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Small organisms �e.g., bacteria� and artificial microswimmers move due to a combination of active swim-
ming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the
swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number.
Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equation, we derive
formulas for the orientation correlation time, the mean velocity and the mean-square displacement in three
space dimensions. The validity of the analytical results is illustrated through numerical simulations. Tuning the
swimmer parameters to values that are typical of bacteria, we find three characteristic regimes: �i� Brownian
motion at small times, �ii� quasiballistic behavior at intermediate time scales, and �iii� quasidiffusive behavior
at large times due to noise-induced rotation. Our analytical results can be useful for a better quantitative
understanding of optimal foraging strategies in bacterial systems, and they can help to construct more efficient
artificial microswimmers in fluctuating fluids.
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I. INTRODUCTION

Biological �1–3� and artificial microswimmers �1,4–7�
move through a fluid by performing a series of self-induced
shape changes �8,9�. Handicapped by their tiny size �typi-
cally a few micrometers for a bacterium �10��, they are
forced to swim at very low Reynolds numbers R�1
�11–13�. Hence, in order to account for the resulting lack of
inertia, the swimming strategies of microorganisms are very
different from those operative at human length scales. More
precisely, since the fluid flow is reversible at low Reynolds
number, locomotion in this regime is possible only if the
swimming stroke violates certain time-reversal symmetries
�8,13–16�.

Stimulated by experimental advances �1–4,17,18�, in re-
cent years considerable progress was achieved in understand-
ing the dynamics of deterministic microswimmers models
�19–28�. Yet, comparatively little is known quantitatively
about the complex interplay between active self-motion, hy-
drodynamic interactions, and thermal fluctuations in the sur-
rounding fluid �29–32�. Very recently, first steps toward clari-
fying these issues were made by Howse et al. �6�, who
measured in their experiments the mean square displacement
of chemically driven colloidal spheres, and by Lobaskin et
al. �33�, who studied the Brownian motion of a triangular
microswimmer at intermediate Reynolds numbers R�1 by
combining Lattice Boltzmann simulations with a Langevin
description of the swimmer in phase space. In the present
paper, we would like to complement these investigations by
concentrating on the diffusive properties of mechanically
driven microswimmers at low Reynolds numbers R�1.
This limit case is most relevant for bacterial motions and
allows one to treat diffusive effects within configuration
space.

Specifically, we will focus on the following questions:
how does the size of the swimmer affect its effective mobil-

ity in a noisy fluid? Which details govern the transition from
quasiballistic self-motion to the diffusive regime? To shed
light on these issues, we shall consider simplified quasilinear
p-sphere swimmers similar to those proposed by Najafi and
Golestanian �20�. More precisely, we will assume that inter-
nal forces, which generate the swimming strokes, are medi-
ated by interaction potentials. This approach permits us to
treat thermal diffusion effects within the Kirkwood-
Smoluchowski scheme, originally developed to describe the
diffusion of polymers in a fluctuating medium �34–37�.

Starting from the Kirkwood-Smoluchowski equation
�KSE� ensures that hydrodynamic and stochastic forces are
consistently coupled on the level of the Fokker-Planck de-
scription in configuration space �34�. Moreover, as discussed
in Sec. III, the corresponding Langevin equation can be used
to derive closed analytical formulas for the orientation cor-
relation time, the mean velocity and the mean square dis-
placement of a single swimmer in three space dimensions.
Although the analytical and numerical results in this paper
refer to the case of a quasilinear three-sphere swimmer
�p=3�, the formalism can be easily generalized to more com-
plex models �e.g., flexible p-sphere swimmer chains�. There-
fore, this approach can be generally very useful for studying
Brownian motion effects and hydrodynamic interactions in
active biological systems at low Reynolds numbers. Further-
more, since it is straightforward to implement an external
confinement �e.g., tweezer or lattice potentials�, the
Kirkwood-Smoluchowski scheme can help to construct and
optimize arrays �38� of, e.g., micropumps that work effi-
ciently on those scales where thermal fluctuations in fluid
become non-neglible.

Thus, purpose and content of the present paper can be
summarized as follows: first, we will discuss a convenient
formalism that allows to simulate active microswimming by
means of Langevin equations and interaction potentials �Sec.
II�. Subsequently, we derive analytic results for the diffusion
of a single swimmer �Sec. III�, thereby extending recent
work of Golestanian and Ajdari �25� on deterministic swim-
mers. A thorough analysis of the single swimmer case is
instructive for a number of reasons: �i� Exact analytical re-*jorn.dunkel@physics.ox.ac.uk
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sults provide a useful test of numerical simulations, cf. Sec.
IV. �ii� Recently, Leoni et al. �4� were able to experimentally
realize an individual three-sphere system similar to those
considered here. �iii� Understanding the noise-induced be-
havior of a single swimmer is a prerequisite for understand-
ing complex behavior and pattern formation in, e.g., self-
assembling bacterial systems �10�. �iv� Dynamical
calculations as those presented below may provide a “micro-
scopic” justification for purely probabilistic models of bacte-
rial motility �39�. �v� Depending on the swimmer size, we
find a rather sharp transition from purely Brownian to qua-
siballistic motions. From a �bio� physical perspective, it is
remarkable that the transition occurs when the three-sphere
swimmer model is tuned to bacterial parameters. Hence,
loosely speaking, exploiting the interplay between Brownian
motion and active swimming may indeed represent a useful
strategy �not only� in nature.

II. GENERAL THEORETICAL BACKGROUND

We consider an ensemble of N microswimmers, each con-
sisting of p spheres. Neglecting inertia, the state of the sys-
tem at time t is described by a set of coordinates �X��
= �X��i��t��, where �=1, . . . , pN is a sphere index, and i
=1,2 ,3 labels the space dimension. Our subsequent analysis
rests on the assumption that the stochastic dynamics of the
swimmers in the fluid can be described, at least approxi-
mately, by the KSE �34–37�, representing evolution for the
N-particle probability density f�t , �x��i���. We begin by recall-
ing how the KSE can be translated into a Langevin equation
for numerical simulations �36,37�. Details of the swimming
mechanism will be discussed in Sec. II B.

A. Kirkwood-Smoluchowski and Langevin equation

Considering a fluid of viscosity � and temperature T, the
KSE reads �34�

�t f = ���i�H��i���j������j�U�f + kBT���j�f� . �1�

Here, kB denotes the Boltzmann constant, ���i�ª� /�x��i�, and
a sum is performed over equal double indices ��i�. The �ef-
fective �34�� potential U governs all the internal and external
swimmer interactions �see examples in Sec. II B�, apart from
the hydrodynamic interactions mediated by the fluid. The
latter are included in the tensor H. Considering spherical
particles of radius a�, the “diagonal” components of H are
given by

H��i���j� =
�ij

��

, �� = 6��a�, �2a�

where �ij denotes the Kronecker symbol, and �� is the
Stokes friction coefficient. The hydrodynamic interactions
between different spheres are encoded in the “off-diagonal”
components H��i���j�, ���. If these hydrodynamic interac-
tions are neglected, corresponding to the �infinitely dilute�
limit case H��i���j�=0, Eq. �1� reduces to an “ordinary”
Smoluchowski equation with a diffusion constant D�

=kBT /�� for each sphere.

Here, we are interested in the effects of hydrodynamic
interactions, corresponding to H��i���j��0. A simple approxi-
mation for H��i���j�, obtained by solving the Stokes equation
for a pointlike source, is the Oseen tensor �40,41�

H��i���j�
O =

1

8��r��
��ij +

r��ir��j

r��
2 	, � � � , �2b�

where r��iªx�i−x�i and r��ª 
x�−x�
. However, the asso-
ciated diffusion tensor DO

ªkBTHO is not necessarily posi-
tive definite, leading to unphysical behavior if sphere sepa-
rations become too small �42,43�. In our numerical
simulations we shall therefore use the improved approxima-
tion

H��i���j�
M = H��i���j�

O +
�a�

2 + a�
2�

24��r��
3 ��ij − 3

r��ir��j

r��
2 	 , �2c�

which was derived by Mazur �44�. The additional term on
the right-hand side of Eq. �2c� can be understood as the
next-order correction in a radius-over-distance expansion of
the mobility tensor for two spheres �45�. For spheres of equal
size �a�=a��, the tensor H=HM defined by Eqs. �2a� and
�2c�, reduces to the Rotne-Prager-Yamakawa tensor �43,46�.
While Eq. �2c� gives a more accurate description than Eq.
�2b� at moderate densities, both expressions become invalid
if the distance between spheres becomes very small. At very
high densities, when sphere-sphere collisions dominate the
dynamics, near-field hydrodynamics and lubrication effects
must be modeled more carefully �47�. In the present paper,
however, we focus on systems that can be described by Eq.
�2c�.

Unlike the Oseen tensor HO from Eq. �2b�, the tensor
H=HM is positive definite for r���a�+a� and thus can be
Cholesky decomposed in the form

H��i���j� =
1

2
C��i���k�C��j���k�. �3�

The decomposition Eq. �3� is crucial if one wishes to find a
Langevin representation for the stochastic process �X��i��t��
described by the KSE Eq. �1�: upon noting that �36,48�

���i�H��i���j� � 0 �4�

holds �for both HO and HM�, one finds that the KSE Eq. �1�
corresponds to the following Ito-Langevin equation �49�

dX��i��t� = H��i���j�F��j�dt + �kBT�1/2C��i���k�dB��k��t� . �5�

Here, �F��j��ª �−���j�U� comprises the deterministic forces
acting on the spheres, and �B��k��t�� is a collection of stan-
dard Wiener processes; i.e., the increments dB��k��t�ªB�k
�t+dt�−B��k��t� are independent GAUSSIAN random numbers
with distribution

P�dB��k��t� � �u,u + du�� =
e−u2/�2dt�

�2�dt�1/2du , �6�

and, according to the Ito scheme �49�, the coefficients
C��i���k� are to be evaluated at time t. For completeness, we
still note that, upon formally dividing by dt, the stochastic
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differential Eq. �5� can be rewritten as a “standard” Langevin
equation

Ẋ��i��t� = H��i���j�F��j� + �kBT�1/2C��i���k�	��k��t� , �7a�

where Ẋ��i��t�ªdX��i��t� /dt denotes the velocity, and
	��k��t�ªdB��k��t� /dt represents GAUSSIAN white noise, i.e.,

�	��i��t�
 = 0, �7b�

�	��i��t�	��j��t��
 = ����ij��t − t�� . �7c�

B. Swimming mechanism

Having discussed how to implement fluctuations, we still
need to specify the swimming mechanism. To this end, con-
sider two spheres � and � that form the leg of a swimmer.
We assume that the internal forces between beads � and �,
which generate the swimming stroke, can be derived from a
time-dependent potential of the form

Uleg�t,d��� =
k0

2
�d�� − �� + 
�� sin��t + ������2, �8a�

with d���t�ª 
X��t�−X��t�
 denoting the distance between
the spheres, 
�� the approximate amplitude of the stroke, and
��a�+a�+
�� the mean length of the leg. The potential
Uleg gives rise to two characteristic time scales: the driving
period T�ª2� /� and, for a sphere of mass M�, the oscilla-
tor period T0ª2� /�k0 /M�. Since we are interested in the
overdamped regime, these time scales must be long com-
pared to the characteristic damping time T�ªM� /��. More
precisely, we have to impose

T� � T0 � T� �8b�

corresponding to slow driving and fast relaxation. The con-
straint Eq. �8b� ensures that our swimmers behave similar to
a shape-driven swimmer �25�.

In the remainder, we shall focus on three-sphere swim-
mers, representing the smallest self-swimming system within
our approach �two-sphere swimmers can achieve active lo-
comotion only due to collective effects �16��. We consider
three spheres �� ,� ,�� forming a swimmer with central
sphere �, e.g., in the case of a single swimmer �� ,� ,��
= �1,2 ,3� with middle sphere �=2. The legs are given by
d��ªX�−X� and d��ªX�−X�, and we still define normal-
ized connectors

n�� ª d��/d��, n�� ª d��/d��.

In order to ensure that the swimmer moves quasilinearly
�25�, we introduce a stiffness potential

Ulin =
K

2
�2�n�� · n�� − 1�2, �9�

which, for K
k0, penalizes bending. The resulting force
components F��i�

lin
ª−���i�Ulin read explicitly

F�k
lin = −

Q

d��

��ik − n��in��k�n��i, �10a�

F�k
lin =

Q

d��

��ik − n��in��k�n��i, �10b�

F�k
lin = − �F�k

lin + F�k
lin� �10c�

where n��iªd��i /d��, and

Q ª K�2�n�� · n�� − 1� . �10d�

Equations �8� and �9� provide a convenient way of modeling
and simulating rigid or flexible p-sphere swimmers by means
of potentials. We note that, by construction, the sum over the
internal swimmer forces is zero. The total potential U ap-
pearing in the KSE Eq. �1� is obtained by summing over all
effective interaction potentials Eqs. �8� and �9�.

III. ANALYTICAL RESULTS

We next summarize formulae for the correlation time of
the orientation vector, the mean swimmer velocity and the
spatial mean square displacement of an isolated three-sphere
swimmer. These analytical results can be obtained from the
Langevin Eq. �5� by using the Oseen approximation H
�HO, and their explicit derivation is discussed in the Ap-
pendix.

A swimmer’s motion can be characterized by its geomet-
ric center

R�t� ª
1

3
�X1 + X2 + X3� �11a�

and the orientation vector

N�t� ª
X3 − X1


X3 − X1

. �11b�

We are interested in determining the mean square displace-
ment

DR�t� ª ��R�t� − R�0��2
 , �12a�

and the correlation function

DN�t� ª �N�t�N�0�
 , �12b�

where the average is taken over fluctuations in the fluid �i.e.,
over all realizations of the Wiener process�.

It is convenient to discuss DN�t� first. For a deterministic
initial state N�0�= �Nk�0��, we can write DN�t�
= �Nk�t�
Nk�0� with a summation over equal indices. To ob-
tain an analytical formula for �Nk�t�
, we assume that Eq.
�8b� holds true and that bending is neglible, K
k0. Then the
swimmer behaves like a stiff, shape-driven Najafi-
Golestanian �20� swimmer and we can approximate

d12 ª X2 − X1 � Nd12, �13a�

d23 ª X3 − X2 � Nd23, �13b�

d13 ª X3 − X1 � N�d12 + d23� , �13c�

where, cf. Eq. �8a�,
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d12 = � + 
12 sin��t + �12� , �13d�

d23 = � + 
23 sin��t + �23� . �13e�

Adopting the Oseen approximation H�HO, one can derive
from the Langevin Eq. �5� the following linear evolution
equation �see App. A1�

�Ṅk
 = −
kBT

2��d13
3 �2

3
�d13

a1
+

d13

a3
	 − 1��Nk
 , �14�

where �Ṅk
ª �dNk�t� /dt
. The 1 /a�-parts are contributions to
the rotation rate due to noise on the spheres, whereas the
1 /d13

3 contribution is a correction due to hydrodynamic inter-
actions. Equation �14� can be solved exactly. The solution
exhibits an exponentially decaying oscillatory behavior due
to the periodicity of the swimming stroke d13. However, for
�
max�
��� it suffices to approximate d13�2�, yielding an
exponential decay DN�t��exp�−t /�N� with orientation corre-
lation time

�N �� kBT
16���3�4

3
� �

a1
+

�

a3
	 − 1��−1

. �15�

The time parameter �N not only determines the temporal
correlation of the orientation vector, it also plays an impor-
tant role for the dynamics of the geometric center R�t�. As

shown in Appendix, the mean swimmer velocity �Ṙ�t�
 is
governed by the equation

�Ṙk
 =
A1

3
�F�1k�
 +

A3

3
�F�3k�
 , �16a�

where

�F�1k�
 = −
B3�ḋ12k
 + C�ḋ23k


B1B3 − C2 , �16b�

�F�3k�
 =
C�ḋ12k
 + B1�ḋ23k


B1B3 − C2 , �16c�

are the noise-averaged internal forces on the first and third
sphere �the force on the central sphere can be eliminated by
virtue of F�1k�+F�2k�+F�3k��0�, respectively, and

�ḋ12k
 = �Ṅk
d12 + �Nk
ḋ12, �16d�

�ḋ23k
 = �Ṅk
d23 + �Nk
ḋ23 �16e�

the mean change in the leg vectors due stochastic rotations
and swimming strokes, with abbreviations

A1 ª
1

�1
−

1

�2
+

1

4��
� 1

d13
−

1

d23
	 , �16f�

A3 ª
1

�3
−

1

�2
+

1

4��
� 1

d13
−

1

d12
	 , �16g�

B1 ª
1

�1
+

1

�2
−

1

2��d12
, �16h�

B3 ª
1

�2
+

1

�3
−

1

2��d23
, �16i�

C ª

1

�2
−

1

4��
� 1

d12
+

1

d23
−

1

d13
	 . �16j�

Since the quantities �Nk
, �Ṅk
, d��, and ḋ�� are known, Eqs.
�16� provide a closed analytical result for the mean velocity

�Ṙk
 of a shape-driven swimmer �within the Oseen approxi-
mation�. In particular, Eqs. �16� generalize the corresponding
velocity formulas for a deterministic swimmer, recently ob-
tained by Golestanian and Ajdari �25�, to the “noisy swim-
ming” regime.

For realistic swimmer parameters the orientation correla-
tion time �N is typically much larger than the driving period
T�=2� /�. In this case, the rather lengthy result Eq. �16� can
be considerably simplified �see last part of App. A2a for
details� to read

�Ṙ�t�
 = V�N�t�
 . �17a�

Here, V denotes the stroke-averaged velocity �i.e, over an
interval �t , t+T��� of the corresponding deterministic swim-
mer �25�. By using the approximation Eq. �17a� instead of
the exact results Eq. �16� one neglects mean velocity oscil-
lations on small time scales. For example, when considering
equal-sized beads with a�=a and �
max�a ,
���, then

V =
7

24
a��
12
23

�2 	sin �� , �17b�

where ��ª�12−�23 is the phase difference of the leg con-
tractions, and higher-order terms in a and 
�� are neglected.
Integrating Eq. �17� with �N�t�
�N�0�exp�−t /�N�, we obtain
for the position mean value of the swimmer the simple ap-
proximate result

�R�t�
 � R�0� + V�N�1 − exp�− t/�N��N�0�; �18�

i.e., in the asymptotic limit t→�,

�R���
 = R�0� + V�NN�0� . �19�

Finally, let us still consider the mean-square displacement
DR�t�ª ��R�t�−R�0��2
 for a stiff, shape-driven three-sphere
swimmer described by Eqs. �13�. As discussed in App. A2b,
by starting from the Langevin equation for R�t�, one can
show that DR�t� decomposes into the form

DR�t� = DR
p�t� + DR

a �t� , �20a�

where the first part

DR
p�t� =

1

9

kBT
��

� 1

a1
+

1

a2
+

1

a3
	t +

2

9

kBT
��

�
0

t

�ds� 1

d12
+

1

d23
+

1

d13
	 �20b�

comprises passive Brownian motion contributions due to
thermal diffusion of the spheres �first line� and hydrody-
namic Oseen interactions between them �second line�, while
the second part
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DR
a �t� � V2�

0

t

ds�
0

t

du�N�s�N�u�
 �20c�

is the contribution due to active self-swimming. Similar to
Eq. �17�, the expression Eq. �20c� is valid if the orientation
correlation time is much larger than the stroke period, �N

T�. Inserting the above result �N�t�N�s�
�exp�−t /�N� and
approximating d12=d23=d13 /2��, we obtain for the spatial
mean-square displacement

DR�t� �
1

9

kBT
��

� 1

a1
+

1

a2
+

1

a3
+

5

�
	t

+ 2V2�N�t + �N�e−t/�N − 1�� . �21�

The approximate result Eq. �21� provides a coarse-grained
stroke-averaged description of the translational diffusion �de-
tails of the swimming stroke are encoded in V�. An analo-
gous formula can be used to describe the diffusion of a
spherical, chemically driven microswimmer �6�. By virtue of
Eq. �21�, we can readily distinguish three distinct regimes:

�i� For t��N we can expand the exponential term to linear
order and find

DR�t� � DR
p�t� , �22a�

i.e., passive Brownian motion dominates on very short time
scales.

�ii� For t��N we need to include terms quadratic in t /�N
and obtain

DR�t� � DR
p�t� +

V2t2

�N
, �22b�

i.e., ballistic motion can dominate on intermediate time
scales provided V2 /�N is large enough �cf. examples below�.

�iii� For t
�N, we recover diffusive behavior

lim
t→�

DR�t�
t

=
DR

p�t�
t

+ 2V2�N. �22c�

If the swimmer is constructed such that 2V2�N
DR
p�t� / t,

then its diffusive behavior at large times is due to noise-
induced rotation �with persistence time �N�.

In a sense, the above results provide a “microscopic” jus-
tification for the assumptions made by Lovely and Dahlquist
�39�, who studied purely probabilistic models of bacterial
motion. We also note that the asymptotic behavior for t

�N and 2V2�N
DR

p�t� / t agrees qualitatively with results
reported by Lobaskin et al. �33� for triangular swimmers in
the moderate Reynolds number regime R�1. In this con-
text, we also mention recent work by Golestanian et al. �50�,
who discuss similar scaling relations for the diffusion of
phoretic swimmers.

In the remainder, we are going to compare the analytical
predictions with results of computer simulations, based on a
direct numerical integration of the Langevin Eq. �5� for the
spheres. Our main focus is on the transition from the passive
Brownian motions to the active swimming regime.

IV. SWIMMER TUNING & NUMERICAL SIMULATIONS

We simulate a single three-sphere swimmer described by
the interaction potentials Eqs. �8� and �9� and governed by
the Langevin Eq. �5�. We consider identical spheres of radius
a�=a, mass M�=M, and equal stroke amplitudes 
12=
23
=
. The density of the spheres is chosen as �=103 kg /m3

�water�, and the fluid is water at room temperature ��
=10−3 kg / �ms� , T=300 K�. By fixing the parameters of
the spring and bending potentials as k0=10−4 kg /s2, �
=103 Hz, and K=10k0, we satisfy the time scale condition
Eq. �8b� while ensuring that the swimmer behaves approxi-
mately stiff and shape-driven. The velocity V of the swimmer
is optimized by choosing ��=� /2, cf. Eq. �23a�.

We are primarily interested in understanding how a
change in the swimmer size may affect the diffusive behav-
ior. We therefore fix the ratios � /a=� /
=10 and only vary
the leg length � from 1 to 10 �m in our simulations �i.e., the
mean swimmer length is �=2��. Put differently, we scale the
swimmer proportionally by varying �. Having specified all
parameters, it is useful to summarize the relevant formulae
for our choice

V �
7

24
a��
2

�2	sin �� = 0.292
�

s
, �23a�

�N �
16���3

kBT
�8�

3a
− 1	−1

= 0.473
�3s

�m3 , �23b�

DR
p

t
�

1

9

kBT
��

�3

a
+

5

�
	 = 5.127

�m3

�s
, �23c�

and

2V2�N = 0.080
�5

�m3s
. �23d�

It is remarkable that increasing the swimmer size by one
order of magnitude increases the orientation correlation time
�N by three orders of magnitude.

Figures 1 and 2 depict the results of numerical simula-
tions �symbols� of the Langevin Eq. �5� and also the corre-
sponding theoretical predictions �dashed lines�. The numeri-
cal data points represent averages over 100 trajectories with
identical initial conditions. More precisely, at time t=0 the
swimmer is pointing along the x3 axis with the first sphere
being located at the origin, i.e., X1�0�=0, X2�0�=�N�0�, and
X3�0�= �2�−
 sin�����N�0�, where N�0�= �0,0 ,1�.

As evident from the diagrams in Figs. 1 and 2, the results
of the numerical simulations are very well matched by the
theoretical curves over several orders of magnitude in time.
In particular, for a leg length in the range ��5 �m �red
“+”/green “�” symbols� one readily observes the three
aforementioned regimes: �i� Brownian diffusion at small
time scales t��N, �ii� ballistic behavior at intermediate time
scales, and �iii� quasidiffusive behavior due to noise-induced
rotation for t
�N.

We conclude the discussion of the numerical results by
addressing a few technical aspects that might be relevant and
helpful for future simulations. When considering ensembles
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with N�1 swimmers the computationally most expensive
step is the Cholesky decomposition of the diffusion tensor,
see Eq. �3�, which is approximately of the order O��pN�3�
�36�. It is also worthwhile to briefly comment on the choice
of the time step dt in the Langevin simulations. Ideally, one
would like to choose dt smaller than the smallest dynamical
time scale in the system, which for our model is given by the
damping time T�=M / �6��a�. For the swimmer parameters
considered here we find T��2�10−9�� /�m�2s, which
means that adopting dt�T� would not allow us to simulate
experimentally accessible time scales in the seconds range.
Since we are not interested in the dynamical details at very
short times scales, we choose in our simulations the time step
larger than T�, but much smaller than the period T� of a
swimming stroke by fixing dt=10−3T� for ��5 �m and
dt=10−2T� if ��5 �m. We verified, however, that for inter-
mediate time scales �of the order of a few stroke periods
T��6�10−3 s� the numerical results for the mean square

displacement and other statistical observables agree with
those obtained for very small time steps dt=0.1T�. Gener-
ally, a satisfactory resolution of the bending and relaxation
dynamics of the legs/spheres would require dt� �M /K�1/2

and dt� �M /k0�1/2, respectively.

V. CONCLUSIONS

Understanding the interplay between Brownian motion,
hydrodynamic interactions, and self-propulsion is a prerequi-
site for understanding the dynamics of bacteria and artificial
swimming devices at the microscale. In the first part, we
discussed how one can model these phenomena by means of
stochastic processes �overdamped Langevin equations�. Sub-
sequently, as a first application, we focused on the size de-
pendence of diffusive behavior at low Reynolds numbers
�R�1� for a quasilinear three-sphere swimmer model. Our
theoretical analysis complements a recent experimental study
by Howse et al. �6�, who investigated the diffusion of chemi-
cally driven, spherical colloids, and theoretical work by Lo-
baskin et al. �33�, who considered the Brownian dynamics of
an artificial triangular microswimmer at moderate Reynolds
numbers �R�1�.

Starting from the Kirkwood-Smoluchowski equation
�34–37�, we derived analytical results for the orientation cor-
relation time, the mean velocity, and the mean-square dis-
placement of an overdamped, quasilinear three-sphere swim-
mer �20,25�. Analytical formulae as derived here are useful
for testing numerical simulations and �in� validating simpli-
fied probabilistic models �39�. Moreover, they provide de-
tailed insight into the size-regulated transition from predomi-
nantly random to quasiballistic motions.

The proposed method of modeling swimmers by effective
potentials within a Langevin scheme can be readily extended
to study complex behavior in larger swimmer ensembles.
However, at high swimmer densities, collisions, and near-
field hydrodynamics affect the diffusive behavior �47,51,52�
and it will be necessary to modify the hydrodynamic inter-
action tensor accordingly. Generally, a useful dimensionless
quantifier for the efficiency of active swimming relative to
diffusion is given by the ratio

� =
�N

�/V
. �24�

The denominator corresponds to the time needed by a unper-
turbed swimmer of velocity V to move one body length �,
and the swimmer geometry is encoded in the orientation cor-
relation time �N. For �
1 ���1� self-propulsion is effective
�noneffective�. For nonisolated swimmers, �N is not only de-
termined by thermal effects, but also by collisions with other
swimmers �51,52�.

With regard to future studies we note that the combination
of thermal fluctuations and hydrodynamic coupling might
also lead to interesting behavior in simple arrangements of
microswimmers. For example, experiments have shown that
colloidal spheres localized in an array of optical traps create
memory effects �53� and driven vibrations �54�. Our formal-
ism provides a starting point for the investigation of many
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FIG. 1. �Color online� Orientation correlation function for four
different swimmer sizes 2�. Symbols represent averages over 100
trajectories, numerically calculated from the Langevin Eq. �5� using
parameters as described in the text. The dashed lines depict the
theoretically predicted exponential decay DN�t��exp�−t /�N� with
orientation correlation time �N determined by Eq. �15�. It is remark-
able that changing the swimmer size by one order of magnitude
increases the correlation time by three orders of magnitude.
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FIG. 2. �Color online� Mean-square displacement DR�t�
ª ��R�t�−R�0��2
 divided by time t for the same set of parameters
as in Fig. 1. The dashed lines correspond to the analytical formula
�21�. The dynamics of small swimmers ��=1 �m, blue circles� is
dominated by Brownian motion on all time scales, whereas big
swimmers ��=10 �m, black diamonds� can move ballistically for
several minutes. In the intermediate region ���5 �m, red
“+“/green “�“� we observe a ballistic transition from ordinary
Brownian motion at small times t��N to noise-induced rotational
diffusion at large times t
�N. Since �N��3, the transition from
Brownian to quasiballistic motion is very sharp. Interestingly
enough, typical sizes of bacteria lie in or near this niche �10�.
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self-propelled bodies in separate potentials, which could be
helpful for interpreting experimental data of trapped bacteria
or for constructing pumps from a collection of microswim-
mers.

To summarize, the above results may provide guidance
for constructing artificial microswimmers or pumps that
work efficiently in the critical transition region that separates
Brownian from quasideterministic motions. In particular, by
tuning the parameters to the narrow cross-over region one
could construct swimmers that explore with high probability
a maximized volume fraction within a given period of time.
The fact that many bacteria live near or exactly in this niche
�10� suggest that this may indeed be a useful strategy. Thus,
exploiting the interplay between noise and active self-motion
could lead to novel applications �55�, e.g., with regard to the
controlled transport �56� and distribution of chemical and
biological substances in small scale technical devices or even
within the human body.
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APPENDIX: CALCULATIONS

This appendix provides derivations of analytical results
for the orientation correlation function, the mean velocity,
and the spatial mean square displacement from the Langevin
Eq. �5�. Our calculations are based on the following simpli-
fying assumptions:

�i� The motion of the three-sphere swimmer is approxi-
mately stiff and shape-driven, i.e.,

d12 ª X2 − X1 � Nd12, �A1a�

d23 ª X3 − X2 � Nd23, �A1b�

d13 ª X3 − X1 � N�d12 + d23� , �A1c�

where

d12 = � + 
12 sin��t� , �A1d�

d23 = � + 
23 sin��t − ��� . �A1e�

In this case the internal forces, which generate the swimming
strokes, point along the swimmer’s axis and we may write

F1i = g1Ni, F3i = g3Ni �A2a�

and, with F3i+F2i+F1i=0,

F2i = − �g1 + g3�Ni, �A2b�

where g� is the force amplitude, and Ni denotes a component
of the orientation vector

N�t� ª
X3 − X1


X3 − X1

. �A2c�

�ii� We adopt the Oseen approximation, i.e., H�HO

where

H��i���j�
O

ª

1

8��d��
��ij +

d��id��j

d��
2 	 ,

�
1

8��d��

��ij + NiNj� . �A3�

The second line follows from assumption Eq. �A1�.

1. Orientation correlation function

Given a deterministic initial state N�0�= �Nk�0��, we are
interested in DN�t�ª �N�t�N�0�
= �Nk�t�
Nk�0�.

The first step is to find the stochastic differential equation
�SDE� for the orientation vector N�t�. This can be achieved
by virtue of the Ito formula �49,57�, yielding

dNk�t� = ���i�NkdX��i� + D��i���j����i����j�Nkdt , �A4�

where dX��i��t� is governed by Eq. �5�, and the diffusion
tensor is given by DªkBTH�kBTHO.

To determine �Nk�t�
, we use that �C��i���k�dB��k��t�
=0 for
an Ito SDE, and therefore

d�X��i��t�
 = �H��i���j�F��j�
dt . �A5�

Taking the average of Eq. �A4� and inserting Eq. �A5�, we
obtain

�Ṅk�t�
 = �H��i���j�F��j����i�Nk
 + �D��i���j����i����j�Nk
 ,

�A6�

where d�Ṅk�t�
ª �dNk�t� /dt
. We next evaluate the two
terms the right-hand side of Eq. �A6� separately. To this end
we note that

���j�Nk =
1

d13
��3� − �1���� jk − NjNk� , �A7�

yielding for the first term

H��i���j�F��j����i�Nk = �H�3i���j� − H�1i���j��

�
F��j�

d13
��ik − NiNk� . �A8�

Using Oseen approximation Eq. �A3�, we find

H�3i���j�F��j� = � g3

�3
+

g1

4��d31
−

�g3 + g1�
4��d32

�Ni,

and, similarly, H�1i���j�F��j��Ni. Taking into account that

Ni��ik − NiNk� � 0, �A9�

the first term on the right-hand side of Eq. �A6� vanishes, and
Eq. �A6� reduces to

�Ṅk�t�
 = �D��i���j����i����j�Nk
 . �A10�

By virtue of Eq. �A7�, we find
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���i����j�Nk =
1

d13
2 ��3� − �1����3� − �1��

� �3NjNkNi − Nj�ik − Nk�ij − Ni� jk� .

�A11�

To obtain the right-hand side of Eq. �A10�, we still need to
contract with the diffusion tensor D��i���j�. This results in two
contributions: From the diagonal part we get

kBT�
��j�

1

��

��3� − �1����3� − �1��

�
1

d13
2 �3NjNkNj − Nj� jk − Nk� j j − Nj� jk�

= − kBT� 1

�1
+

1

�3
	2Nk

d13
2 , �A12a�

while the hydrodynamic off-diagonal terms give

kBT �
��i���j�

�1 − ������3� − �1����3� − �1��

�
��ij + NiNj�

8��d��

1

d13
2 �3NiNkNj − Nj�ik − Nk�ij − Ni� jk�

=
kBT

2��d13
3 Nk. �A12b�

Combining the two contributions we find

�Ṅk�t�
 = �− kBT� 1

�1
+

1

�3
	 2

d13
2 +

kBT
2��d13

3 ��Nk
 ,

which for ��=6��a� gives Eq. �14�.

2. Motion of the geometric center

Following a similar procedure, we can derive analytical

expression for the mean velocity �Ṙ�t�
 and the mean-square
displacement DR�t�.

a. Mean velocity

First, we would like to determine the mean velocity �Ṙ�t�

of the swimmer’s geometric center

R�t� ª
1

3
�X1 + X2 + X3� . �A13�

Averaging the stochastic differential equation

dR�t� ª
1

3
�dX1 + dX2 + dX3� �A14�

with respect to the underlying Wiener process and dividing
by dt, we obtain

�Ṙi�t�
 =
1

3 �
�=1

3

�H��i���j�F��j�


=
1

3 �
�=1

3 �F��i�

��

+ �1 − ����H��i���j�F��j�� .

�A15�

Considering as before a stiff, shape-driven swimmer and
Oseen interactions H=HO, we have F��i��g�Ni and, there-
fore,

�
���

H��i���j�F��j� � �
���

��ij + NiNj�
8��d��

g�Nj = Ni �
���

g�

4��d��

.

�A16�

Inserting this into Eq. �A15� gives

�Ṙi�t�
 =
1

3
�Ni� g1

�1
+

g2

�2
+

g3

�3
+

g2

4��d12
+

g3

4��d13

+
g1

4��d12
+

g3

4��d23
+

g1

4��d13
+

g2

4��d23
	�

Since the internal swimming forces sum to zero, we may
eliminate g2 by using g2=−�g1+g3� to obtain

�Ṙi�t�
 =
1

3
�Nig1
� 1

�1
−

1

�2
+

1

4��
� 1

d13
−

1

d23
	� +

1

3
�Nig3


�� 1

�3
−

1

�2
+

1

4��
� 1

d13
−

1

d12
	�

¬

A1

3
�Nig1
 +

A3

3
�Nig3
 . �A17�

Consequently, to find �Ṙi�t�
, we still need to determine
the mean forces �F��i�
= �Nig�
 on the first and last sphere,
�=1,3. This can be achieved as follows: Eq. �A1� implies
that

�ḋ12k
 = �Ṅk
d12 + �Nk
ḋ12, �A18a�

�ḋ23k
 = �Ṅk
d23 + �Nk
ḋ23. �A18b�

On the other hand, from the definition of the vectors d�� and
the Langevin equations for dX�, we have

�ḋ12k
 = �H�2k���j�F��j� − H�1k���j�F��j�
 , �A19a�

�ḋ23k
 = �H�3k���j�F��j� − H�2k���j�F��j�
 . �A19b�

Inserting the explicit expressions for H��i���j� and F��j�, Eqs.
�A19� can be rewritten as

�ḋ12k
 = − � 1

�1
+

1

�2
−

1

2��d12
��Nkg1


− � 1

�2
−

1

4��
� 1

d12
+

1

d23
−

1

d13
	��Nkg3
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¬− B1�Nkg1
 − C�Nkg3
 �A20a�

and

�ḋ23k
 = � 1

�2
−

1

4��
� 1

d12
+

1

d23
−

1

d13
	��Nkg1


+ � 1

�2
+

1

�3
−

1

2��d23
��Nkg3


¬C�Nkg1
 + B3�Nkg3
 . �A20b�

Hence, in order to obtain the unknown expectation values
�Nkg1
, we have to solve the linear system

�ḋ12k
 = − B1�Nkg1
 − C�Nkg3
 , �A21a�

�ḋ23k
 = C�Nkg1
 + B3�Nkg3
 , �A21b�

With left-hand side given by Eqs. �A19�. This is easily done
and we may summarize the result for the mean velocity

�Ṙk�t�
 =
A1

3
�Nkg1
 +

A3

3
�Nkg3
 , �A22a�

where

�Nkg1
 = −
B3�ḋ12k
 + C�ḋ23k


B1B3 − C2 , �A22b�

�Nkg3
 =
C�ḋ12k
 + B1�ḋ23k


B1B3 − C2 , �A22c�

with

�ḋ12k
 = �Ṅk
d12 + �Nk
ḋ12, �A22d�

�ḋ23k
 = �Ṅk
d23 + �Nk
ḋ23. �A22e�

Since the quantities �Nk
, �Ṅk
, d��, ḋ��, A�, B�, and C are
known we have thus obtained a closed analytical result for
the mean swimmer velocity within the Oseen approximation.
Analogous calculations can be performed for HM, but do not
yield much additional insight �for a single swimmer�.

Additional simplifications. If the orientation correlation
time �N is larger than the driving period T=2� /� then

�ḋ12k
 � �Nk
ḋ12, �ḋ23k
 � �Nk
ḋ23. �A23�

In this case, we may simplify

�Ṙk�t�
 � V�t��Nk�t�
 , �A24a�

where

V�t� = −
A1

3
�B3ḋ12 + Cḋ23

B1B3 − C2 	 +
A3

3
�Cḋ12 + B1ḋ23

B1B3 − C2 	
�A24b�

is a periodic function, V�t�=V�t+T��. Since we assumed
�N
T�, we can achieve further simplification by replacing
V�t� with its stroke average

V ª �
t

t+T�

dsV�s� , �A25�

so that

�Ṙk�t�
 � V�Nk�t�
 . �A26�

For example, when considering equal-sized beads with a�

=a and �
max�a ,
12,
23�, then

V�t� =
a�
12

�
cos��t + �12� +

a�
23

�
cos��t + �23� + V ,

where

V =
7

24
a��
12
23

�2 	sin �� �A27�

and ��ª�12−�23, and higher-order terms have been ne-
glected.

b. Spatial diffusion

Using the result for dR�t� from above, we may rewrite the
mean square displacement DR�t� as

DR�t� ª ��R�t� − R�0��2


=��
0

t

dRk�u��
0

t

dRk�s��
= �

0

t

ds�
0

t

du��A1

3
Nkg1 +

A3

3
Nkg3�

s

� �A1

3
Nkg1 +

A3

3
Nkg3�

u
�

+
1

9 �
�,��=1

3 � ��C��k���n��sdB��n��s�

� �C���k����n���udB���n���u�
 . �A28�

Here, we have again used that ��f�X��dB��n��t�
=0 holds for
Ito integrals. We consider the two remaining integrals in Eq.
�A28� separately, starting with the second one. We find

DR
p�t� ª

1

9 �
�,��=1

3 � ��C��k���n��sdB��n��s�

� �C���k����n���udB���n���u�


=
2

9 �
�,��=1

3 �
0

t

ds�D��k����k�


=
2

9
kBT�

0

t

ds� 3

�1
+

3

�2
+

3

�3
�

+
2

9
kBT �

�,��=1

3

�1 − ������
0

t

dsH��k����k�
O ,

where
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H��k����k�
O =

�kk + NkNk

8��d���
=

1

2��d���
. �A29�

For spherical particles we have ��=6��a� and, therefore,

DR
p�t� =

1

9

kBT
��

� 1

a1
+

1

a2
+

1

a3
	t

+
2

9

kBT
��

�
0

t

ds� 1

d12
+

1

d23
+

1

d13
	 .

For �
max�
���, the integrand in the second line can be
approximated by 5 / �2�� yielding

DR
p�t� �

1

9

kBT
��

� 1

a1
+

1

a2
+

1

a3
+

5

�
	t . �A30�

It remains to determine the first �double� integral in Eq.
�A28�, reading

DR
a �t� ª �

0

t

ds�
0

t

du��A1

3
Nkg1 +

A3

3
Nkg3�

s

� �A1

3
Nkg1 +

A3

3
Nkg3�

u
� .

The subscripts indicate the time arguments in the bracketed
expressions, respectively. Upon recalling that F��i�=g�Ni is
the internal force acting on sphere �, we see that the contri-
bution DR

a �t� is essentially determined by the force-force cor-

relation functions. However, instead of calculating these cor-
relation functions exactly, we may approximate, for �N
T�,
the integrand by �cf. Eqs. �A17� and �A26��

�� . . . �s� . . . �u
 � V2�Nk�s�Nk�u�
 ,

where V is the stroke-averaged velocity of the corresponding
deterministic swimmer, cf. Eqs. �A25� and �A26�. Adopting
this approximation we find

DR
a �t� � V2�

0

t

ds�
0

t

du�Nk�s�Nk�u�


= V2�
0

t

ds�
0

t

du exp�− 
u − s
/�N�

= 2V2�N�t + �N�e−t/�N − 1�� ,

and thus the final result

DR�t� = DR
p�t� + DR

a �t�

�
1

9

kBT
��

� 1

a1
+

1

a2
+

1

a3
+

5

�
	t

+ 2V2�N�t + �N�e−t/�N − 1�� . �A31�

The first part represents passive �thermal� diffusion; the sec-
ond part is due to active swimming �note that �N is tempera-
ture dependent as well�.
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