
Nonequilibrium thermodynamics of transport through moving interfaces with application
to bubble growth and collapse

Hans Christian Öttinger*
Department of Materials, Polymer Physics, ETH Zürich, HCI H 543, CH-8093 Zürich, Switzerland

Dick Bedeaux†

Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
and Department of Process and Energy, Technical University of Delft, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands

David C. Venerus‡

Department of Chemical & Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, Illinois 60616, USA
�Received 23 March 2009; published 21 August 2009�

We develop the general equation for the nonequilibrium reversible-irreversible coupling framework of ther-
modynamics to handle moving interfaces in the context of a gas that can be dissolved in a surrounding liquid.
The key innovation is a “moving interface normal transfer” term required for consistency between the ther-
modynamic evolution equation and the chain rule of functional calculus. The freedom of atomistic displace-
ments of the interface leads to gauge transformations under which the thermodynamic theory should be
invariant. The thermodynamic framework provides a complete set of evolution equations and boundary con-
ditions, as we illustrate for the example of bubble growth and collapse.
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I. INTRODUCTION

In the description of transport through, into, and along
interfaces using nonequilibrium thermodynamics, one may
use excess densities, fluxes, and also structural variables at
the so-called dividing surface. For equilibrium systems, there
are only excess densities. A systematic analysis of the equi-
librium properties of surfaces using excess densities was first
given by Gibbs �1�. In 1967, Waldmann �2� made a first
step to describe transport in the presence of surfaces. He
calculated the excess entropy production and was able to
formulate boundary conditions. In 1976, Bedeaux et al. �3�
extended the work of Waldmann and included the thermody-
namic excess densities considered by Gibbs. This was the
beginning of a whole series of papers �see, for example,
�4,5��. Essential in the method in these papers is the use of
generalized functions for the various densities and fluxes.
From one phase to the other, these densities and fluxes
change discontinuously and, in addition to that, they have
singular contributions on the dividing surface. This implies
the use of Heaviside and delta functions. While this may
seem complicated, it—in practice—provides an efficient and
elegant method to keep track of everything that moves in the
neighborhood of the surface, including the motion of the
surface itself.

It is the goal of this paper to develop the more recent
“general equation for the nonequilibrium reversible-
irreversible coupling” �GENERIC� �6–8� so that it can
handle the thermodynamic description of moving interfaces.
This requires a coupled description of two- and three-
dimensional subsystems. GENERIC goes beyond classical

nonequilibrium thermodynamics in that it is not restricted to
linear relations between thermodynamic fluxes and forces. It
extends the classical theory in this way and gives a convinc-
ing generalization of the Onsager relations to the nonlinear
regime. Previous work on boundary thermodynamics in the
GENERIC framework �9–11� is here generalized to a consis-
tent description of moving interfaces.

The present paper contains three major contributions: �i�
A moving interface normal transfer �MINT� term is intro-
duced to obtain consistency between the fundamental ther-
modynamic evolution equation and the chain rule of func-
tional calculus. �ii� It is elaborated that thermodynamic
theories with interfaces have the character of gauge theories,
where the gauge transformations are related to macroscopi-
cally irrelevant atomistic displacements of the interface. �iii�
The theoretical developments are illustrated by applying
them to the problem of bubble growth and collapse without
equilibrium at the interface, which is an interesting problem
in its own right.

The growth and collapse of gas bubbles in liquids driven
by mass diffusion occurs in natural, biological, and techno-
logical systems. For example, the growth of bubbles in vol-
canic magmas �12�, the collapse of gas bubbles in biological
fluids �13�, and the growth of bubbles in polymeric foam
production �14�. Not surprisingly, many studies have been
conducted in order to develop transport models that allow the
prediction of bubble growth and collapse rates. The existence
of a moving interface, which couples mass and momentum
transfer between the gas and liquid phases, gives these phe-
nomena a rich dynamic behavior.

Diffusion-controlled bubble growth and collapse has been
studied extensively. The term diffusion-controlled describes
systems where hydrodynamic effects can be neglected and
the pressure within the bubble is constant. Numerical solu-
tions for diffusion-controlled bubble growth and collapse,
where the difficulties of a moving boundary, steep concen-
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tration gradients, and a semi-infinite domain encountered in
this problem, have been reported by Duda and Vrentas
�15,16�. For the case of bubble growth from a zero initial
radius, an exact solution based on similarity transformation
has been found �17�.

Transport models for diffusion-induced bubble growth
and collapse in viscous liquids involve additional and some-
times subtle effects not found in the governing equations for
diffusion-controlled phenomena. In most of previous work,
one or more approximations have been invoked. One of
these is the well-known thin boundary approximation, which
assumes that variations in the concentration of the diffusing
species are confined to a thin region in the liquid surrounding
the bubble. A second approximation exploits the fact that the
ratio of the gas phase to liquid phase density is typically
small. The earliest model for diffusion-induced bubble
growth appears to be that of Barlow and Langlois �18�, who
used both approximations described above. The dissolution
of a gas bubble in viscoelastic liquids was modeled by Zana
and Leal �19�. More recently, the ranges of validity of these
approximations were established by Venerus and Yala �20�
for bubble growth in Newtonian liquids and by Venerus et al.
�21� for bubble growth in viscoelastic liquids.

We are interested in the growth and dissolution of a gas
bubble surrounded by a liquid containing dissolved gas. All
previous analyses of diffusion-induced bubble growth and
collapse are based on equations for the bulk phases and for
the interface �so-called “jump balances”� derived using tra-
ditional approaches in hydrodynamics �22,23�. In addition,
the relationship between the concentration of the diffusing
species in the gas and liquid phases is based on the assump-
tion of thermodynamic equilibrium at the interface.

We look for a thermodynamic description of the evolution
of a system in which, in addition to bulk fields in the gas and
liquid phases, there are fields defined only in the two-
dimensional interface to account for relevant interfacial
properties �9,10�. The interfacial layer is not necessarily un-
resolvable by experimental methods; we might merely re-
frain from looking at it in more detail if, for example, just the
bubble size is of interest. This phenomenological thermody-
namic approach is elaborated in this paper. Some of the
equations developed here may look a bit lengthy. However,
one should keep in mind that a single equation �GENERIC�
contains all the information about the system: the hydrody-
namic equations for the gas, the hydrodynamic equations for
the two-component liquid, the interfacial hydrodynamics,
and all the required boundary conditions. Some of the result-
ing evolution equations and boundary conditions do not
seem to be immediately obvious.

II. SYSTEM AND THERMODYNAMICS

One of the goals of this work is to formulate the evolution
of a system with interfaces within a thermodynamic system.
The first step is to define a thermodynamic system, that is, to
choose the variables x in terms of which a complete and
self-contained description of all phenomena of interest is
possible. The second step is to formulate the thermodynamic
building blocks required for constructing evolution equations

as functions of the system variables x. In the GENERIC
framework of nonequilibrium thermodynamics �6–8�, these
building blocks are the energy E�x�, the entropy S�x�, the
Poisson bracket that translates the gradient of E�x� into re-
versible motion, and the dissipative bracket that translates
the gradient of S�x� into irreversible motion.

A. System variables

We choose separate lists of variables for describing the
two bulk phases and the separating interface:

�i� To describe the bulk gas phase in the domain Vg, we
use the hydrodynamic fields mass, momentum, and internal
energy density xg= ��g ,Mg ,�g�.

�ii� To describe the bulk liquid phase in the domain Vl, we
use the hydrodynamic fields xl= ��l ,Ml ,�l ,cl�, where the ad-
ditional variable cl is the mass fraction of solute in the two-
component liquid.

�iii� To describe the interface I between Vg and Vl, we use
xs= ��s ,Ms ,�s�, where �s is the excess mass in the interfacial
layer, Ms is the excess momentum, and �s is the excess in-
ternal energy.

It is natural to introduce the variables �s and Ms because,
as a consequence of the exchange of mass through the inter-
face, the velocity of the interface vs=Ms /�s differs from the
gas and solution velocities. The mass fraction of solute in the
interface cs is assumed to be equal to cl in the bulk solution
near the interface. This simple situation is illustrated in a
naive manner in Fig. 1; a much deeper discussion is given at
the end of the following subsection on gauge invariance. In
general, the composition in the interface may clearly be dif-
ferent from the bulk composition. For a clear distinction of
the three subsystems and for the treatment of the interface as
an autonomous system in its own right �with suitable local-
equilibrium states�, it would clearly be preferable to keep cs

and cl as separate variables and, whenever this is a physically
meaningful approximation, to impose the condition cs=cl as
a constraint. Although there exists a straightforward and rig-
orous procedure for incorporating constraints into the GE-
NERIC framework �24�, we here prefer to avoid a separate
variable cs to focus on the problems associated with moving
interfaces and to avoid the general framework of constraints.

FIG. 1. �Color online� Gas-liquid interface showing boundary
layer with bulk composition.
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In the same spirit, we make the simplifying assumption that
there are no solvent particles in the gas phase.

B. Gauge invariance

It has been observed that there are two kinds of variables
in interfaces �see discussion in Sec. 4 of �25��. Variables of
the first kind are insensitive to the precise location of the
interface, whereas variables of the second kind change sig-
nificantly even if the interface is relocated only by atomic
distances. To simplify the discussion, we distinguish between
macroscopically relevant and ambiguous variables. By a
suitable definition of the precise interface location, one can
typically make an ambiguous excess variable vanish, as has
been known since the pioneering work of Gibbs on dividing
surfaces �1�. One might hence be tempted to eliminate all
ambiguous variables, but this may lead to serious problems
because different locations of the interface are required to
eliminate the various ambiguous variables.

It may be better to treat the freedom of the precise loca-
tion of the interface as a gauge degree of freedom within a
continuum field theory of hydrodynamics. If one chooses one
of the ambiguous interface variables to be zero, all the other
ambiguous variables are fixed but may be nonzero. If we
arbitrarily change one of the ambiguous variables, all other
variables must be changed according to certain gauge trans-
formations. For a functional of the general form,

A = �
Vg

ag�xg�d3r + �
Vl

al�xl�d3r + �
I

as�xs,xg,xl�d2r , �1�

where we allow the occurrence of xg and xl in as as a con-
sequence of constraints introduced to simplify the descrip-
tion of the system, the gauge transformation associated with
an atomistic displacement � of the interface changes the in-
terfacial excess density variable as according to the law,

as → as + ��ag − al� , �2�

where we have neglected curvature effects �see Eq. �40� be-
low�. Only for quantities varying slowly through the interfa-
cial region �ag�al�, the interfacial contribution can vanish
independently of the precise location of the interface. For a
relevant interfacial variable, as���ag−al� for all displace-
ments on the order of the interface thickness so that as in-
deed remains unaffected by gauge transformations. The
physical predictions of the continuum theory should be inde-
pendent of the choice of the gauge. While the physical origin
of the gauge freedom lies in the importance of displacements
of the interface by atomic distances, from a continuum per-
spective, it appears as a formal invariance under the class of
gauge transformations �Eq. �2��. The discussion of the field
theory should hence include the investigation of the invari-
ance of the physical predictions under gauge transforma-
tions.

Among our interfacial variables xs, we expect �s and Ms

to be ambiguous and, in the presence of interfacial tension, �s

to be relevant. In view of the relationship Ms=�svs, however,
it is natural to assume that, although the interfacial mass and
momentum densities are small and ambiguous, the ratio vs is

a finite and relevant interfacial variable characterizing the
motion of and along the interface. Gauge invariance of vs

under the transformations in Eq. �2� of �s and Ms requires the
following condition:

vs =
Ms

�s =
Ml − Mg

�l − �g , �3�

which plays the role of a boundary condition. In words, the
dividing interfaces for mass and momentum must coincide; a
massless interface cannot carry any momentum. Note that, in
general, vs is unequal to both vg=Mg /�g and vl=Ml /�l.

The idea of gauge invariance is closely related to the
subtle concept of local equilibrium in an interface. To what
extent can the interfacial variables be independent of the
properties of the surrounding bulk phases in contact with the
interface? For example, �how� can one have three different
temperatures in the interface and in the two bulk phases in an
infinitesimal neighborhood of the interface? The idea of an
autonomous interface in nonequilibrium systems was estab-
lished in �26� from an underlying more detailed square gra-
dient model for the interface. In Sec. 6 of �26�, it has been
shown that under local-equilibrium conditions, differences of
the type ag−al must have the same value as under global
equilibrium conditions with the same state of the interface.
The verification of the local-equilibrium idea for two-
component systems has been performed recently �27�. This
observation leads to the gauge invariance of the intensive
thermodynamic state variables characterizing the interface,
such as the temperature and the chemical potential, in addi-
tion to the gauge invariance of the interface velocity.

The arguments for clarifying the role of the surface com-
position cs are very similar to those for the surface velocity
vs. Like the excess of the total mass, we expect the excess of
the gas/solute species to be an ambiguous quantity. By anal-
ogy with Eq. �3�, we formulate a gauge invariance condition
of the form

cs =
cl�l − �g

�l − �g �4�

to establish the mass fraction cs as a relevant variable. To
justify the assumption cs=cl, we need to assume that not only
the solution density is large compared to the gas density but
even the solute density. This situation is suggested in Fig. 1,
where the solute density is visibly larger than the gas density.
Whether or not such an assumption is realistic depends on
the nature of the gas and the solvent of interest.

A common way of characterizing the solubility of a gas in
a liquid is by giving the constant in Henry’s law as the ratio
kH,cc of the solute to gas densities. For kH,cc�1, the simpli-
fying assumption cs=cl is justified. For example, for carbon
dioxide in water, kH,cc at room temperature is on the order of
unity, so that cs�cl. For sulfur dioxide in water at room
temperature or carbon dioxide in polystyrene at elevated
temperatures, on the other hand, kH,cc is on the order of 30 or
around 10, respectively, so that cs=cl is a reasonable assump-
tion. In other situations, the simplifying assumption cs=cl

should be replaced by Eq. �4�, resulting from gauge invari-
ance, or the simpler version for �g��l,
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cs = cl −
�g

�l . �5�

Note that a positive sign of cs can only be expected for
kH,cc�1.

C. Energy and entropy

We begin our construction of the thermodynamic building
blocks for our two-phase system with interfaces by formu-
lating the energy

E = �
Vg
�Mg2

2�g + �g�d3r + �
Vl
�Ml2

2�l + �l�d3r

+ �
I
�Ms2

2�s + �s�d2r , �6�

and the entropy

S = �
Vg

sg��g,�g�d3r + �
Vl

sl��l,�l,cl�d3r + �
I

ss��s�d2r . �7�

Note that, for simplicity, we have assumed that the interfacial
contribution to the entropy is independent of the composition
of the liquid in the boundary layer. Otherwise, we should
introduce cs as an additional interfacial variable. It is natural
to introduce the subsystem temperatures

1

Tg =
�sg

��g ,
1

Tl =
�sl

��l ,
1

Ts =
�ss

��s . �8�

It will be useful to look at the expressions for the total
mass,

Mtot = �
Vg

�gd3r + �
Vl

�ld3r + �
I

�sd2r , �9�

and for the mass of the gas and solute species,

Mg/s = �
Vg

�gd3r + �
Vl

cl�ld3r + �
I

cl�sd2r , �10�

because their degeneracy �expressing unconditional mass
conservation� is a useful guideline for the formulation of
dissipative processes at the interface. For the observable
Mg/s, the interfacial contribution actually depends on a bulk
variable �because we have used the condition cs=cl to reduce
the number of system variables rather than as a constraint�,
as allowed for the general form of functionals given in Eq.
�1�.

D. Poisson bracket

The Poisson bracket of two observables A and B �that is,
functionals of the thermodynamic variables xg, xl, and xs;
examples are given by E, S, Mtot, and Mg/s� is assumed to
consist of separate well-known bulk contributions and a
similar interfacial contribution

	A,B
 = 	A,B
g + 	A,B
l + 	A,B
s, �11�

with the standard bracket of hydrodynamics for the gas phase
in the manifestly antisymmetric form �8,28�,

	A,B
g = − �
Vg

�g� �ag

�Mg ·
�

�r

�bg

��g −
�bg

�Mg ·
�

�r

�ag

��g�d3r

− �
Vg

Mg · � �ag

�Mg ·
�

�r

�bg

�Mg −
�bg

�Mg ·
�

�r

�ag

�Mg�d3r

− �
Vg

�g� �ag

�Mg ·
�

�r

�bg

��g −
�bg

�Mg ·
�

�r

�ag

��g�d3r

− �
Vg
� �ag

�Mg ·
�

�r
�pg�bg

��g� −
�bg

�Mg ·
�

�r
�pg�ag

��g��d3r ,

�12�

where pg is the pressure in the gas given by

pg �sg

��g = sg − �g �sg

��g − �g �sg

��g . �13�

For our later analysis, it is useful to rewrite the antisymmet-
ric Poisson bracket �12� by means of some integrations by
parts in the form,

	A,B
g = − �
Vg

�ag

��g

�

�r
· � �bg

�Mg�g�d3r

− �
Vg

�ag

�Mg

�

�r
:� �bg

�MgMg + �b̃g − bg�1�d3r

− �
Vg

�ag

��g� �

�r
· � �bg

�Mg�g� + pg �

�r
·

�bg

�Mg�d3r

+ �
I

ãg �bg

�Mg · nd2r , �14�

where the normal unit vector n points from Vg into Vl and,
for any observable A with density ag in the gas,

ãg��g,Mg,�g� = ��g �

��g + Mg ·
�

�Mg

+ ��g + pg�
�

��g�ag��g,Mg,�g� . �15�

Among the usual densities, only �̃g differs from �g �see Table
I�. Note that �̃g=�g+ pg is the enthalpy density.

In the liquid phase, we similarly have

TABLE I. Examples of ãg.

ag ãg

�g �g

Mg Mg

�g �g+ pg

sg sg
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	A,B
l = − �
Vl

�l� �al

�Ml ·
�

�r

�bl

��l −
�bl

�Ml ·
�

�r

�al

��l�d3r

− �
Vl

Ml · � �al

�Ml ·
�

�r

�bl

�Ml −
�bl

�Ml ·
�

�r

�al

�Ml�d3r

− �
Vl

�l� �al

�Ml ·
�

�r

�bl

��l −
�bl

�Ml ·
�

�r

�al

��l�d3r

− �
Vl
� �al

�Ml ·
�

�r
�pl�bl

��l� −
�bl

�Ml ·
�

�r
�pl�al

��l��d3r

+ �
Vl

�cl

�r
· � �al

�Ml

�bl

�cl −
�bl

�Ml

�al

�cl�d3r , �16�

where pl is the pressure in the liquid given by

pl �sl

��l = sl − �l �sl

��l − �l �sl

��l . �17�

Again, we offer a useful reformulation,

	A,B
l = − �
Vl

�al

��l

�

�r
· � �bl

�Ml�
l�d3r

− �
Vl

�al

�Ml

�

�r
:� �bl

�MlM
l + �b̃l − bl�1�d3r

− �
Vl

�al

��l� �

�r
· � �bl

�Ml�
l� + pl �

�r
·

�bl

�Ml�d3r

− �
Vl

�al

�cl

�bl

�Ml ·
�cl

�r
d3r − �

I

ãl �bl

�Ml · nd2r , �18�

where the normal unit vector n at the gas-liquid interface
points into Vl and, for any observable A with density al in the
liquid,

ãl��l,Ml,�l,cl� = ��l �

��l + Ml ·
�

�Ml

+ ��l + pl�
�

��l�al��l,Ml,�l,cl� . �19�

Finally, the interfacial contribution to the Poisson bracket
is

	A,B
s = − �
I

�s� �as

�Ms ·
�

�r


�bs

��s −
�bs

�Ms ·
�

�r


�as

��s�d2r

− �
I

Ms · � �as

�Ms ·
�

�r


�bs

�Ms −
�bs

�Ms ·
�

�r


�as

�Ms�d2r

− �
I

�s� �as

�Ms ·
�

�r


�bs

��s −
�bs

�Ms ·
�

�r


�as

��s�d2r

− �
I
� �as

�Ms ·
�

�r

�ps�bs

��s� −
�bs

�Ms ·
�

�r

�ps�as

��s��d2r

+ �
I

�cl

�r


· � �as

�Ms

�bs

�cl −
�bs

�Ms

�as

�cl �d2r , �20�

where spatial derivatives of interfacial variables can only be
formed within the interface. In formulating the last term in
Eq. �20�, we have assumed that the interfacial contribution to
an observable can depend only on intensive bulk variables,
such as cl, and we simply convect such a variable when
occurring in as, bs with the interfacial velocity �this term is
necessary to guarantee the degeneracy of the entropy in our
simple treatment of the condition cs=cl�. The surface pres-
sure is given by

ps �ss

��s = ss − �s �ss

��s or − ps = �s − Tsss. �21�

The function ss��s� thus encodes all information about what
is known as the interfacial tension −ps, including the func-
tional dependence on the thermodynamic variable character-
izing the interface. The intensive composition variable does
not contribute to the pressure in the above equations. The
expression �20� can be rewritten in the more compact form,

	A,B
s = − �
I
� �as

�Ms ·
�

�r


�b̃s − bs� −
�bs

�Ms ·
�

�r


�ãs − as��d2r ,

�22�

in terms of

ãs��s,Ms,�s� = ��s �

��s + Ms ·
�

�Ms

+ ��s + ps�
�

��s�as��s,Ms,�s� . �23�

For later convenience, we perform an integration by parts in
Eq. �22� and neglect one-dimensional boundary terms to ob-
tain

	A,B
s = − �
I
� �as

�Ms ·
�

�r


�b̃s − bs� + ãs �

�r


·
�bs

�M

s

+
�bs

�Ms ·
�

�r


as�d2r . �24�

To integrate by parts in the interface, we have used the aux-
iliary formula

�
I

f ·
�

�r


gd2r = − �
I

g
�

�r


· fd2r + �
I

gf · n
�

�r


· nd2r

= − �
I

g
�

�r


· f
d2r , �25�

where f
 = �1−nn� · f.
To obtain consistency between the fundamental thermo-

dynamic evolution equation and the chain rule of functional
calculus, we finally introduce a further interfacial bracket
contribution, which we refer to as the moving interface nor-
mal transfer �MINT� term,
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	A,B
mint

= �
I

�as

�Ms · n��b̃g − bg� − �b̃l − bl� + �b̃s − bs�
�

�r


· n�d2r

− �
I

�bs

�Ms · n��ãg − ag� − �ãl − al� + �ãs − as�
�

�r


· n�d2r .

�26�

This antisymmetric term is not of the proper form for a Pois-
son bracket because it is not even a derivation �the observ-
ables appear not only through derivatives�. In the presence of
moving interfaces, however, the structure of the chain rule is
incompatible with the Poisson bracket structure �see below�,
so that the introduction of a MINT is actually unavoidable.

With the above definitions of brackets, we find the follow-
ing degeneracy properties for the entropy �7� and for the total
and species masses introduced in Eqs. �9� and �10�:

	Mtot,B
 = 0, 	Mtot,B
mint = 0, �27�

	Mg/s,B
 = 0, 	Mg/s,B
mint = 0, �28�

	S,B
 = 0, 	S,B
mint = 0. �29�

If M is the total momentum, we obtain

− 	M,B
 = 	M,B
mint

= �
I

n��b̃g − bg� − �b̃l − bl� + �b̃s − bs�
�

�r


· n�d2r ,

�30�

which shows that the MINT is crucial to guarantee momen-
tum conservation in the form of the degeneracy condition,

	M,B
 + 	M,B
mint = 0. �31�

The most important reason for introducing the MINT is to
obtain structural consistency with the chain rule, as shown
below.

E. Dissipative bracket

We express the dissipative bracket as a sum of bulk and
interface contributions,

�A,B� = �A,B�g + �A,B�l + �A,B�s. �32�

In the gas phase, we have the usual dissipative processes
associated with flow and heat conduction �8,29�,

�A,B�g = �
Vg

2�gTg� �

�r

�ag

�Mg

̂

− �̂g�ag

��g
�:� �

�r

�bg

�Mg

̂

− �̂g�bg

��g
�d3r + �

Vg
�gTg� �

�r
·

�ag

�Mg − tr �g�ag

��g
�

	� �

�r
·

�bg

�Mg − tr �g�bg

��g
�d3r

+ �
Vg


gTg2� �

�r

�ag

��g
� · � �

�r

�bg

��g
�d3r , �33�

where �g is the viscosity, �g is the bulk viscosity, 
g is the
thermal conductivity, and �g is the velocity gradient tensor in
the gas phase. The wide hat over a tensor indicates the sym-
metrized traceless part of that tensor.

In the two-component liquid, we have diffusion in addi-
tion to the usual dissipative processes associated with flow
and heat conduction,

�A,B�l = �
Vl

2�lTl� �

�r

�al

�Ml

̂

− �̂l�al

��l
�:� �

�r

�bl

�Ml

̂

− �̂l�bl

��l
�d3r

+ �
Vl

�lTl� �

�r
·

�al

�Ml − tr �l�al

��l
�� �

�r
·

�bl

�Ml

− tr �l�bl

��l
�d3r + �

Vl

lTl2� �

�r

�al

��l
� · � �

�r

�bl

��l
�d3r

+ �
Vl

D̃l� �

�r
� 1

�l

�al

�cl
�� · � �

�r
� 1

�l

�bl

�cl
��d3r , �34�

where D̃l is related to the diffusion coefficient. Up to this
point of the development, not much thinking was required.
All the thermodynamic building blocks are based entirely on
the previous experience with hydrodynamics.

For the interfacial contribution to the dissipative bracket,
we postulate

�A,B�s =�
I

TgTs

RK
gs � �ag

��g −
�as

��s�� �bg

��g −
�bs

��s�d2r +�
I

TlTs

RK
ls � �al

��l −
�as

��s�� �bl

��l −
�bs

��s�d2r +�
I
� �ag

�Mg −
�as

�Ms − vg�ag

��g + vs�as

��s� · Ts�gs

· � �bg

�Mg −
�bs

�Ms − vg�bg

��g + vs�bs

��s�d2r + �
I
� �al

�Ml −
�as

�Ms − vl�al

��l + vs�as

��s� · Ts�ls · � �bl

�Ml −
�bs

�Ms − vl�bl

��l + vs�bs

��s�d2r

+ �
I

�� �ag

��g −
�al

��l −
1 − cl

�l

�al

�cl +
vg

2
· �qgvg�ag

��g + �1 − qg�
�ag

�Mg� −
vl

2
· �qlvl�al

��l + �1 − ql�
�al

�Ml��
	� �bg

��g −
�bl

��l −
1 − cl

�l

�bl

�cl +
vg

2
· �qgvg�bg

��g + �1 − qg�
�bg

�Mg� −
vl

2
· �qlvl�bl

��l + �1 − ql�
�bl

�Ml��d2r . �35�
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This dissipative bracket expresses the transfer of energy, mo-
mentum, and mass into and through the interface. The first
integral in Eq. �35� describes the heat transfer between the
gas and the interface in terms of the Kapitza resistance RK

gs,
which characterizes the thermal boundary resistance between
a bulk fluid and a wall �or layer� �10,30�. The second integral
represents an analogous heat transfer between the liquid and
the interface in terms of the Kapitza resistance RK

ls. The next
two terms describe the potentially anisotropic momentum
transfer between the different subsystems in terms of the
friction tensors �gs and �ls. The last integral in Eq. �35� de-
scribes the process by which solute from the supersaturated
liquid is released into a growing gas bubble. The rate for this
process is given by the coefficient �. In this dissipative con-
tribution, the first three terms in each of the curly brackets
express the basic exchange idea between solution and gas
bubble and the further compensation terms are required to
satisfy the conservation of energy. The parameters qg and ql

allow a mixing of thermal and mechanical energy compen-
sation. Species masses and energy are degenerate functionals
for all contributions to the dissipative bracket. For the total
momentum M, we obtain

�M,S� = �
I

1

2
��1 − qg�vg − �1 − ql�vl���gld2r , �36�

which shows that only the choice qg=ql=1 in the dissipative
bracket �35� leads to a degenerate total momentum. We
hence assume qg=ql=1 from now on.

At this point, our thermodynamic modeling is complete.
While the expressions for the generators and brackets look
lengthy, one should realize that most of the terms merely
express the well-known hydrodynamics of the bulk phases.
The specific and new ideas to describe the processes at the
interface are �i� the choice of the system variables, in par-
ticular, of the variables xs= ��s ,Ms ,�s�, �ii� the obvious and
most basic introduction of surface excess densities of energy
�6� and entropy �7�, and �iii� the formulation �35� of a dissi-
pative bracket due to heat and momentum transfer between
the bulk phases and the boundary layer and due to the release
of solute from the boundary layer.

The remaining task is to extract and interpret all the time-
evolution equations and boundary conditions from the ther-
modynamic building blocks.

F. Time-evolution equations and boundary conditions

According to the GENERIC framework �6–8�, thermody-
namically admissible evolution equations can be expressed
in the format of the fundamental equation

dA

dt
= 	A,E
 + �A,S� . �37�

In the presence of moving interfaces, for reasons of momen-
tum conservation and structural consistency, we need to
modify this fundamental equation into

dA

dt
= 	A,E
 + 	A,E
mint + �A,S� . �38�

The general strategy of nonequilibrium thermodynamics is to
compare the definition of the functional derivatives, which
has the appearance of a chain rule, to the bracket Eq. �38�.
For a functional A of the general form �1�, the rate of change
is given by the chain rule

dA

dt
= �

Vg

�ag

�xg

�xg

�t
d3r + �

Vl

�al

�xl

�xl

�t
d3r + �

I

�as

�t
d2r

+ �
I

wn
s�ag − al�d2r + �

I

wn
sas �

�r


· nd2r , �39�

where wn
s =vs ·n is the normal velocity of the interface. A

positive wn
s implies that the liquid phase is replaced by the

gas phase, as described by the first integral involving wn
s in

Eq. �39�. The derivative �as /�t is not a conventional partial
derivative because it cannot be evaluated at a fixed point in
space. We need to follow the interface, and we do that in the
direction normal to the interface. In that sense, this time de-
rivative of an interfacial property is “as partial as possible;”
flow effects within the interface are not taken into account by
this derivative, there is just a minimal motion together with
the interface. The last term in Eq. �39� is a further correction
resulting from local changes of the interfacial area wn

s�
 ·n,
where n is a normal unit vector pointing from Vg into Vl, just
like there is a contribution to the partial time derivative of a
bulk density deformed by a velocity field v due to changes of
volume � ·v �note that −�
 ·n is the mean curvature of the
interface �3�, for example, �
 ·n=2 /R for a sphere of radius
R; smaller radius or larger curvature implies a larger rate of
change under normal motion�.

The chain rule �39� may actually be considered as a defi-
nition of the functional derivative of A in the presence of a
moving interface; but only partial derivatives of the densities
ag, al, and as occur because the functional depends only on
xg, xl, and xs as shown in Eq. �1�. The more general case of
functionals depending also on spatial derivatives of the inde-
pendent variables has been discussed with mathematical
rigor in �31�.

The last two integrals in Eq. �39� are related to the normal
motion of interfaces. They involve the densities ag, al, and as

themselves rather than only their derivatives. Their presence
in the chain rule is the reason why we need to introduce a
corresponding MINT in Eq. �38�. Note that there is a close
formal resemblance of the last two integrals and the structure
of the MINT �26�. Further note that the correction terms due
to the motion of the interface in Eq. �39� are intimately re-
lated to the gauge transformation �2�, so that we can easily
incorporate curvature effects into the latter,

as → as + ��ag − al + as �

�r


· n� . �40�

For gauge transformations, however, the curvature correc-
tions are expected to be unimportant because as is either
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gauge invariant or small.
The expected bulk equations are obtained as in the ab-

sence of interfaces. We do not list these well-known hydro-

dynamic equations �except for the special case of spherical
symmetry discussed in detail below�. The more interesting
evolution equation for any interfacial density as becomes

�as

�t
+ ãs �

�r


· v

s + v


s ·
�

�r


as + wn
s ãs �

�r


· n

= �ãg�vg − vs� − ãl�vl − vs�� · n + � �ag

��g −
�al

��l���gl −
1

�l

�al

�cl��1 − cl���gl + D̃ln ·
�

�r
� 1

�l

�sl��l,�l,cl�
�cl ��

−
�as

�Ms ·
�ps

�r


+
�as

�Ms · n�pg − pl + ps �

�r


· n� − � �ag

�Mg −
�as

�Ms� · �gs · � Ts

Tgvg − vs� − � �al

�Ml −
�as

�Ms�
· �ls · �Ts

Tl v
l − vs� −

�ag

�Mg · �2�g�̂g + �g tr �g1� · n +
�al

�Ml · �2�l�̂l + �l tr �l1� · n + � �ag

��g vg −
�as

��s vs�
· �gs · � Ts

Tgvg − vs� + � �al

��l v
l −

�as

��s vs� · �ls · �Ts

Tl v
l − vs� + � �ag

��g −
�as

��s�Ts − Tg

RK
gs + � �al

��l −
�as

��s�Ts − Tl

RK
ls

−
�ag

��g�
g�Tg

�r
· n −

vg2

2
��gl� +

�al

��l�
l�Tl

�r
· n −

vl2

2
��gl� , �41�

with the following driving force for the solute release pro-
cess:

�gl =
�sg

��g +
1

Tg

vg2

2
−

�sl

��l −
1 − cl

�l

�sl

�cl −
1

Tl

vl2

2
. �42�

This driving force can be expressed in a more intuitive way
in terms of chemical potentials,

�gl = −

̃g

Tg +

̃l

Tl , �43�

where 
̃g is the velocity-modified chemical potential in the
gas and 
̃l is the velocity-modified chemical potential of the
solute particles in the two-component liquid. As before, the
normal unit vector n in the interfacial contributions points
from Vg into Vl.

Equation �41� does not only imply the time-evolution
equations for all interfacial variables but also boundary con-
ditions for the bulk variables. Consistent equations for all
observables A of the form �1� can only be obtained if, on the
right-hand side of Eq. �41�, all terms involving derivatives of
the bulk densities ag and al with respect to the independent
bulk variables vanish. We thus obtain one boundary condi-
tion for each of the bulk variables,

��gl = − �g�vg − vs� · n , �44�

��gl = − �l�vl − vs� · n , �45�

��gl = −
D̃l

1 − cln ·
�

�r
� 1

�l

�sl��l,�l,cl�
�cl � , �46�

�gs · � Ts

Tgvg − vs� = �Mg�vg − vs� − �2�g�̂g + �g tr �g1�� · n ,

�47�

�ls · �Ts

Tl v
l − vs� = − �Ml�vl − vs� − �2�l�̂l + �l tr �l1�� · n ,

�48�

Ts − Tg

RK
gs = − ��g + pg +

1

2
�gvg2��vg − vs� · n + 
g�Tg

�r
· n

+ vg · �2�g�̂g + �g tr �g1� · n , �49�

Ts − Tl

RK
ls = ��l + pl +

1

2
�lvl2��vl − vs� · n − 
l�Tl

�r
· n

− vl · �2�l�̂l + �l tr �l1� · n . �50�

The boundary conditions �44� and �45� can be combined into
the “jump mass balance”

�g�vg − vs� · n = �l�vl − vs� · n , �51�

which expresses the notion that the interface cannot store any
mass. Instead of Eq. �51�, we actually have the stronger
gauge invariance condition �3�. In addition, vs can be elimi-
nated between Eqs. �44� and �45� to obtain a relationship
between bulk variables at the interface only,

�g�l

�l − �g �vl − vg� · n = ��gl. �52�
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By choosing as in Eq. �41� as �s, Ms, and �s, we obtain the
following evolution equations for the interfacial densities of
excess mass, momentum, and internal energy:

��s

�t
+

�

�r


· �v

s�s� + wn

s�s �

�r


· n = 0, �53�

�Ms

�t
+

�

�r


· �v

sMs� + wn

sMs �

�r


· n = �Mg�vg − vs� − Ml�vl

− vs�� · n −
�ps

�r


− �2�g�̂g + �g tr �g1� · n

+ �2�l�̂l + �l tr �l1� · n + n�pg − pl + ps �

�r


· n� , �54�

and

��s

�t
+

�

�r


· �v

s�s� + wn

s�s �

�r


· n = − ps� �

�r


· v

s + wn

s �

�r


· n�
− �
g�Tg

�r
− 
l�Tl

�r
� · n + �1

2
�g�vg − vs�2 + �g + pg�

	�vg − vs� · n − �1

2
�l�vl − vs�2 + �l + pl��vl − vs� · n

− �vg − vs� · �2�g�̂g + �g tr �g1� · n

+ �vl − vs� · �2�l�̂l + �l tr �l1� · n . �55�

The pressure terms in Eq. �55� for the energy describe the
change of area due to flow within the interface and the
change of area due to the motion of the interface, respec-
tively. We thus see how interfacial tension arises through the
analog of the Gibbs-Duhem equation for the interface. By a
further application of Eq. �41� to the mass of the solute spe-
cies �10�, we find the following evolution equation for the
scalar mass fraction:

�s� �cl

�t
+ v


s ·
�cl

�r

� = 0. �56�

Equations �53�–�56� are balance equations for surface excess
quantities in terms of the bulk fluxes of the respective quan-
tities.

The vanishing right-hand side of Eq. �53� expresses the
fact that �s is a small and ambiguous variable. The interface
cannot take up mass, the occurrence of �s is only a matter of
choosing the precise location of the interface. Also Eq. �56�
expresses the inability of the interface to accumulate mass.

As momentum cannot be stored in the interface either,
also Ms is a small ambiguous variable and both sides of Eq.
�54� must vanish. We thus obtain the further boundary con-
dition �“jump linear momentum balance”�,

Ml�vl − vs� · n − �2�l�̂l + �l tr �l1� · n + pln = Mg�vg − vs� · n

− �2�g�̂g + �g tr �g1� · n + pgn −
�ps

�r


+ psn
�

�r


· n . �57�

The internal energy �s is a relevant interfacial variable. Its
time evolution is governed by Eq. �55�, and it implies all the
information about Ts, ps, and ss. In particular, the time evo-

lution of �s is consistent with the natural entropy balance

�ss

�t
+

�

�r


· �v

sss� + wn

sss �

�r


· n

= �sg�vg − vs� − sl�vl − vs� −

g

Tg

�Tg

�r
+


l

Tl

�Tl

�r
� · n

+
1 − cl

�l

�sl��l,�l,cl�
�cl ��gl + � Ts

Tgvg − vs� ·
�gs

Ts · � Ts

Tgvg

− vs� + �Ts

Tl v
l − vs� ·

�ls

Ts · �Ts

Tl v
l − vs� +

�Tg − Ts�2

TgTsRK
gs

+
�Tl − Ts�2

TlTsRK
ls + ���gl�2, �58�

as can be shown by making use of the boundary conditions.
In view of Eqs. �55� and �57�, the interfacial pressure ps must
clearly be a relevant variable.

In principle, all the jump balances and boundary condi-
tions of the present section can also be obtained from the
traditional approaches to interfaces �22,23�. However, within
the GENERIC approach, all evolution equations and bound-
ary conditions arise from a single equation that automatically
guarantees their completeness and thermodynamic consis-
tency. In particular, we obtain a reliable and transparent en-
tropy balance equation. Instead of our separate equations
�51� and �52�, a combined jump mass balance occurs in Eq.
�1.3.5–4� of �22� or in Eq. �16.1–8� of �23�. The splitting into
two equations results from a strict rather than approximate
implementation of gauge invariance, where the underlying
ideas have essentially been discussed in terms of order-of-
magnitude arguments in the paragraph after Eq. �16.1–8� of
�23�. A similar splitting leads from the standard form �54� of
the jump momentum balance to the boundary condition �57�.

III. SINGLE SPHERICAL BUBBLE

We now focus on a single spherical bubble in an infinite
solution. We hence specialize our equations to the case for
which the velocity field has only a radial component and all
hydrodynamic fields depend only on the distance from the
center. This simplification allows us to analyze the nature
and the completeness of the boundary conditions in more
detail.

A. Full equations

We describe the spherical gas bubble by the three scalar
fields �g�r�, vg�r�, and Tg�r�, where vg is the radial velocity
component and r is the distance from the center of the
bubble. The continuity equation for the mass density,

��g

�t
= −

1

r2

�

�r
�r2vg�g� , �59�

can be integrated to obtain an explicit expression for the
velocity field in terms of the density field,
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vg�r,t� = −
1

r2�g�r,t��0

r

r�2��g�r�,t�
�t

dr�, �60�

where the integration constant has been determined by as-
suming regularity at the origin.

The equation of motion for the radial velocity field be-
comes

�g� �vg

�t
+ vg�vg

�r
� =

4

3

1

r3

�

�r
��gr4 �

�r
�vg

r
��

+
�

�r
��g 1

r2

�

�r
�r2vg�� −

�pg

�r
. �61�

The temperature equation reads as

�Tg

�t
= − vg�Tg

�r
−

1

�s
g

1

r2

�

�r
�r2vg� +

1

�gĉV
g�4

3
�g�r

�

�r
�vg

r
��2

+ �g� 1

r2

�

�r
�r2vg��2

+
1

r2

�

�r
�r2
g�Tg

�r
�� , �62�

where �s
g is the adiabatic thermal expansivity and ĉV

g is the
heat capacity per unit mass for the gas.

We describe the bulk liquid phase by the four scalar fields
�l�r�, vl�r�, Tl�r�, and cl�r�. The continuity equation for the
mass density,

��l

�t
= −

1

r2

�

�r
�r2vl�l� , �63�

and the equation of motion for the radial velocity field,

�l� �vl

�t
+ vl�vl

�r
� =

4

3

1

r3

�

�r
��lr4 �

�r
�vl

r
��

+
�

�r
��l 1

r2

�

�r
�r2vl�� −

�pl

�r
, �64�

are the direct analogs of Eqs. �59� and �61�. To obtain the
proper spherically symmetric temperature equation for the
two-component liquid, we start from the general temperature
equation

�Tl

�t
= − vl ·

�Tl

�r
−

1

�s
l

�

�r
· vl +

1

�lĉV
l � ��l

�t
+

�

�r
· �vl�l�

+ pl �

�r
· vl� − Tl2 �2sl

��l � cl� �cl

�t
+ vl ·

�cl

�r
� , �65�

which can be obtained most conveniently by acting with the
material time derivative on the definition of 1 /Tl in Eq. �8�.
For spherical symmetry, we thus obtain the following gener-
alization of Eq. �62� for the two-component liquid phase:

�Tl

�t
= − vl�Tl

�r
−

1

�s
l

1

r2

�

�r
�r2vl� +

1

�lĉV
l �4

3
�l�r

�

�r
�vl

r
��2

+ �l� 1

r2

�

�r
�r2vl��2

+
1

r2

�

�r
�r2
l�Tl

�r
��

− Tl2 �2sl

��l � cl� �cl

�t
+ vl�cl

�r
� . �66�

The material time evolution of cl occurring in the last term is
given by the diffusion equation

�cl

�t
+ vl�cl

�r
= −

1

�lr2

�

�r
�r2D̃l �

�r
� 1

�l

�sl

�cl�� . �67�

Let us now consider the boundary conditions for the
seven hydrodynamic fields describing the gas and the liquid.
For each field describing the gas, there is a boundary condi-
tion at r=0 because the conserved quantities cannot be accu-
mulated at the origin. For each field describing the liquid,
there is a boundary condition for r→� where the asymptotic
conditions are assumed to be fixed. At the interface, we
hence need only one boundary condition for each of the
fields governed by partial differential equations involving
second-order derivatives, that is, for the variables vg, Tg and
vl, Tl, and cl.

The boundary conditions for vg and vl at r=R are given
by Eqs. �52� and �57�,

vg − vl = − � 1

�g −
1

�l���gl, �68�

and

4

3
�lr

�

�r
�vl

r
� +

�l

r2

�

�r
�r2vl� − pl =

4

3
�gr

�

�r
�vg

r
� +

�g

r2

�

�r
�r2vg�

− pg −
2ps

R
+ �vg − vl���gl,

�69�

where the bubble radius R can be determined from Eq. �45�,

dR

dt
= vs = vl�R� +

1

�l��gl. �70�

In addition to this equation for vs, the other relevant interfa-
cial variable, for example, the temperature of the interface
Ts, can be obtained from Eq. �55�.

Equation �46� serves as a boundary condition for cl. The
boundary conditions for Tg and Tl at r=R are given by Eqs.
�49� and �50� for the case of spherical symmetry.

At this point, all available equations except Eqs. �47� and
�48� have been used. What is the significance of these re-
maining two equations? Actually, these two equations play
the role of constraints. The irreversible momentum transfer
between the bulk phases and the interface is a subtle process
and cannot be described by simple given friction tensors �gs

and �ls. Rather, the momentum transfer at the interface de-
pends on all the details of the local stress situation, and Eqs.
�47� and �48� can be used to determine the effective friction
tensors such that the two bulk phases stay in contact at the
interface. Actually, one can solve the other equations without
even calculating these effective friction tensors.

Finally, let us consider the isothermal case. This special
case can be obtained by taking the limit of infinite thermal
conductivities and vanishing Kapitza resistances. We assume
that, in this limit, the dissipation due to the corresponding
processes vanishes. If all temperatures Ts=Tg=Tl are equal
to the externally specified one, the boundary conditions �49�
and �50� become irrelevant because they are solved by van-
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ishingly small perturbations of the constant-temperature
field.

In summary, we have the time-evolution equations �59�,
�61�, and �62� in the gas bubble, Eqs. �63�, �64�, �66�, and
�67� in the two-component liquid. The evolution of the rel-
evant interfacial properties is given by Eqs. �55� and �70�.
For the velocity field, we have the boundary conditions �68�
and �69�, and the required boundary conditions for the tem-
perature field are given by Eqs. �49� and �50�.

B. Simplified equations

We consider the growth of a single-component spherical
gas bubble of radius R�t� surrounded by a liquid of infinite
extent. Bubble growth is driven by the isothermal diffusion
of a volatile solute dissolved in the liquid. There is mass
transfer across the interface at r=R�t� that separates the
bubble and liquid phases, and bubble growth is induced by a
pressure reduction in the liquid at t=0− from p0 to p� causing
the liquid to become supersaturated; bubble collapse is in-
duced by a pressure increase in the liquid at t=0− from p0 to
p� causing the liquid to become undersaturated. For t�0,
the system is assumed to be in mechanical, thermal, and
chemical equilibrium, and a bubble with radius R0 exists as a
result of thermal fluctuations. The initial solute composition
in the liquid is cl�r ,0�=c0=Kp0, where K is a version of
Henry’s law constant, the initial temperature is T0, and both
the gas and liquid are at rest. The previously given version
kH,cc of Henry’s law constant is given by kH,cc=K�0kBT0 /m,
where kB is Boltzmann’s constant and m is the mass of a gas
particle. In the time period from t=0− to t=0, corresponding
to the time for pressure wave to propagate through the liquid,
the pressure in the liquid becomes uniform at p�. Therefore,
the pressure in the liquid is given by pl= p� and the density is
given by �l=�0. We are interested in developing models that
describe diffusion-induced bubble growth or collapse in liq-
uids from an initial radius of R0. Consequently, it is appro-
priate to use R0 to scale length and the mass diffusivity to
scale the relationship between time and length.

In view of the bubble growth phenomenon of interest just
described, we make the following simplifying assumptions.
Overall: spherical symmetry, negligible fluid inertia, negli-
gible body forces, local equilibrium in each subsystem, ab-
sence of chemical reactions, position-independent transport
coefficients, constant interfacial tension, vanishing Kapitza
resistances for the heat transfer between the different sub-
systems, and negligible radiative heat transfer;gas bubble:
mechanical equilibrium, infinite thermal conductivity, and
vanishing bulk viscosity; supersaturated liquid: mechanical
equilibrium, infinite thermal conductivity, and ideal solution
entropy.

According to the discussion of the preceding subsection,
the assumption of infinite thermal conductivities and vanish-
ing Kapitza resistances leads to the isothermal situation Ts

=Tg=Tl=T0.
In the uniformly expanding gas bubble, the density �g�t�

depends on time only and, at given temperature, it is equiva-
lent to the pressure at the boundary. With the above assump-
tions, the momentum and energy balances are satisfied iden-

tically and, according to Eq. �60�, the continuity equation
implies the homogeneous radial velocity field,

vg�r,t� = −
1

3
r

1

�g�t�
d�g�t�

dt
. �71�

In the supersaturated liquid pushed away by the growing
bubble, we have an inhomogeneous equibiaxial extensional
flow situation �two extensional rates coincide for symmetry
reasons�. The dissipative stress tensor decays as r−3, and the
velocity field is of the form

vl�r,t� =
f�t�
r2 , �72�

where the function f�t� needs to be determined from the
boundary conditions at the interface to the bubble. For such a
velocity field, the density �l is independent of both position
and time. This does not exclude the possibility of a changing
density in response to an initial pressure jump, which could
be applied to produce a supersaturated liquid �we merely do
not resolve the resulting propagation of sound waves through
the liquid�. As in the gas bubble, we have a uniform tempera-
ture Tl�t� to be determined from the boundary conditions.

For the entropy, we assume ideal-gas behavior,

sg��g,�g� =
1

2

kB

m
�g ln� �g3

�g5� , �73�

where, strictly speaking, a proper constant factor should be
introduced to make the argument of the logarithm dimen-
sionless, and ideal solution behavior,

sl��l,�l,cl� = s̃l��l,�l� −
kB

m
�lcl ln cl , �74�

which implies that also pl= p� is independent of both posi-
tion and time. After neglecting the inertial terms, we obtain
from Eq. �42�,

cl�R� = Kpg exp� m

kB
�gl� . �75�

Henry’s law is recovered under equilibrium conditions, that
is, for �gl=0. For a supersaturated liquid, c0�Kp�, and for
an undersaturated liquid, c0�Kp�. The only evolution equa-
tion that remains to be solved in the bulk is obtained from
Eqs. �67� and �72�,

�cl

�t
= −

f

r2

�cl

�r
+

Dl

r2

�

�r
�r2�cl

�r
� , �76�

where we have introduced the constant diffusion coefficient
Dl,

Dl =
kBD̃l

m�lcl . �77�

The further simplified boundary conditions are written as
follows. Equation �70� can be rewritten as
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dR

dt
=

f

R2 +
1

�0
��gl, �78�

and the additional jump mass balance �68� combined with
Eqs. �71� and �72� becomes

d�g

dt
=

3

R
��1 −

�g

�0
���gl − �g f

R2� . �79�

Using the ideal-gas law for the pressure implied by Eq. �73�,
we can rewrite Eq. �79� as follows:

dpg

dt
=

3

R
�� kBT0

m
�0 − pg� �

�0
�gl − pg f

R2� . �80�

In these equations, f is obtained from the jump momentum
balance �69� after inserting the velocity fields �71� and �72�,

4

R3�lf = pg − p� +
2

R
ps, �81�

where inertial effects have been neglected, and, following
standard praxis, the interfacial tension −ps is assumed to be a
positive constant. Finally, the nonequilibrium driving force
variable �gl is obtained by combining Eqs. �46�, �74�, �75�,
and �77�,

�gl =
1

�

�0Dl

1 − Kpg exp	m�gl/kB

� �cl

�r
�

r=R

. �82�

If one assumes chemical equilibrium at the interface ��gl

=0�, the gas pressure pg determines the composition at the
interface cl�R� by the equality of chemical potentials �Hen-
ry’s law�, and we recover the equations of �20�. In the ab-
sence of chemical equilibrium, the relationship between
cl�R� and pg depends on �gl, which is obtained from Eq. �82�.

C. Numerical results

For our numerical solution procedure, we evolve the vari-
ables cl, R, and pg according to the evolution equations �76�,
�78�, and �80�, respectively. The initial conditions are given
by c0, R0, and p�−2ps /R0. The boundary condition for cl for
r→� is c0, and for r=R is given by Eq. �75�. Equations �81�
and �82� determine the values of the auxiliary variables f and
�gl in the evolution equations. This system of equations con-
tains nine parameters �R0 ,�0 , p� , ps ,c0 ,K ,� /m ,Dl ,�l�,
which we consider to be constant that can be used to form
the six dimensionless parameters listed in Table II. Five of
these parameters �NA,NB /NA,NC,NK,NT� have been intro-
duced in previous studies �20,21�. The driving force for
phase change is given by NA, which is positive for bubble
growth and negative for bubble collapse. The ratio NB /NA
gives the ratio of a characteristic gas density to the liquid
density and is fixed at a value of 0.001. The parameter NK is
a dimensionless Henry’s law constant and is specified such
that �1−NK��1. The value of the dimensionless surface ten-
sion is fixed NC=0.5, and a product of transport coefficients
has a fixed value NT=0.1. Diffusion-controlled bubble
growth/collapse occurs when interfacial and viscous effects
are neglected �NC=NT=0�. For diffusion-controlled bubble
growth from a zero initial radius R=2��Dlt /R0

2, where �

=��NA,NB /NA� �17�. The additional dimensionless param-
eter N� in Table II, through Eq. �82�, controls the degree of
departure from chemical equilibrium at the interface.

The system of differential/algebraic equations was nu-
merically integrated using a solver described in �32� and
implemented using a software package known as ATHENA
VISUAL STUDIO. To facilitate the numerical solution of the
equations, the coordinate transformations developed by Duda
and Vrentas �15,16� were implemented. Finally, the accuracy
of the numerical solutions was verified by comparison with
previously published results �15,16,19,20�.

The evolution of the bubble radius and pressure with time
during bubble growth are shown in Figs. 2 and 3, respec-
tively. As a reference, we show in Fig. 2 the exact similarity
solution R=2��Dlt /R0

2, which gives the asymptotic growth
rate for R /R0�1. Also shown in Figs. 2 and 3 is the
diffusion-controlled case �NC=NT=0�, where viscous and in-
terfacial forces are neglected. For the diffusion-induced cases
shown in Figs. 2 and 3, viscous and interfacial forces retard
bubble growth and increase the pressure within the bubble.
The increase in bubble pressure, as shown by Eq. �75�,
causes the solute concentration at the interface to increase,
thereby reducing the driving for mass transfer and retarding
bubble growth �20�.

We now examine the dynamic behavior of the variable
�gl= �
l−
g� /T0, which indicates the deviation from chemi-

TABLE II. Dimensionless parameters.

Description Definition

Driving force for phase change NA=
�0kBT0

mp�

c0−Kp�

1−Kp�

Ratio of gas to liquid density
NB

NA
=

mp�

�0kBT0

Interfacial tension NC=− ps

p�R0

Henry’s law constant NK=
Kp�

c0

Transport coefficients NT= �lDl

p�R0
2

Solute release rate N�=
�kBR0

m�0Dl

FIG. 2. �Color online� Bubble radius versus time during bubble
growth for different values of the rate parameter N� defined in
Table II: solid lines from top to bottom are for N��0.1, N�

=0.01, and N�=0.001 �black, blueed in Table II are as follows:
NA=1, NB=0.001, NC=0.5, NK=0.1, and NT=0.1. Dashed black
line is diffusion-controlled case �NC=NT=0�; thin dotted black line
for R=2��Dlt /R0

2, with �=1.34 �17�.
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cal equilibrium at the interface, shown in Fig. 4. Since �gl

�0, the chemical potential of the solute in the liquid phase is
larger than in the gas phase. The equilibrium case is achieved
when NB /N��1; �gl shows a significant deviation from zero
only at early times. For smaller values of N� �larger values
of NB /N��, larger departures from chemical equilibrium are
observed, which in turn, increases the solute concentration at
the interface as dictated by Eq. �75�. As shown in Figs. 2 and
3, this retards bubble growth relative to the equilibrium case
and leads to a decrease in the maximum bubble pressure. For
all three cases shown in Fig. 4, �gl appears to show a rapid
initial decay followed by a significantly slower decay, which
occurs shortly after the maximum in bubble pressure is
reached.

It is of interest to examine the effect of nonequilibrium
interfacial effects on the evolution of the bulk variable cl.
This is done in Fig. 5, which shows the same three cases
shown in Figs. 2–4. For the equilibrium case �N��0.1�, the
concentration gradient at the interface is large for all times.
As discussed in a previous work �15�, this stiffness has re-
sulted in the reporting of inaccurate numerical solutions. As

shown in Fig. 5, for increasing departures from equilibrium
at the interface �decreasing values of N��, the magnitude of
the concentration gradient at the interface is reduced signifi-
cantly, thereby, reducing the stiffness of the numerical prob-
lem to be solved.

For comparison, we show the evolution of the bubble ra-
dius and pressure with time during bubble growth in Figs. 6
and 7, respectively, for a larger driving force �NA=10�, keep-
ing NB /NA�=0.001� and all other fixed parameters the same
as those in earlier figures. We actually do this to achieve a
situation in which the simplifying assumption cs=cl can be
justified. As before, viscous and interfacial forces retard
bubble growth and increase the pressure within the bubble.
However, because the growth rate is larger, the increase in
bubble pressure is more pronounced. Similar to Fig. 4, the
behavior of �gl shown in Fig. 8 shows a rapid initial decrease
followed by a much slower decrease just after the bubble
pressure goes through a maximum. As with the smaller driv-
ing force case shown in Figs. 2–4, equilibrium at the inter-
face for the larger growth rate is achieved when NB /N��1.

The evolution of the bubble radius and pressure with time
during bubble collapse are shown in Figs. 9 and 10, respec-

FIG. 3. �Color online� Bubble pressure versus time during
bubble growth for different values of the rate parameter N� defined
in Table II: solid lines from top to bottom are for N��0.1, N�

=0.01, and N�=0.001 �black, blue, and red�. Values of other param-
eters defined in Table II are as follows: NA=1, NB=0.001, NC

=0.5, NK=0.1, and NT=0.1. Dashed black line is diffusion-
controlled case �NC=NT=0�.

FIG. 4. �Color online� Interfacial driving force versus time dur-
ing bubble growth for the cases shown in Figs. 2 and 3 �from
bottom to top: black, blue, and red�.

FIG. 5. �Color online� Composition profiles during bubble
growth for the cases shown in Figs. 2 and 3 for different values of
time: Dlt /R0

2=0.01,0.1,1 �top to bottom�.

FIG. 6. �Color online� Bubble radius versus time during bubble
growth for different values of the rate parameter N� defined in
Table II: solid lines from top to bottom are for N��1, N�=0.1, and
N�=0.01 �black, blue, and red�. Values of other parameters defined
in Table II are as follows: NA=10, NB=0.01, NC=0.5, NK=0.1, and
NT=0.1. Dashed black line is diffusion-controlled case �NC=NT

=0�; thin dotted black line for R=2��Dlt /R0
2, with �=10.2 �17�.
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tively. The diffusion-controlled case �NC=NT=0�, where vis-
cous and interfacial forces are neglected, is also shown in
Figs. 9 and 10. As with bubble growth, viscous and interfa-
cial forces increase the bubble pressure during diffusion-
induced bubble collapse. For the equilibrium case �N��0.1
for the case shown in Figs. 9 and 10�, the bubble pressure
shows a rapid initial decrease and then remains nearly con-
stant until the bubble dissolves completely �19�. As shown
by Eq. �75�, the solute concentration at the interface in-
creases with increasing bubble pressure; for bubble collapse,
this increases the driving for mass transfer. However, as the
bubble radius decreases, both viscous and interfacial forces
increase and retard bubble collapse. Thus, for the equilibrium
case shown in Figs. 9 and 10, the net result of these compet-
ing effects is to retard bubble collapse.

The dynamic behavior of �gl during bubble collapse is
shown in Fig. 11. Here, �gl�0, meaning the chemical poten-
tial of the solute in the liquid phase is smaller than in the gas
phase. The equilibrium case is achieved when N�

�NB /NA�N��0.1�; again, �gl shows a significant deviation
from zero only at early times. For smaller values of N�,
larger departures from chemical equilibrium are observed,

which appear to track the behavior the bubble pressure
shown in Fig. 10. Since �gl�0, nonequilibrium effects cause
the solute concentration at the interface to decrease as dic-
tated by Eq. �75�, thereby, reducing the driving force for
mass transfer. Hence, the increase in bubble pressure results
in both a mechanical and chemical impedance to bubble col-
lapse and dramatically increases the bubble lifetime as
shown in Fig. 9.

IV. SUMMARY AND CONCLUSIONS

We have extended the GENERIC framework of nonequi-
librium thermodynamics to handle systems with moving in-
terfaces. In order to obtain consistency between the thermo-
dynamic evolution equation and the chain rule of functional
calculus, we needed to introduce a moving interface normal
transfer term. After introducing such a term, GENERIC pro-
vides all evolution equations and boundary conditions re-

FIG. 7. �Color online� Bubble pressure versus time during
bubble growth for different values of the rate parameter N� defined
in Table II: solid lines from top to bottom are for N��1, N�=0.1,
and N�=0.01 �black, blue, and red�. Values of other parameters
defined in Table II are as follows: NA=10, NB=0.01, NC=0.5, NK

=0.1, and NT=0.1. Dashed black line is diffusion-controlled case
�NC=NT=0�.

FIG. 8. �Color online� Interfacial driving force versus time dur-
ing bubble growth for the cases shown in Figs. 6 and 7 �from
bottom to top: black, blue, and red�.

FIG. 9. �Color online� Bubble radius versus time during bubble
collapse for different values of the rate parameter N� defined in
Table II: solid lines from bottom to top are for N��0.1, N�

=0.01, and N�=0.001 �black, blue, and red�. Values of other param-
eters defined in Table II are as follows: NA=−1, NB=−0.001, NC

=0.5, NK=2, and NT=0.1. Dashed black line is diffusion-controlled
case �NC=NT=0�.

FIG. 10. �Color online� Bubble pressure versus time during
bubble collapse for different values of the rate parameter N� de-
fined in Table II: solid lines from bottom to top are for N��0.1,
N�=0.01, and N�=0.001 �black, blue, and red�. Values of other
parameters defined in Table II are as follows: NA=−1, NB=
−0.001, NC=0.5, NK=2, and NT=0.1. Dashed black line is
diffusion-controlled case �NC=NT=0�.
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quired for the system, as we have discussed in detail for a
spherical gas bubble in a liquid. Whereas the same equations
could be obtained from classical irreversible thermodynam-
ics with the extra possibility of handling excess quantities at
surfaces and interfaces through Heaviside and delta functions
�3–5,25�, the power and elegance of the GENERIC frame-
work is obvious. For example, GENERIC can readily be
applied to situations in which structural variables in addition
to the hydrodynamic variables governed by the balance
equations of the present paper become important.

In general, interfacial variables can be classified as either
macroscopically relevant or ambiguous, depending on their
sensitivity to microscopic displacements of the interface. We
have added depth to such a distinction by introducing gauge
transformations associated with these microscopic displace-
ments of the interface. The physical predictions should be
gauge invariant; however, for the formulation of thermody-
namically consistent equations, it may be much more conve-
nient or even essential to fall back on gauge-dependent vari-
ables. For example, for the proper formulation of the kinetic-
energy contribution one needs to keep the ambiguous excess
mass and momentum variables, even though only their

ratio—the interface velocity—is macroscopically relevant.
The idea of gauge invariance provides a powerful tool to
establish the interface as an autonomous thermodynamic
subsystem and, thus, to clarify the subtle role of “local equi-
librium” in the presence of interfaces.

From a theoretical point of view, it would be desirable to
develop a deeper understanding of the moving interface nor-
mal transfer term. Like the Poisson bracket itself, it should
result from the properties of the group of space transforma-
tions and its action on other fields but for a partitioned space.
In addition, there might be a deep connection between this
term and the idea of gauge invariance.

We have developed the general ideas in the context of a
two-phase system consisting of a gas and a liquid in which
the gas can be dissolved. As a concrete example, we have
discussed the growth and collapse of spherical gas bubbles in
supersaturated and undersaturated liquids, respectively. At
early times, there can be significant differences between the
chemical potentials of the gas and the solute. As a conse-
quence, nonequilibrium effects impede bubble growth and
collapse; bubble growth is retarded, and the lifetime of col-
lapsing bubbles can increase dramatically.

The formulation of boundary conditions for the thermally
induced growth of vapor bubbles in liquids has been exam-
ined previously �33–35�. In some cases, the assumption of a
thermodynamic equilibrium at the interface has been relaxed
using the framework of linear irreversible thermodynamics
�33,34�. It is of interest to note that similar to the results
shown in this work, it has been found that nonequilibrium
effects at the interface lead to a reduction in bubble growth
rates �33�.
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