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We investigate the physical reasons underlying the high monodispersity of empty virus capsids assembled in
thermodynamical equilibrium in conditions of favorable pH and ionic strength. We propose that the high
fidelity of the assembly results from the effective spontaneous curvature of the viral protein assemblies and the
corresponding bending rigidity that penalizes curvatures which are larger and smaller from the spontaneous
one. On the example of hepatitis B virus, which has been thoroughly studied experimentally in the context of
interest to us, we estimate the magnitude of bending rigidity that is needed to suppress the appearance of
aberrant capsid structures ��60kBT�. Our approach also demonstrates that the aberrant capsids that can be
classified within the Caspar-Klug framework are in most circumstances likely to be smaller from the regular
ones, in agreement with the experimental findings.
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I. INTRODUCTION

In physiological conditions, assembly of most viruses is
precise which means that the percentage of aberrant struc-
tures is small �1,2�. This can, however, change depending on
the pH value of the solution �3–5�, presence or absence of
specific ions �3�, scaffolding proteins that assist the assembly
of some viruses �6,7�, and virus genetic material �DNA or
RNA molecule� �8,9�. There are some viruses that assemble
imprecisely i.e., produce observable amount of unfunctional
and often irregular structures in the process of assembly. Per-
haps the most notable of them are human immunodeficiency
virions �HIV� which are very polydisperse �10�. One could
argue that the presence of genome molecules, in particular
their length, guarantees the precision of the assembly and
formation of viruses of certain �functional� size. This issue
has been recently investigated �11,12�.

In this paper, we are interested in viruses that assemble
spontaneously, i.e., without any specific molecular machin-
ery that uses up chemical energy to form functional protein-
genome complexes �this excludes, e.g., bacteriophages
which use the adenosine triphosphaate �ATP� driven molecu-
lar motors to pack the DNA molecule in the preformed
capsid �13,14��. The proteins that make a protective shell
�capsid� of these viruses are known to self-assemble in
�empty� capsids even in the absence of the genome molecule
�mostly RNA for the viruses in question�, at least when the
salt concentration and pH value are appropriate �1,2,15,16�
�these parameters obviously influence the protein-protein in-
teractions�. It is intriguing that the thus assembled capsids
are often quite monodisperse and that their radii are the same
as the radii of the functional viruses that contain the RNA
molecule �2,15�. This suggests that there is some physical
factor pertinent to protein-protein interactions in virus
capsids that regulate the precision of the assembly. The de-
ciphering of this factor is the motivation for this work.

According to the Caspar-Klug quasiequivalence theory of
viruses �17�, the same protein subunits may in principle as-

semble in many different capsids, each of which contains a
certain prescribed number of protein subunits �protein sub-
units may be individual proteins, but also protein dimers
which is the case e.g., in hepatitis B virus �HBV� �2��. The
total number of protein subunits �q� in viruses that obey the
Caspar-Klug classification scheme is

q = 60T , �1�

where T is the triangulation �or quasiequivalence� order of a
virus which can be expressed in terms of two integers h and
k as

T = h2 + hk + k2. �2�

Capsids of different T numbers have different radii which are
proportional to �T. It has been shown that the electrostatics
alone in combination with the simplest form of angle-
independent hydrophobic attraction between the protein sub-
units cannot guarantee the formation of monodisperse empty
capsids of certain preferred T number �18�. This may suggest
that the protein-protein interactions are the strongest for a
certain dihedral angle formed by neighboring protein sub-
units. In coarse-grained description, this translates in the ex-
istence of preferred �or spontaneous� curvature of viral
capsids for which the capsid elastic bending energy is mini-
mal so that the bending component of the elastic energy of
the capsid can be written as

Eb =
�

2
�

S

dS�c�r� − c0�2. �3�

Here, � is the bending rigidity, dS is the infinitesimal element
of the capsid surface �S�, c�r� is the mean curvature at point
r on the capsid, and c0 is the capsid spontaneous curvature.
The value of the bending energy constant influences the total
energy of the aberrant capsids so that it penalizes capsids
with T numbers that are different �both larger and smaller�
from the one pertinent to functional viruses. The question
that arises concerns the required magnitude of � such that the
formation of aberrant capsids, both larger and smaller, in the
equilibrium be suppressed, i.e., that the self-assembly is ac-*asiber@ifs.hr
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curate. The answer to this question is the main goal of this
paper. There is a larger context of our work and we do think
that our results may be of use to nanotechnology oriented
research aiming to produce artificial systems that self-
assemble reliably. Some recent work in this area seems to be
promising, especially when it includes usage of viral proteins
for production of nanocontainers �19–21�.

In Sec. II we specify the model for the assembly that we
use. In Sec. III we apply the model to the specific case of the
assembly of hepatitis B capsids �empty viruses�. The assem-
bly of this virus has been thoroughly studied experimentally
�1,2� and that is the reason that we choose it as a convenient
benchmark for the application of our model. Section IV con-
tains the discussion of the numerical results and their inter-
pretation in the context of experimentally determined fea-
tures of the virus assembly. Section V concludes the paper.

II. MODEL FOR THE ASSEMBLY OF REGULAR
AND ABERRANT CAPSIDS IN THE EQUILIBRIUM

We shall model the assembly of capsids using the appro-
priately modified classical nucleation theory already devel-
oped in the context of viruses in Refs. �22,23�. Below, we
briefly summarize the main features of the model of capsid
nucleation when there is only a single path toward the as-
sembled capsid. The density of the protein subunits in the
solution is �=N /V, where N is the total number of subunits
and V is the volume of the solution. In thermodynamical
equilibrium, there are in general finite numbers of protein
clusters �Nj� consisting of j units where j=1 represents the
isolated subunits and j=q the assembled capsids. The corre-
sponding densities are denoted by � j �� j =Nj /V�, and �1 in
particular is the density of the isolated subunits �monomers�.
For low protein concentrations, i.e., when ���1, the free-
energy functional can be written �up to an additive constant
that does not depend on Nj� as

�F = �
j=1

q

�Nj ln�� j�� − Nj + �j�gjNj� , �4�

where � is reference volume, interpreted as the free volume
or cell volume in our approach—it should be thus of the
order of magnitude that is characteristic for the water mol-
ecule. Although Eq. �4� was used with success in Ref. �23�,
its derivation and, especially, interpretation are by no means
trivial. Perhaps the most troublesome of these problems is
related to the determination of the exact value of the refer-
ence volume, �. This is an old problem in cell models of the
solutions that arises in part from the coarse grained descrip-
tion �“integration”� of the solvent degrees of freedom. The
characteristic scale is thus related to the mean volume of the
solvent molecule. For details, see Ref. �24�. The exact value
of � shall in fact not be needed for our purposes.

The first two terms in the sum in Eq. �4� represent the
entropy of j clusters, while the second term represents their
binding free energy. The mean binding free energy per pro-
tein subunit is denoted by �gj, where the overline empha-
sizes the fact that this quantity is assumed to be averaged
over all subunits in the cluster �since the total binding free

energy of the cluster is written simply as j�gj, �gj �0�. The
microscopic interpretation of this quantity is quite complex
and includes additional averaging of protein-protein interac-
tions over the cell volume.

Requiring that F be minimal in the equilibrium produces
the set of equations that must be satisfied by the densities of
protein clusters,

� j� = exp�− j���gj + 	��, j = 1, . . . ,q , �5�

where 	 is the Largange multiplier associated with the re-
quirement of conservation of the total number of subunits,

� = �
j=1

q

j� j . �6�

Taking the reference state to be that of a single subunit in the
solution ��g1=0� allows us to write the equations for equi-
librium densities as

� j� = ��1�� jexp�− j��gj�, j = 2, . . . ,q , �7�

which should again be solved on the hyperplane defined by
the constraint in Eq. �6�.

It is of some interest to present an alternative derivation of
Eq. �7� that is quite similar to the standard theory of micel-
lization �or polymerization� �25�. The system of dissolved
proteins can be viewed as a mixture of phases of differently
sized clusters. In equilibrium, the chemical potential per par-
ticle �protein� must be the same in all phases, otherwise the
rearrangement will take place. Thus,

	 = 	1
0 + kBT ln�N1/M�

= 	2
0 +

kBT

2
ln�N2/M�

= 	3
0 +

kBT

3
ln�N3/M� = ¯ , �8�

where factors 1/2,1/3,… take into account the fact that the
chemical potential is to be calculated per protein. Quantities
	1

0, 	2
0 , ... represent the mean interaction free energy per pro-

tein. Equations �8� can also be written as

Nj

M
= 	N1

M

 j

exp�−
j	 j

0

kBT
� , �9�

which is again subject to constraint in Eq. �6�. These equa-
tions are the same as Eq. �7� presuming the identification of
	 j

0 with �gj.
One can proceed and solve either Eqs. �5� and �6� �with

q+1 unknowns� or Eqs. �7� and �6� �with q unknowns�. This
has already been done in Ref. �26� where it has been dem-
onstrated that the probability of occurrence of intermediate
protein clusters �unfinished capsids with j=2, . . . ,q−1� in
equilibrium is quite small. However, in order to solve the
equations for the densities of different clusters in equilib-
rium, one needs to appropriately model the dependence of
the mean binding free energy, �gj, on the number of subunits
in a cluster, j. A simple and appealing procedure has been
detailed in Ref. �23�. It was assumed there that each j cluster
is a portion of a sphere of fixed radius R that misses a spheri-

ANTONIO ŠIBER AND ANTONIO MAJDANDŽIĆ PHYSICAL REVIEW E 80, 021910 �2009�

021910-2



cal cap whose area depends of the deviation of j from q, i.e.,
the number of subunits required by a particular cluster to
close its spherical surface. Assuming that the interaction en-
ergies are short ranged so that they can be ascribed to subunit
contacts, the binding free energy of a particular cluster can
be written in terms of the free energies per subunit that is
characteristic of a completed capsid, �gq, and the line ten-
sion energy that reflects that fact that the subunits on the rim
of the uncompleted sphere are differently coordinated from
the subunits in a complete capsid. In particular, one easily
finds that the number of subunits on a rim of a cluster with j
subunits is given by

nj
rim 
 �4
�j�1 −

j

q
� . �10�

Assuming that the binding energy per subunit on a rim is a
certain fraction of the binding energy per subunit in the com-
plete capsid, one obtains that

�gj =
�gq

j
�j − nj

rim�1 − f�� , �11�

where f is of the order of 0.5 and can be thought of as
accounting for the reduced coordination of the subunits on a
rim. It is convenient to choose f as

f = 1 −
1

2�
�1 − q−1�
�12�

since this produces �g1=0 �when q�1, f approaches a value
of 0.718 which means that the subunits on a rim lose about a
third of their neighbors�. It will turn out that the details of
energetics of the unfinished capsids are not of utmost impor-
tance, since it will be shown �in agreement with Ref. �26��
that in equilibrium only the subunits �j=1� and the com-
pleted capsids �j=q� are present in non-negligible amounts.
A note on the assumption that the total energy can be ap-
proximately written as the sum of energy in protein contacts
is in order here. The hydrophobic component of the protein-
protein interaction is local and proportional to the area buried
in protein contacts �22,25� so the assumption of its locality
seems to be in order. The electrostatic component of interac-
tion is in general long ranged, but it has been shown in Ref.
�18� that it is strongly screened for viruses in physiological
salt concentration so that it is proportional to the area of a
capsid, i.e., to the number of subunits. The interplay of hy-
drophobic attraction and electrostatic repulsion has been
demonstrated to dominate the energetics of capsid assembly
�22�, which vindicates the usage of Eq. �11�.

We now proceed to construct the model that provides the
equilibrium densities of various subunit clusters when there
are two nucleation pathways—one leading to the capsid of
the same radius and number of subunits �q1� as in the func-
tional virus and the other to the aberrant capsid consisting of
q2 subunits �Fig. 1�. The two pathways separate at a certain
cluster size �k−1� which is a precursor both to the formation
of regular and aberrant capsids. We shall assume that k=2,
i.e., that there are already two types of clusters containing
only two subunits. In our formalism, these differ by the con-
tact angle. We denote by � j,1 �� j,2� the density of regular

�aberrant� j clusters. The binding free energies per subunit
pertaining to protein cluster with l subunits on the regular
pathway �l=1, . . . ,q1� are denoted by �gl,1. The analogous
quantities for aberrant clusters are denoted by �gj,2 �j
=2, . . . ,q2—note that we have positioned isolated subunits
on the regular pathway which is merely a question of choice
that does not influence the results�.

We shall extend the model of assembly presented in Ref.
�23� so to account for an alternative assembly pathway. The
free-energy functional is now

�F = �
j=1

q1

�Nj,1 ln�� j,1�� − Nj,1 + �j�gj,1Nj,1�

+ �
j=k

q2

�Nj,2 ln�� j,2�� − Nj,2 + �j�gj,2Nj,2� , �13�

where Nj,1 �Nj,2� is number of regular �aberrant� clusters of
size j and � j,1 �� j,2� is their density. This leads to the follow-
ing set of equations for the densities of protein clusters in
equilibrium:

� j,1� = ��1�� jexp�− j��gj,1�, j = 2, . . . ,q1

� j,2� = ��1�� jexp�− j��gj,2�, j = k, . . . ,q2

� = �
j=1

q1

j� j,1 + �
j=k

q2

j� j,2. �14�

To solve these equations, a model for the binding free ener-
gies of aberrant clusters is required. We assume that the only
difference in energetics is due to an unfavorable curvature of
the aberrant capsids. For complete spherical capsids, Eq. �3�
simplifies to

Eb

4
R2 =
1

A

Eb

q
=

��c − c0�2

2
, �15�

where R is the capsid radius, c=1 /R, and A is the mean area
per protein subunit in a completed capsid consisting of q
subunits. Note that Eb /q is the excess bending energy per
subunit. Since the incomplete clusters are assumed to be
spheres with missing caps, the same relation holds also for

FIG. 1. �Color online� Schematic illustration of the pathways
leading to �1� regular and �2� aberrant capsids. The quantities rel-
evant for the model of assembly are denoted �see text�.
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the excess bending energy per subunit in an incomplete clus-
ter �the same holds for all portions of the sphere that have the
same area�. For the binding free energies per subunit we can
thus write

�gi,1 =
�gq1,1

i
�i − ni,1

rim�1 − f1�� ,

�gj,2 =
�gq1,1

j
�j − nj,2

rim�1 − f2�� + A
��c − c0�2

2
, �16�

where i=1, . . . ,q1, j=2, . . . ,q2, and c �c0� now stands for the
spontaneous mean curvature of the aberrant �regular� capsid.
The f factors are given as in Eq. �12� with q replaced by q1
and q2 for the regular and aberrant subunits, respectively.
The number of subunits on the rim is given as

ni,1
rim = �4
�i�1 −

i

q1
� ,

nj,2
rim = �4
�j�1 −

j

q2
� . �17�

Note again that our modeling of the energetics of capsids
reflects out assumption that the sole difference in binding
energy in complete aberrant and regular capsids comes from
the bending energy. Note that the number of subunit contacts
does not depend on the capsid T number—the total number
of contacts is 90T, which means that there are 3/2 contacts
per subunit on the average, irrespective of the capsid T num-
ber.

The model now contains only two, in general, unknown
quantities: the binding free energy per subunit in a complete
capsid ��gq1,1� and the bending rigidity ���. The density of
subunits in a completely disassembled state ��� is a param-
eter of the model, while A, q1, and q2 can be determined
from the structure and size of the regular and aberrant ver-
sion of the virus in question.

III. APPLICATION OF THE MODEL TO THE ASSEMBLY
OF HEPATITIS B CAPSIDS

A. Full model of the assembly

We shall now apply the model elaborated in the previous
section to the case of capsid of HBV. It was shown in Ref.
�1� that the HBV proteins lacking 34 amino acids at the C
terminal of the full-length capsid protein �183 amino acids�
assemble in two different empty capsids—one that has 120
protein dimers, Cp1492, �T= “4” structure, q1=120� and the
other, smaller, composed of 90 dimers �T=3, q2=90�. The
percentage of T=3 capsids was found to be about 5%. When
the full-length capsid proteins were further truncated, the
percentage of T=3 capsids grew, reaching �85% for 140-
residue protein. An extensive study regarding thermodynam-
ics of assembly of empty capsids composed of Cp1492 sub-
units was performed in Ref. �2�. This study enables us to
extract the parameters relevant to our modeling. In particular,
it was found that the Cp1492-Cp1492 contact energy in com-

plete T= “4” capsids is on the order of 150 meV �5.8kBT�,
depending both on temperature and salt concentration �2�.
This allows us to fix one of the parameters of our model and
here we choose a value that corresponds to the one derived in
Ref. �1� for viruses in 0.3 M NaCl solutions at 25 °C. This
yields �gq1,1=322 meV �12.5kBT; 240 contacts were as-
sumed in Ref. �1� for a capsid consisting of 120 subunits�. A
word of caution is in order here since the subunit of hepatitis
B virus is a protein dimer—in our terminology dimeric
Cp149 protein is to be treated as the basic subunit of the
assembly, i.e., as a monomeric cluster �dimer in our termi-
nology thus contains two Cp149 dimers, i.e., four Cp149
proteins in total�.

The bending rigidity of virus capsids has been considered
before and depending on a model used and the virus studied,
different �but not too different� values have been suggested.
For example, in Ref. �27�, a value of �= �10–15�kBT has
been proposed, whereas value of �=40kBT has been pro-
posed as the upper limit for bending rigidity of HK97 bacte-
riophage. In the following, we shall treat � as unknown pa-
rameter and examine how it influences the presence of T
=3 capsids in the equilibrium. This information is shown in
Fig. 2. In these calculations, we have taken A=22.5 nm2

which was calculated from the mean radius of T= “4” capsid
�14.7 nm�, and the preferred curvature was set to be equal to
inverse mean radius of the capsid �c0=0.068 nm−1�. The cur-
vature of the T=3 capsid is c=c0

�4 /�3=0.0785 nm−1. Rela-
tive numbers of Cp1492 subunits that remain as “mono-
mers,” and assemble in regular and aberrant capsids are
shown as functions of the appropriately scaled total volume
ratio of dissolved subunits.

A feature of our results that is also present in the previous
studies �23,26� is appearance of �pseudo�critical concentra-
tion of the protein subunits. Below the critical concentration,
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FIG. 2. �Color online� Relative number of Cp1492 subunits as
“monomers” �N1 /N—solid red line�, assembled in regular capsids
�q1Nq1

/N—dashed green line�, and in aberrant capsids
�q2Nq2

/N—dotted blue line�.
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���3.5�10−6 in our calculations, the assembly does not
take place and most of the subunits remain as monomers in
the solution. It is not quite easy to observe that the sum of
relative amounts of subunits in monomers, regular, and ab-
errant capsids is not equal to one. This is because the calcu-
lations predict that in equilibrium a very small percentage of
subunits assembles in other forms, i.e., clusters or unfinished
capsids. This is shown in Fig. 3 where one can clearly see
nonvanishing concentrations of clusters containing two and
three Cp1492 subunits, but note that the total relative amount
of dimers �both regular and aberrant� is smaller than 1%. The
concentrations of all the j clusters are nonvanishing but their
numerical values are extremely small.

We shall now briefly pause to interpret the obtained re-
sults. In the thermodynamical equilibrium, the system settles
in a minimum of free energy. For finite temperatures, this is
a state of compromise between the internal energy being as
low as possible and entropy being as high as possible. This
immediately suggests that aberrant capsids, larger than regu-
lar ones, are unfavorable both in terms of energy and entropy
so they should not exist in equilibrium. Indeed, that is what
we have verified in our numerical calculations by performing
simulations with q2
q1 �not shown; the amount of complete
aberrant capsids larger than regular ones is vanishingly small
even for �=0�—this argument, of course, heavily depends
on the assumption that the curvature of the regular capsids is
the same as the spontaneous curvature. On the other hand,
aberrant capsids which are smaller than regular ones, al-
though unfavorable in terms of energy �because of the bend-
ing contribution to the capsid energy�, are favorable in terms
of entropy �due to the fact that they are smaller, the kinetic or
mixing part of the translational entropy is favorable�. There
is thus a subtle interplay between the energetics of the capsid

and the entropy of their ensemble that is tuned by the value
of � which determines the probability of occurrence of aber-
rant capsids, as is clear from Fig. 2.

The scarcity of the intermediate structures in the equilib-
rium a posteriori corroborates the usage of our simple model
which takes into account only two pathways. One could con-
struct a mathematical procedure so to keep track of different
pathways going to intermediates of different symmetry, i.e.,
one could account for the fact that there may be several
geometrical realization of an intermediate cluster of size j.
This has been done in Ref. �28�. However, an extremely
small probability of occurrence of intermediates that we ob-
tain in our approach suggests that such refined approach
would not change the results significantly. For example, for
the case shown in Fig. 3, the relative amount of proteins in
j=15 regular clusters is 3.4�10−15 and in j=119 clusters
�i.e., regular capsids missing one subunit� only 8.9�10−7. In
fact, an excellent agreement with our numerical data could
be obtained by immediately dropping all the intermediate
clusters from the free energy, keeping only the monomers
and the two types of capsids. This is a model that has been
applied for regular capsids only in Ref. �23�. We now specify
it for the case of our interest.

B. Minimal numerical model for the assembly

Setting the concentrations of intermediate clusters in equi-
librium to zero, one obtains a single transcendental equation
that connects the relevant quantities for the assembly,

�� = �1� + q1��1��q1exp�− q1��gq1,1�

+ q2��1��q2exp�− q2��gq2,2� , �18�

where �1 is, as before, the density of monomers in the equi-
librium. Note that the modeling of the energetics of interme-
diate clusters is not needed now, and only the spontaneous
curvature—bending energy term persists as the �unknown�
parameter of the model �in addition to the binding energy per
protein subunit�. The number of parameters is thus formally
the same as in the full model, but the details of the energetics
of the intermediates that had to be accounted for by the full
model �such as parameters f and nj

rim� are of no relevance
now. Unfortunately, Eq. �18� is still not amenable to analytic
solutions and one again has to resort to numerical procedures
in order to solve it. Nevertheless, its appeal lies in its sim-
plicity and the small number of parameters that figure in it.
Its solutions for the same sets of parameters used to produce
Fig. 2 is shown in Fig. 4. Note that the numerical results are
almost indistinguishable from those obtained assuming a fi-
nite concentration of intermediates in the thermodynamical
equilibrium �full model�. The clearest differences can in fact
be seen for protein concentrations smaller from the critical
one. For the full assembly model, in this region one obtains
a slight �but visible� drop in the number of isolated protein
subunits �monomers� due to the fact that small but not en-
tirely negligible number of dimers form �see Fig. 3�. Since
dimers and all larger clusters are not included in the minimal
model, the number of monomers remains practically one �1�
for subunit concentrations smaller than the critical one.

FIG. 3. �Color online� Relative number of Cp1492 subunits in
variously sized regular and aberrant clusters. Note that the single
subunits belong to the regular pathway as explained in the text. The
volume ratio chosen in this calculation is ��=10−5, and the bending
rigidity is �=30kBT.
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IV. DISCUSSION

It is interesting to note that the contribution of bending to
the total binding energy of the protein contact is quite small.
For �=60kBT, this contribution is only 0.07kBT per contact
in the aberrant T=3 capsid, which is only 0.6% of the bind-
ing energy per protein subunit. Somewhat surprisingly, quite
small contribution to the binding energy of the protein con-
tacts is sufficient to effectively suppress the appearance of
smaller aberrant structures in the equilibrium.

One could ask whether the change in pH and salinity of
the solution influences the magnitude of the bending rigidity,
�. As � is a coarse-grained parameter stemming from the
microscopic details of protein-protein interactions, which are
influenced by pH and salinity, the affirmative answer to this
question seems to be in order. This suggests that the appear-
ance of aberrant structures may be stimulated by changes in
pH and salinity �ionic strength�. Indeed, it has been found
that the dominant structures observed in the solution of viral
proteins strongly depend on these parameters �see, e.g., a
recent study in Ref. �29��. One should, however, keep in
mind that pH value and ionic strength influence directly the
electrostatic interaction between the protein subunits which
may in part be responsible for the bending rigidity of the
capsid but may also contribute to the much larger angle-
independent binding energy of the protein contacts.

The aberrant structures may not always easily fit in the
Caspar-Klug classification scheme. Cylindrical assemblies,
multishelled assemblies possibly consisting of concentric
shells of different T numbers, hexagonal protein sheets, and
isolated subunits are often found in the phase diagram of the
virus assembly. Conical structures of different angles are

common in the assembly of HIV proteins without a genome
�10�. The part of the virus assembly phase diagram that con-
sists of isolated subunits is most easily explained. Namely,
the changes in pH and ionic strength may decrease the inter-
action between the protein subunits so to drive the solution
below the density threshold needed for the onset of assembly.
This has also been experimentally confirmed in the experi-
ments by Ceres and Zlotnick �2�. In addition to irregular and
non-Caspar-Klug structures, aberrant structures that can be
classified within the Caspar-Klug framework are also typical
in the assembly of virus capsids and have been found, in
addition to hepatitis B virus, in cowpea chlorotic mottle virus
�15� �regular: T=3, aberrant: T= “2”�, P22 bacteriophage �6�
�regular: T=7, aberrant: T=4�, P2 bacteriophage �13� �regu-
lar: T=7, aberrant: T=4�, and brome mosaic virus in the
presence of RNA �regular: T=3, aberrant: T= “2”�. The scar-
city of these structures in vivo conditions may point to effec-
tive bending rigidity in such conditions being above thresh-
old for the appearance of aberrant structures. Note again here
that the aberrant structures are always smaller from the regu-
lar ones which can be easily explained using the thermody-
namical arguments we presented earlier.

Scaffolding proteins are known to mediate the assembly
of capsids in some viruses, bacteriophages in particular �13�.
In the absence of these proteins, the capsid proteins are
known to assemble in aberrant structures with larger prob-
ability. A nice example can be found in bacteriophage P22
procapsid whose proteins in the absence of scaffolding pro-
teins assemble in T=7 �regular� and T=4 capsids �6�. Note
again that the aberrant capsid is smaller from the regular one.
It is of interest to note here that the scaffolding proteins may
effectively act to finely tune the bending rigidity of the
capsid protein assemblies so that the regular structure is as-
sembled with large certainty. Special mechanisms to guaran-
tee the formation of the regular capsids may be more crucial
for the formation of large T number capsids. Namely, in this
case, there is always a possibility to form capsids of smaller
T numbers which are entropically favored so specific mo-
lecular machinery may be needed to suppress these effects.
Larger viruses can contain longer genomes so that they can
code for special chaperoning proteins that may be required in
the process of correct assembly of large structures. A spec-
tacular effect related to aberration of the virus capsids can be
found in bacteriophage P2 and the assembly parasite P4.
Namely, when the cell infected with P2 is superinfected with
P4, the P2 capsid proteins do not assemble in T=7 structure,
but only in smaller T=4 structure which is too small to host
the P2 genome, but large enough to host the P4 genome
�since P4 genome does not contain the code for capsid pro-
teins�. Again, the interplay of many proteins involved in the
assembly of these viruses may act to effectively change the
spontaneous curvature of the protein assemblies thus forming
entropically preferred smaller capsids.

An important question that has not been answered by our
analysis is the origin of the spontaneous curvature term and
the bending rigidity. A particularly appealing microscopic in-
terpretation of these parameters concerns the role of attrac-
tive hydrophobic interactions and their dependence on the
dihedral angle of protein contacts. Namely, one could argue
that the buried protein surface is the largest for the capsid of
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FIG. 4. �Color online� Relative number of Cp1492 subunits as
monomers �N1 /N—red plus symbols�, assembled in regular capsids
�q1Nq1

/N—green x symbols�, and in aberrant capsids
�q2Nq2

/N—blue stars�. The results were obtained by solving the
minimal numerical model for the assembly �Eq. �18��.
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regular T number and that it becomes smaller for larger and
smaller aberrant capsids. This would then translate in effec-
tive weakening of the protein-protein interactions that may
be described using the coarse-grained concept of spontane-
ous curvature. It is interesting to note in this context that the
proportion of aberrant HepB capsids could be varied in ex-
periments �1� by truncating the C terminus of the capsid
protein. Within our theoretical framework, this procedure
would result in the change in bending rigidity of the protein
assemblies and/or change in the spontaneous curvature. In
this way we could explain the appearance of T=3 structures
as the dominant ones for sufficiently truncated capsid pro-
teins.

V. CONCLUSIONS

We have assumed that there is a spontaneous curvature of
the virus capsids, resulting from the preferred angle of con-
tacts between their protein subunits. From a numerical analy-
sis of a relatively simple model of the self-assembly, we have
demonstrated that the bending energy constant of the virus
capsids acts as a kind of a monodispersity parameter, allow-
ing or blocking the appearance of aberrant capsids in the

thermodynamical equilibrium. We have found that there is a
threshold magnitude of the bending rigidity that is needed in
order to suppress the appearance of aberrant capsids that
have T numbers smaller than the regular ones. For the case
of hepatitis B virus, we find that the threshold value of � is
of the order of 60kBT—all the values of � larger than this one
will result in assemblies that are more monodisperse than
those observed experimentally �one needs to keep in mind,
however, that the experimental studies were done with the
truncated versions of HepB capsid proteins�. To suppress the
appearance of aberrant capsids with T numbers larger than
the regular ones, the bending rigidity is not essential as mix-
ing entropy favors the appearance of smaller subunit assem-
blies.

In the end, it is pleasing to see that the estimates of bend-
ing rigidity obtained thus far for different viruses and using
quite different methods �27,30� all fall in the range of several
tens of kBTs.
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