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Nondiffusive Brownian motion of deformable particles: Breakdown of the ‘“long-time tail”

Séndalo Roldén-Vargas,l’* Miguel Peldez-Fernandez,' Ramon Barnadas-Rodrl’guez,z’3 Manuel Quesada—Pélrez,4
Joan Estelrich,” and José Callejas-Ferne’mdez1
lDepartamem‘o de Fisica Aplicada, Grupo de Fisica de Fluidos y Biocoloides, Universidad de Granada, E-18071 Granada, Spain
2Departament de Fisicoquimica, Facultat de Farmacia, Universitat de Barcelona, Barcelona, E-08028 Catalonia, Spain

3Centre d’Estudis en Biofisica, Facultat de Medicina, Universitat Autonoma de Barcelona,
Cerdanyola del Valleés Bellaterra, Barcelona, E-08193 Catalonia, Spain
4Departamento de Fisica, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, E-23700 Jaén, Spain
(Received 22 December 2008; revised manuscript received 3 July 2009; published 18 August 2009)

We study the nondiffusive Brownian motion of both rigid and deformable mesoscopic particles by cross-
correlated dynamic light scattering with microsecond temporal resolution. Whereas rigid particles show the
classical long-time tail prediction, the transition to diffusive motion of deformable particles presents a striking
behavior not explained by the existing hydrodynamic treatments. This observation can be interpreted in terms
of a damped oscillatory deformational motion on time scales of the order of the Brownian time. Finally, we
show that the nondiffusive Brownian motion depends on the specific flexibility of the particles.
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The dynamics of a Brownian particle can be formulated
on different levels of description depending on the time scale
of interest and the refinement of the hydrodynamic approach
[1-3]. Thus, in Einstein’s classic investigation [4] no as-
sumptions about the behavior of the particle velocity were
made and the motion at long times of a “free” Brownian
particle was shown to be diffusive. The initial attempt to
incorporate velocity in the description of Brownian motion
immediately came with the Langevin equation [5,6]. Within
this approximation, the interaction between the particle and
the surrounding fluid was separated into two forces associ-
ated with a common origin, a systematic friction and a fluc-
tuating noise, with no considerations of hydrodynamic
memory effects. Despite its mathematical significance, this
simple model predicts an extremely fast transition from bal-
listic to diffusive motion which is found to be nonrealistic.

The true character of the transition from ballistic to diffu-
sive motion was successfully explored by Alder and Wain-
wright [7,8] by means of molecular-dynamics simulations
assuming a hard-sphere (HS) interaction. They found a “sur-
prising persistence of the velocities” [8] through a “long-
time tail” (<7 ¥?) in the velocity autocorrelation function,
with the resultant delay in the emergence of the diffusive
motion. In terms of macroscopic fluid dynamics, this obser-
vation was explained as a hydrodynamic memory effect due
to the circulation of the fluid from the front of the particle,
where the fluid is compressed, to the rear, where a rarefac-
tion wave is developed. This vorticity effect pushes the par-
ticle resulting in a persistence of its motion. Soon, this find-
ing was mathematically described by detailed
hydrodynamics treatments [9—11] and the first real measure-
ments of the long-time tail appeared for simple liquids
[12,13]. For rigid colloidal particles, experiments using dy-
namic light scattering (DLS) [14-16], diffusing-wave spec-
troscopy [17,18], and optical trapping interferometry [19],
have consolidated the existence of the long-time tail. Never-
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theless, these studies have been based on the assumption of a
HS-like interaction (computer simulations) or a fixed, rigid,
geometrical shape of the tracer particles (experiments). How-
ever, despite their ubiquitous presence, a lack of these inves-
tigations devoted to deformable particles still persists.

In this paper, we use cross-correlated DLS to present ex-
perimental evidence against the validity of the classic long-
time tail prediction in case of mesoscopic deformable par-
ticles suspended in a small-molecule solvent. Thus, as
opposed to rigid particles, we document an original observa-
tion that can be interpreted in terms of the interplay between
the translational and the deformational motion of our de-
formable particles on time scales of the order of the Brown-
ian time. These data demand a complete theoretical approach
to account for the nondiffusive Brownian dynamics of meso-
scopic deformable particles. In absence of a theoretical un-
derstanding, we show that two deformable particles with
similar diffusivity can be distinguished by their specific flex-
ibility through their nondiffusive Brownian motion. As a re-
sult, our investigation appears as especially stimulating to be
applied to mesoscopic biological objects whose functionality
depends on their elastic properties to a great extent [20].

An essential relation holds for the isotropic motion of a
Brownian particle between any Cartesian component of its
mean-square displacement, (Ax*(7)), and its corresponding
velocity autocorrelation function, (v, (0)v. (7)) [6],

(Ax*(7) = 2f (7= 0){v(0)v,(1))dr. (1)
0

The brackets denote ensemble averages. Equation (1) applied
to the case of a Langevin’s particle becomes [6]

(Ax*(7)) = 2Dy[ 7— 75 + T exp(— 7/ 7p)], (2)

where D, is the particle’s diffusion coefficient and 73
=2a’p/97 the Brownian time. Here a and p represent the
radius and density of a rigid mesoscopic spherical particle,
whereas 7 is the shear viscosity of the fluid. In contrast, if
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we consider a complete hydrodynamic treatment including
memory effects, Eq. (1) becomes [11,15]

12
(AX%(7)) = 2D0|:T—2(E) 72+ E(S - 2—’,))
T

/2
i_<7—j)—’,))7-‘”21; (r=m). ()

- [
P

where 7,=(9/2)(p’/p)7g, p' being the fluid density. Al-
though both results, [Egs. (2) and (3)] tend to a common
diffusive regime, (Ax*(7))=2D,7 (7> 73), the latter presents
a slower transition due to its second term (<7/2), which is
associated to the presence of the long-time tail (¢7%2) in
(v,(0)v,(7)), as can be deduced from Eq. (1).

To test these theoretical predictions via DLS, an experi-
mental determination of the normalized autocorrelation func-
tion of the scattered field g,(g;7) (g being the magnitude of
the scattering vector) can be performed. In case of noninter-
acting, identical, and rigid spherical particles g,(¢g;7)
=(exp(igAx(7))). If measurements of g,(¢g;7) are made at
short times (7= 7;), non-Gaussian effects are hardly appre-
ciable regardless of the statistics of v,, as can be proven by
Taylor’s expansion of g;(g;7) [15]. Accordingly [21],

eilgin)=exp| - 2L ). @

However, instead of using directly g,(g;7) to probe Egs. (2)
and (3), an experimental time-dependent “diffusion coeffi-
cient” Doy, (1) =(=1/¢%)d In g,(q:7)/d7 s frequently defined
[15,17]. As a result, the slopes of (Ax*(7))/2 obtained from
Egs. (2) and (3) are compared with D,,(7), which is deter-
mined by numerical differentiation. Nevertheless, we should
note that whereas Eqgs. (2) and (3) consider uniquely the
theoretical translational motion, D.,(7) could also reflect the
motion corresponding to nontranslational degrees of free-
dom. This will be a central point in our discussion.

To obtain D.,,(7) for the suspensions investigated in this
work, we used a three-dimensional DLS spectrometer (LS
instruments, Fribourg, Switzerland) with two incident He-Ne
laser beams (A=632.8 nm). Suspensions were contained in a
cylindrical scattering cell which was immersed in a thermo-
statized bath. A digital correlator (Flex031q-OEM) computes
the normalized cross-correlation function, gzc(q; 7) of the
registered scattered intensities detected by two avalanche
photodiodes (SPCM-AQRH) for which the time-dependent
contributions of multiple scattered photons can be neglected.
The experimental g;(g; 7) were obtained through the relation
gelg;D=1+plg\(g;: D] (0<B<1), with a similar protocol
as that described in Ref. [22] for a two-color DLS scheme.
The sample time resolved with our correlator is 12.5 ns, with
286 7 values along the interval [1.25-107%,107*] s. For all
the experiments, photon counting rates were kept within
[10°,5-10°] s7! to ensure a maximum dead time of 40 ns,
being always under the saturation limit. A reliable statistical
estimator of g,(g;7) resulted from the average of 25 inde-
pendent measurements with 1000 s per measurement. Thus,
spurious determinations due to electronic distortions, even at
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delay times as short as 0.2 us, are minimized. The magni-
tude of the scattering vector was fixed at ¢,=0.026 nm~'.

For our experimental study, we used three different sus-
pensions which were sufficiently diluted to avoid long-range
interactions. First, an aqueous suspension of polystyrene mi-
crospheres, denoted as “sample R” (rigid), with mean radius
ar=650 nm, relative standard deviation RSD=0.04, and
particle volume fraction ¢z=0.002%. The second sample,
“sample D” (deformable), was an aqueous suspension of li-
posomes made of soybean phosphatidylcholine (SPC) from
Lipoid, with mean external radius ap=244 nm, RSD=0.15,
and ¢5=0.01%. The third sample, “sample RD” (rigid-
deformable), was an aqueous suspension of liposomes made
of dimyristoylphosphatidylcholine (DMPC) from Sigma-
Aldrich, Inc., with azp=242 nm, RSD=0.15, and
¢rp=0.01%. Due to the extrusion procedure, both SPC and
DMPC liposomes show an unilamellar thickness of about 5
nm [23]. The twofold (rigid-deformable) behavior of sample
RD comes from the composition of the lipid bilayers, since
DMPC membranes exhibit two main phases separated by a
threshold temperature (known as main transition tempera-
ture): a rigid gel phase and a deformable liquid crystalline
phase. Below the main transition temperature, the DMPC
membranes retain their rigidity. Above the main transition
temperature, that is, in the liquid crystalline phase, it is con-
sidered that the majority of the single carbon-carbon bonds
of the acyl chains of the lipid bilayers have free rotation [24].
This phenomenon evidences the conversion of the DMPC
membrane from the gel to the liquid crystalline phase, where
the membrane displays new properties such as an increased
permeability and a fluidized state. Thus, we can treat sample
RD as rigid or deformable by changing the temperature
around its critical value. The main transition temperature of
the DMPC bilayers was established at 23.0*+0.1 °C by
means of differential scanning calorimetry [24].

Using the described protocol, two examples of the classic
long-time tail prediction at 13 and 25 °C are shown in Figs.
I(a) and 1(b) for sample R. While Langevin’s model does
not predict the real evolution of De,(7), the full hydrody-
namic model (without fitting parameters) and D.,,(7) show a
good agreement. Thus, whereas at short times a significant
contribution of the long-time tail term (o7~ /2) is apparent, at
moderate long times (7=40 us) the diffusive regime,
D(7)/Dy= 1, is nearly recovered. In addition, the time evo-
lution of Dey,(7) corresponding to sample D at 25 °C is
shown in Fig. 1(c): Neither Langevin’s model nor the full
hydrodynamic treatment describe satisfactorily these new ex-
perimental results. Now D¢,,(7) shows a clear nonmonotonic
behavior with at least two marked maxima within our time
window over the corresponding Langevin’s prediction. After
reaching the second maximum (7°~=~3.7 us), D.,(7) de-
creases smoothly and tends to its diffusive value, D,. Since
their environments are similar, the distinct trends shown by
Dyy,(7) for the polystyrene spheres and the SPC liposomes
should be caused by the different structural properties of
these particles. To support this statement, we present the re-
sults obtained for sample RD at different temperatures
around the main transition temperature. Thus, the unique sig-
nificant change in the dynamics of this suspension only in-
volves the elastic properties of the DMPC membranes.
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FIG. 1. (Color online) Normalized time-dependent diffusion coefficient D(7)/ D, corresponding to sample R at (a) 13 and (b) 25 °C, and
sample D at 25 °C (c). Blue dash-dotted line stands for Langevin’s model: D(7)/Dy=(d{Ax*(7))/d7)/2Dy [Eq. (2)]. Red dashed line
corresponds to the full hydrodynamic model: D(7)/Dy=(d{Ax*(7))/d7)/2D, [Eq. (3)]. Black solid line represents the experiment:
D(7)=Deyp(7). Dy is the experimental free diffusion coefficient corresponding to each temperature. Inset in (c): dotted line represents the
predicted exponential relaxation corresponding to 7,=32 us and a=0.1.

Dy,(7) corresponding to sample RD at 15 °C, 23 °C,
and 34 °C are shown in Figs. 2(a)-2(c). In accord with our
calorimetric determination, sample RD at 15 °C is associ-
ated to the rigid gel phase of the DMPC membranes. In fact,
the full hydrodynamic model and the experimental data show
again a common tendency as in the case of sample R [Fig.
2(a)]. At 23 °C, that is, at the main transition temperature, a
moderated agreement between theory and experiment still
persists although the fluctuations in D,,(7) appear more pro-
nounced [Fig. 2(b)]. At 34 °C the deformable crystalline
phase of the lipid membranes is expected, and indeed a no-
ticeable change in the trend shown by Dey,(7) occurs [Fig.
2(c)]. As in the case of sample D, we observe a nonmono-
tonic behavior of De,(7) with a clear maximum at very short
times (7°=0.6 us). However, sample RD presents a faster
final relaxation than that associated to sample D, almost re-
covering its diffusive value around 7=5 us.

In our opinion, the complex experimental patterns shown
in Figs. 1(c) and 2(c) reflect the intricate interplay between
the translational and the deformational motion of our flexible
particles. At short times, when the translational velocity has
not yet been damped, D.,(7) would contain simultaneously
the translational and the deformational displacements of the
liposomes membrane. Thus, the strong fluid-membrane inter-

action due to the translational velocity would induce fast
changes in the membrane’s motion that would be elastically
restored, being manifested through the sharp oscillations of
Dey,(7). In the absence of a dynamic model for D.,,(7) in
which both translational and deformational motions are con-
sidered simultaneously, the latter cannot be easily isolated to
be described quantitatively. However, at long times, when
the translational velocity is damped, the final relaxation of
Dey,(7) toward D, would reflect essentially the underlying
overdamped deformations in the liposome’s form.

Since we have chosen an adequate g-value for our
experiments (¢ iposome = 6), see for details Ref. [25], we are
able to explore if this hypothetical deformational motion is
present in Dy,,(7), attempting to reveal the internal modes of
deformation of our flexible particles [26,27]. Hence, we
adopt the model proposed by Milner and Safran [26] to
describe the small shape fluctuations of a single vesicle
in thermal equilibrium, where the translational motion
is not considered. Accordingly, the relative displace-
ment of the membrane, r(7,()), is expanded into spher-
ical harmonics, Y;,(Q2), around a fixed radius a:
(7, Q)=a(1+Z> 1, w,(7)Y},,(Q)), where Q is the solid
angle and u;,(7) the amplitude associated to a given mode.
By appealing the fluctuation-dissipation theorem, the auto-
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FIG. 2. (Color online) Normalized time-dependent diffusion coefficient D(7)/ D, corresponding to sample RD at (a) 15, (b) 23, and (c)

34 °C with symbols as in Fig. 1.
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correlation functions of the amplitudes present an exponen-
tial decay u;,, (7)1, (0))={|ut;,,(7)|*)exp(—7/ 7;), where the re-
laxation time, 7, of a mode driven by bending forces
(negligible surface tension [26,27]) is

a0+ )P +2[+1)
= s
TP+ DA1+2)(1-1)

(5)

with k. being the bending modulus of the membranes.
According to Eq. (5), the slowest relaxation is expected for
the second deformational mode. Restricting ourselves to the
=2 contribution [25,27], the final relaxation of Dey,(7)
would be in first approximation described by an overdamped
exponential decay of the form D(7)=Dy[1+a exp(—7/7,)],
where the damping is mediated by 7, as in the case of
(u»(7)u5(0)). Here we implicitly assume a small deforma-
tions regime, (|u|*)!"><0.1, according to the theoretical pre-
diction for standard k, values of the lipid membranes [26,28].
In particular, taking the bending modulus of the SPC mem-
branes as k,=(1.5+0.5)-107! J [28], the relaxation time for
a vesicle of a=244 nm suspended in water at 25 °C is
7,=~32 wus [Eq. (5)]. Using this value, our exponential
approximation provides a good description of the final relax-
ation of Dgy,(7) even for amplitudes as big as a=~0.1 [see
inset, Fig. 1(c)]. This agreement is certainly encouraging,
since it supports quantitatively our interpretation of the re-
laxation of D.,(7) in terms of an overdamped deformational
motion. Regarding sample RD, due to their strong tempera-
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ture and membrane composition dependence, values for k,
that typically range (2-107'°, 6-107'%) J have been docu-
mented for the DMPC membranes at the liquid crystalline
phase [29]. Accordingly, the corresponding 7,-range for a
vesicle of a=240 nm suspended in water at 34 °C results
7,~(6,19) us. Although slightly overestimated, this predic-
tion is also in reasonable accord with that observed for the
final relaxation time of sample RD, which reaches the diffu-
sive regime around 7=35 us [see Fig. 2(c)]. These results
concerning our flexible particles are the quantitative obser-
vation of the damped deformational motion of a large vesicle
under spontaneous nondiffusive Brownian motion. As a re-
sult, a powerful practical application emerges: Our method-
ology is useful to estimate and predict the elastic properties
of a great variety of biological deformable particles.

In conclusion, we have revealed the complex scenario
present in the nondiffusive motion of a deformable Brownian
particle, which is mediated by the coupling between transla-
tional and deformational degrees of freedom. As opposed to
rigid particles, a complete theoretical understanding of this
motion, including its short times description, remains as a
challenge.
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