrix A−BK is a stable matrix, so that �n decays
to zero, with the system asymptotically approaching the tar-
get state zp.

The LQR control scheme was verified by numerically in-
tegrating the evolution Eq. �6� using the same method, spa-
tial mesh and time step as those used for QISUM control. We
found LQR to be capable of quickly suppressing alternans
for an appropriate choice of parameters �m, l, x0, and r0�. The
evolution of the system in the co-moving reference frame is
shown in Fig. 13. One finds that the feedback current com-
puted using LQR successfully suppresses fully developed al-
ternans �initial condition shown in Fig. 2� with the system
dynamics approaching the target state.

In implementing LQR control we used m=9 mode trun-
cation. Increasing m had little effect on the performance.
However, we did find that the performance depended notice-
ably on the position of the control electrode �relative to the
position of the traveling pulse at times tn=nT�. For some
values of x0 conduction block took place, and the method
therefore failed to drive the system to the target state. In the
cases in which LQR was successful, the control time was
found to depend significantly on the choice x0. In the end we
selected x0 to minimize the control time tc. This value was
chosen for all the calculations presented here.

To investigate the constraints on the number of subinter-
vals l, we fixed r0=405 ms2 cm−2 and subdivided each time
interval �tn , tn+1� into l=2k subintervals with k=1, ¯ ,7. For
l�2 the control current was found to produce conduction

block. The control was successful for l�4, so we set l=4 in
the rest of the calculations reported here. This corresponds to
the “worst case scenario;” increasing l should further opti-
mize control, thereby decreasing the control time and the
control current magnitude and further reducing the likelihood
of conduction block.

In order to explore how the LQR control performs de-
pending on the weight given to the magnitude of con-
trol current vs. the convergence speed, we computed tc
as a function of r0. As Fig. 6 shows, the control time
achieves its minimum value of tc�11.9T=2.80 s for r0
�111 ms2 cm−2 and increases slightly for values of r0 either
greater or less than the optimal value. This time is shorter
than that for TDAS. This is the first clear indication that by
using more extensive information about the system state and
dynamics it is possible to design a control scheme with su-
perior performance.

Fig. 4 shows the control current as a function of time for
LQR and TDAS for the values of r0 and � producing the
smallest tc. For TDAS the current shows pronounced spikes
whose absolute values are about an order of magnitude big-
ger than the maximum absolute value of the current for LQR.
Large currents, such as those applied during the initial stages
of control, can lead to electroporation of the tissue surround-
ing the electrode. Electroporation is characterized by rupture
of cell membranes as a result of induced high transmembrane
voltage �52,53�. The associated changes in the local dynam-
ics can render any feedback control ineffective.

It should be noted that the convergence of the alternans
amplitude �W�t� to zero is nonmonotonic, but rather is char-
acterized by strong initial fluctuations. The changes in the
action potential shape produced by LQR control during this
initial stage �shown in Fig. 14� could be interpreted as in-
duced dispersion of repolarization. For a longer �shorter�
pulse, the feedback current repolarizes �depolarizes� the tis-
sue, effectively shortening �lengthening� the pulse.

Observations of uncontrolled cardiac dynamics have
found that dispersion of repolarization is a condition that can
lead to conduction block �17,20,54�. As we have shown pre-
viously, for l�2 �when the control current is not allowed to
vary sufficiently frequently� LQR does indeed fail by induc-
ing conduction block. However, when the control current
profile is sufficiently optimized �for l�4�, LQR succeeds in
suppressing alternans without inducing conduction block.
This fact indicates there is no direct link between the alter-
ations of the action potential shape presented in Fig. 14 and
conduction block. In other words, the intuition gained in
studies of open-loop �uncontrolled� systems cannot be gen-
eralized in a straightforward manner to closed-loop �con-
trolled� systems.

C. Robustness of LQR under parameter uncertainty

A source of concern in implementing model-based control
is the unavoidable mismatch between the true dynamics and
the predictions of the model. A controller that is able to
achieve its goal even when this mismatch is present is said to
be robust under model uncertainty. The robustness of LQR
control can be tested, for instance, by assuming that although
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FIG. 13. Evolution of the transmembrane voltage u under LQR
control for the ring of length L=9.94 cm. We used l=4, with r0 and
x0 set to the optimal values as described in the text. The initial
condition is the state of fully developed alternans shown in Fig. 2.

MODEL-BASED CONTROL OF CARDIAC ALTERNANS ON A… PHYSICAL REVIEW E 80, 021932 �2009�

021932-9



the Fenton-Karma model provides an accurate representation
of the real dynamics, the values of its parameters are not
known precisely �parameter uncertainty�. We tested the per-
formance of LQR in a hypothetical situation in which the
“estimated” values of parameters used for computing the
feedback were different from the “true” values used to
evolve the system state.

In practice the model parameters are estimated by fitting
the model predictions to experimental measurements. One of
the most easily accessible measurements is the wave speed c
of the target state �2�. Therefore, we choose the estimated
values in such a way that the speed c was the same �up to six
significant figures� for the estimated set and the true set of
parameters. Specifically, we chose 
r=55.53 �all times are in

milliseconds� and 
si=50 for the estimated set of values,
compared with 
r=50 and 
si=44.84 for the true set of val-
ues, with the rest of the parameters chosen to be the same as
in Sec. II. That corresponds to a mismatch of about 10%
between the estimated and true values of both parameters.

Fig. 15 illustrates the performance of feedback control
computed using the estimated values of parameters. Of
course, complete suppression of the perturbation �z cannot
be attained, since the target state calculated from the esti-
mated set of parameter values is not the true target state.
Nonetheless, after 30 periods control reduces the amplitude
of alternans to 5% of the amplitude of fully developed alter-
nans, thereby illustrating that LQR is robust under parameter
uncertainty for the model considered.

VI. CONCLUDING REMARKS

This study demonstrates that LQR control considerably
outperforms TDAS in suppressing alternans. The advantages
of LQR over TDAS are twofold: �i� alternans is suppressed
in a shorter time and �ii� the risk of tissue damage is reduced
due to a smaller control current. Although we used a particu-
lar control theoretic approach �LQR�, our results support the
conclusion that using knowledge of cardiac dynamics in the
implementation and development of control procedures gen-
erally allows one to improve the effectiveness, while at the
same time reducing the side effects of control, compared
with the leading existing approaches such as TDAS. Al-
though our results apply only to a rather simplified situation
�the Fenton-Karma model in a 1D medium with periodic
boundary conditions�, they suggest that model-based control
should have similar advantages for actual cardiac tissue. In
order to test this hypothesis, more realistic ionic models and
physiologically relevant geometries must be investigated
first, with experimental validation to follow.

In the conclusion of this paper, it is important to mention
another issue that inevitably will arise in an experimental
implementation of any model-based control protocol: deter-
mining the system state. For instance, LQR requires the
knowledge of the complete system state �all the model vari-
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FIG. 14. Transmembrane voltage u during LQR control �same
data as for Fig. 13� for t from 5.1T �top panel� up to 6.1T �bottom
panel� with increments of 0.1T. The circle on each panel indicates
the value of u at the location of the control electrode �it moves
backward in the co-moving reference frame�.
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FIG. 15. Evolution of the transmembrane voltage u under LQR
control computed using estimated parameters for the ring of length
L=9.94 cm. Parameters l, r0, and x0 are as in Fig. 13. The initial
condition is the state of fully developed alternans �see Fig. 2�.
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ables at all points in space� at the beginning of each time
period, t= tn. Although the use of voltage- and calcium-
sensitive dyes and microelectrode recordings in principle al-
lows one to determine the spatial distribution of certain
model variables in real time �31�, this approach is extremely
impractical, especially in vivo. A more practical alternative
approach involves state reconstruction �or state estimation, in
the language of control theory� based on measurements of a
few model variables at one or several spatial locations
�35,36�. In particular, it should be generically possible �55�
to reconstruct all dynamical variables required for computing
the control current based on measurements of a single vari-
able at a single spatial location. In principle, this can be
accomplished, for instance, by recording the transmembrane
potential using the same electrode that is used for control. A
control scheme based on state estimation will be the subject
of a future study.

There is no guarantee that LQR as implemented here will
succeed at suppressing alternans in all physiologically rel-
evant ranges of parameters and initial conditions. This is
primarily due to the fact that a linear approximation of the

dynamics is used for the calculation of the control current.
The occasional failures of this approximation are made evi-
dent by the several instances reported here in which LQR
control induced conduction block, an essentially nonlinear
phenomenon. Similarly, at large amplitudes, the average con-
duction velocity of the fully developed alternans state might
deviate sufficiently from that of the target state for linear
control to be successful. Besides shielding the control
method against conduction block, incorporating elements of
nonlinear dynamics of the system is also expected to im-
prove efficiency as reflected, for example, in a reduction in
the control time and the current magnitude. This topic will be
addressed in future research.
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