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Event-driven simulations of inelastic smooth hard disks are used to probe the slip velocity and rheology in
gravity-driven granular Poiseuille flow. It is shown that both the slip velocity �Uw� and its gradient �dUw /dy�
depend crucially on the mean density, wall roughness, and inelastic dissipation. While the gradient of slip
velocity follows a single power-law relation with Knudsen number, the variation in Uw with Kn shows three
distinct regimes in terms of Knudsen number. An interesting possibility of Knudsen-number-dependent specu-
larity coefficient emerges from a comparison of our results with a first-order transport theory for the slip
velocity. Simulation results on stresses are compared with kinetic-theory predictions, with reasonable agree-
ment of our data in the quasielastic limit. The deviation of simulations from theory increases with increasing
dissipation which is tied to the increasing magnitude of the first normal stress difference �N1� that shows
interesting nonmonotonic behavior with density. As in simple shear flow, there is a sign change of N1 at some
critical density and its collisional component and the related collisional anisotropy are responsible for this sign
reversal.
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I. INTRODUCTION

Granular materials, a collection of macroscopic particles,
are ubiquitous in various chemical processing industries as
well as in nature �1�. At rest, granular materials represent a
dead state since the thermal energy of particles is negligible
compared to their potential/interaction energy and hence they
represent athermal system �2,3�. External energy must be
feed in continuously to make granular materials to flow since
the particle collisions are always dissipative. Depending on
the strength of external energy, granular materials can be in
any of the three well-known states of matter: gas, liquid, and
solid. In the “quasistatic” regime of granular solid, the par-
ticle interactions are characterized by enduring frictional
contacts with sliding and rolling motion dominating their
interactions; in such dense slow flows, the deformation rates
are low. The development of constitutive relations for such
dense frictional flows has been mainly motivated by experi-
ments and simulations �1�. Under strong external driving, a
picture of granular materials in the “rapid” flow regime �2�, a
granular fluid, is reminiscent of molecular fluids, with par-
ticles moving around randomly. As in molecular fluids, par-
ticle collisions are assumed to be binary and instantaneous,
with one major difference being the inelastic nature of colli-
sions. It turns out that the “dissipation” of energy associated
with inelastic collisions is responsible for a host interesting
behavior in granular fluid.

One of the major challenges in granular flow research has
been the continuum modeling of flowing granular materials
�1–3�. The formulation of Navier-Stokes-type equations of
motion for granular fluids has been an active area of research
during the last two decades. The ideas of dense-gas kinetic
theory have been extended to macroscopic “dissipative” par-
ticles to develop a theoretical understanding of the rapid

granular flow �4�. The first attempt to derive constitutive
equations for rapid granular flows from microscopic consid-
erations, based on heuristic arguments, was made by Bag-
nold �5� who showed that, at reasonably large concentrations
and shear rates, the stresses generated depend on the square
of the imposed shear rate. Following Ogawa’s idea, Haff �4�
proposed a balance equation for the fluctuation energy using
heuristic arguments drawing an analogy of particle motion
with thermal motion in gases. Later, the constitutive equa-
tions were developed based on the formalism of kinetic
theory �4�. Savage and Jeffrey �4� have developed constitu-
tive relations for smooth, hard, and elastic spheres in a
simple shear assuming Maxwellian velocity distribution
function. Their results showed a good agreement with the
experimental results of Bagnold �5�. Since the balance equa-
tion for energy was not considered, they could not predict the
temperature. In the next step, Jenkins and Savage �4� solved
the energy balance equation for the granular temperature as-
suming Maxwellian distribution as the single particle veloc-
ity distribution and using an approximate linear anisotropic
pair distribution function valid only in the elastic limit.
Based on the observation that in the double limit of inelas-
ticity ��=1−en

2, where en is the normal coefficient of restitu-
tion� and Knudsen number �Kn� approaching zero, the colli-
sionally relaxed state corresponds to a Maxwellian, Sela and
Goldhirsch �4� proposed a modified Chapman-Enskog ex-
pansion in which both � and Kn are small parameters. Most
of these models �4� hold for nearly elastic collisions �en
�1� and have been reasonably successful in describing the
fluidized and quasielastic regimes, but fail to explain the
whole range of behavior of granular flows, especially at large
dissipations and dense flows. Under such circumstances, dis-
crete particle simulations could be very helpful in validating
various continuum models and also establishing their range
of validity.

While the rheology of uniform shear flow of dry granular
materials has been extensively studied via simulation and
theory �2�, similar studies on prototypical inhomogeneous
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flows �e.g., Poiseuille-type flows� are relatively scarce. Both
the single particle statistics and the bulk behavior of the
gravity-driven “granular” Poiseuille flow �GPF� through a
channel have been probed via experiments �6� and simula-
tions �7–10�. Most simulations on GPF dealt with probing
the large-scale density waves �7,8� and single particle statis-
tics �9�; stresses as well as jamming transition in “dense”
GPF have also been probed via simulations �10�. In contrast,
however, the rheology of GPF in the rapid flow regime,
spanning a wide range of densities from the dilute to dense
flows, has not been probed systematically; moreover, there is
hardly any information on the slip velocity in GPF. The
above two issues are the focus of the present paper.

In this paper we consider the granular Poiseuille flow
which is the gravity-driven flow of granular materials �8,9�,
focusing on the “rapid” flow regime. We use event-driven
simulations of inelastic smooth hard disks to model flowing
granular particles in a two-dimensional channel bounded by
two frictional walls. In the first part, we study slip velocity in
GPF as a function of density, inelasticity, and wall roughness
and identify power-law relations for slip velocity and its gra-
dient with Knudsen number. In the second part, we probe
various rheological quantities and make a systematic com-
parison with kinetic-theory constitutive models �11�. Apart
from particle pressure, shear viscosity, and shear stress, a
quantity of particular interest is the first normal stress differ-
ence �N1�, which is a measure of the non-Newtonian char-
acter of granular fluid. Here we quantify this non-Newtonian
effect in GPF and its possible connection with Burnett-order
phenomenon �12� and collisional anisotropy �13� is carefully
probed. For the latter part, we follow the work of Alam and
Luding �13–15� to analyze the behavior of N1 in GPF over a
large range of densities and show that the sign reversal of N1
in GPF can occur even at a modest density �much lower than
that in the simple shear flow�.

II. SIMULATION METHOD

The simulated system is a channel of length L along the
periodic x direction and bounded by two plane solid walls,
parallel to the x direction, with a separation of width W
�along the y direction� as shown in Fig. 1. The granular ma-

terial, consisting of N identical rigid and smooth disks of
equal mass m and diameter d, is driven by gravity along the
x direction. The interactions that are allowed are instanta-
neous “dissipative” collisions between pairs of particles and
between a particle and the walls. An event-driven algorithm
�16� is used to simulate the evolution of particles in time.
The dissipative nature of particle collisions is characterized
by the coefficient of normal restitution, en, which is given by
the following expression:

k · c21� = − en�k · c21� , �1�

where c21 and c21� are precollisional and postcollisional rela-
tive velocities and k is the unit vector directed along the line
connecting the centers of particle 2 and particle 1. There is
no relative tangential velocity since the particles are assumed
to be smooth.

A. Model for frictional wall

The solid walls are modeled as frictional surfaces and a
particle colliding with a wall is analogous to a particle col-
liding with a particle of infinite mass moving at the velocity
of the wall. A single parameter, coefficient of tangential res-
titution for particle-wall collisions �w, has been used to
model the frictional properties of walls �8,9�. It is defined as
the average fraction of relative tangential momentum trans-
mitted from a particle to the wall during a particle-wall col-
lision. The collision rule of a particle-wall collision is given
by

cx� = �wcx and cy� = − ewcy , �2�

where ew is the normal restitution coefficient for particle-
wall collisions; we have set ew=1 for all results presented in
this paper. The wall roughness is controlled by choosing a
specific value of �w: �w=1 corresponds to a perfectly smooth
wall for which the tangential velocity of particle remains
same upon a particle-wall collision; �w=0 corresponds to a
rough wall for which the dissipation of energy at walls is
maximum and there is no relative tangential slip between the
particle surface and the wall upon a wall-particle collision;
�w=−1 corresponds to a perfectly rough wall for which the
tangential velocity of particle reverses upon a particle-wall
collision. The last condition with ew�1 is the analog of the
well-known “bounce-back” scheme which is routinely used
to mimic no slip in MD simulations of Newtonian fluids.

B. Averaging method and control parameters

Since the mean fields of GPF vary across the wall normal
�y� direction, all the statistics presented in this paper were
computed binwise by dividing the channel into several bins
along the y direction; the width of each bin was chosen to be
slightly larger than the diameter of a particle. The method of
averaging followed for computing macroscopic properties of
mean flow is given below:

Ci�t� = ci�t� − Ux�yi,t� , �3a�

Ux�yi,t� =
1

Ny
�
Ny

i=1

cxi�t���y − yi� , �3b�

FIG. 1. �Color online� Schematic of granular Poiseuille flow.
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Ux�y� = �Ux�yi,t�� , �3c�

��y� =
�

4
d2	 1

Ay
�
Ny

i=1

��y − yi�
 , �3d�

T�y� =	 1

Ny
�
Ny

i=1

Ci�t�Ci�t���y − yi�
 , �3e�

where ci�t� is the instantaneous velocity of the ith particle,
Ci�t� is the fluctuating/peculiar velocity of the particle,
Ux�yi , t� is the instantaneous mean velocity in the bin corre-
sponding to the position yi of the particle, Ny is the number
of particles in ith bin, Ay is the bin area, and �¯ � represents
a time average. Analogous to molecular gases, the random
velocity associated with granular particles is used to define
the granular temperature T in Eq. �3e�. Other properties of
interest are defined in a similar way.

For time averaging, the data are collected in each bin over
a large number of collisions once the flow has reached a
steady state �see Fig. 2�. The number of collisions considered
for computing rheological quantities and slip velocity was
around 10 000 per particle which was found to be sufficient.
For the same flow configuration, the simulation code has
been validated and some results on velocity distribution
functions have been recently published �9�.

There are five control parameters in this problem: the av-
erage volume fraction of particles ���, the coefficient of nor-
mal restitution �en�, the wall roughness ��w�, the channel
width �W /d�, and the channel aspect ratio �L /W�. The mean/
average volume fraction,

� = �N/4�L/W��W/d�2, �4�

can be varied by changing the total number of particles �N�
or the physical dimensions of the system �W /d and L /W�. In
the present simulation, we have fixed particle diameter d at
unity, N=900 and W /d=31 and varied the channel length
�L /W� to change the average volume fraction.

C. Steady GPF

In granular Poiseuille flow, the energy loss due to particle-
particle and particle-wall collisions compensates the work
done by the body force �gravity� after long enough time,
leading to a steady state for any dissipation level �en�1� and
wall roughness ��w�1�. This is in contrast to the gravity-
driven Poiseuille flow of elastic �en=1� particles with
smooth walls ��w=1� for which a thermostat �17,18� is
needed to attain a steady state with parabolic velocity profile.
For dissipative particles, the inelastic dissipation and/or wall
roughness plays the role of a thermostat.

The statistical steady state of GPF was ascertained by
monitoring the temporal evolution of the average kinetic en-
ergy �per particle� which reached some constant value after
initial transients; see Fig. 2. At the steady state �� /�t� · �=0�
of fully developed �� /�x� · �=0� GPF, the profiles of the
streamwise velocity �Ux /U0, where U0 is the velocity at y
=0�, the density ���, and the granular temperature �T� have
spatial variations only along the wall-normal direction; see
Figs. 3�a� and 3�b�. Note that the local density is maximum
at the channel centerline �and the granular temperature is
minimum at y=0� at any value of e. The density variation
across y is small in the quasielastic limit �en→1� but in-
creases with increasing dissipation �i.e., with decreasing en�
leading to a plug flow. At en=0.8, most of the particles mi-
grate toward the channel centerline forming a dense plug
with dilute regions residing near two walls. An example of
plug formation can be visualized from two movies �19� given
in supplementary materials �movie 1 for en=0.99 and movie
2 for en=0.8 at �=0.56�.

Lastly, we make comments about possible effects of clus-
tering and our choice of channel width W /d=31 in these
simulations. Plug formation as observed in movie 2 �19� is
an example of clustering that appears with increasing dissi-
pation for any W /d; however, other types of clustering can
also occur in GPF. For example, if the channel width is large,
along with large dissipation levels �en�1�, the plug-type
GPF becomes unstable �8� to axial perturbations leading to
two types of density waves: sinuous waves and clumps or
slugs. For both cases, the density field �as well as other mean
fields� has considerable variation along the axial direction
�i.e., ����x ,y� and �� /�x�0�. The onset of such density
waves in GPF and their dependence on various control pa-
rameters have been thoroughly characterized by Liss et al.
�8� using event-driven simulations of the same collision
model. They showed that if the channel width is small
enough �W /d�35�, such axially inhomogeneous density
waves do not appear �see the phase diagram in Fig. 8 of Ref.
�8��. In present simulations, our choice of a relatively narrow
channel �W /d=31� was made to minimize the possibility of
the appearance of density waves having axial variation. �Had
we allowed axially inhomogeneous density waves by choos-
ing a wider channel, we would have to go for cellwise aver-
aging method, i.e., by dividing the channel into a number of
rectangular cells to calculate any quantity.� In all our simu-
lations at any mean density �with W /d=31 and N=900�, the
plug formation �i.e., ����y� as in movie 2 �19�� was found
to occur for en	0.85; but axially inhomogeneous density
waves started to appear for en
0.80 at intermediate values

0 50 100
time
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50

100
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200
E

(t
)

e
n

= 0.99

e
n

= 0.80

FIG. 2. �Color online� Temporal evolution of average kinetic
energy per particle, E�t�= �1 /2N��i=1,N�cxi�t�2+cyi�t�2�, for �=0.56,
W /d=31, N=900, and �w=0.9. E�t� has have been rescaled by gW.
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of mean density ����0.2–0.4��. Here onward, we will not
dwell on clustering/density waves �which is not the focus of
this paper�, but interested readers may consult Ref. �8� for
any detail on this topic.

III. KNUDSEN NUMBER AND SLIP VELOCITY IN
GRANULAR POISEUILLE FLOW

The boundary conditions at a fluid-solid interface have
been widely debated, and, traditionally, in continuum analy-
sis no-slip condition at a fluid-solid interface is imposed
�20,21�. But it has been confirmed by numerous experimen-
tal and numerical work that fluids indeed exhibit finite slip at
walls. The magnitude of slip though depends on various fac-
tors such as the length scale of the flow, surface roughness,
hydrophobicity, etc., and also on the nature of the fluid,
whether a Newtonian/non-Newtonian liquid or a gas �21�.
Gas flows show significant slip when the Knudsen number,

which is defined as the ratio of mean free path of the gas
molecules to the characteristic length of the flow, is large.
The possibility of slip for an ideal gas was first addressed by
Maxwell �20�; by assuming a combination of specular and
diffuse types gas-wall collisions, he estimated the slip length
for a rarefied gas.

Similar to microscale gas flows �21�, the granular flows
are known to be associated with considerable amount of slip
at walls �22–24� and the magnitude of slip velocity depends
on Knudsen number, restitution coefficients, particle volume
fraction, and wall roughness. Before investigating the Knud-
sen number and slip velocity relation in Sec. III B, first we
study the effect of different control parameters on Knudsen
number in Sec. III A.

A. Knudsen number

In the present context, Knudsen number is defined as
Kn=� /W, where the mean free path �= �s� is computed by
averaging particle displacements during successive collisions
�s=��x2+�y2, where �x and �y are the components of the
instantaneous free path of two colliding particles, scaled by
the particle diameter� over a large number of particle colli-
sions, and W is the channel width. Since our flow is inhomo-
geneous across the channel width, Kn varies across the chan-
nel width; thus, the results presented below correspond to the
average value of Kn for a given flow condition.

Figures 4�a� and 4�b� show the effect of inelastic dissipa-
tion �en� on Knudsen number and the probability distribution
of particle displacements, respectively, at a wall roughness of
�w=0.1 �i.e., rough wall�. The results in Fig. 4�a� are pre-
sented for different mean particle volume fractions ���, and
those in panel �b� are for different en at �=0.4. While the
Knudsen number is found to increase with increasing dissi-
pation in the dilute limit, it varies nonmonotonically with en
for denser flows with its maximum attaining at around en
�0.9. Following the classification of flow in terms of Knud-
sen number �21�, we find that the present flow is in the
transitional-flow regime �0.1�Kn�10� at low densities, but
in the slip-flow regime �0.01�Kn�0.1� at moderate densi-
ties. From the distribution of particle displacements P�s� in
Fig. 4�b�, it is seen that P�s� is almost an exponential for
nearly elastic collisions �en=0.99�. This behavior is similar
to that for a molecular gas for which it can be proved that the
probability distribution of free paths is an exponential �25�.
At larger dissipations, the distribution function P�s� deviates
from an exponential for smaller values of displacements �s�,
however, the tail of P�s� still follows an exponential decay at
any en. The nonexponential decay of P�s� for small s could
be a signature of particle clustering that occurs at large dis-
sipations.

In Figs. 5�a� and 5�b� the effect of wall roughness ��w� on
Knudsen number and the probability distribution of particle
displacement are shown, respectively. In general, Kn de-
creases with increasing wall roughness �i.e., decreasing �w�
at any density. It is observed that the wall roughness has an
appreciable effect for dilute flows ��=0.015� but has negli-
gible effect at moderate densities ��=0.3� except for nearly
elastic collisions. The former behavior could also be inferred
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FIG. 3. �Color online� Profiles of granular temperature �main
panel�, particle volume fraction �upper inset�, and streamwise ve-
locity �lower inset� for �a� �=0.56 and �b� �=0.3. Other parameters
as in Fig. 2. Note that the velocity has been rescaled by its center-
line value, Ux�Ux /Ux�y=0�, and the granular temperature by gW.
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from the plot of P�s� in Fig. 5�b� at �=0.015. Note that the
tail of P�s� follows an exponential decay at any value of �w.

Figure 6 shows that Knudsen number decreases with in-
creasing particle volume fraction ��� since the particles have
lesser free areas to move around as the density is increased.
For en=0.99 and 0.9, there seems to be a power-law behavior
for Kn with �, Kn��−
, over a range of mean density ��
� �0.003–0.35��; for larger densities ���0.4�, Kn decreases
sharply. For more dissipative collisions �en
0.8�, the varia-
tion in Kn with density becomes nonmonotonic and does not
follow a power law. As mentioned in Sec. II C, the density
waves/clusters become significant at low en�
0.8�, making
the flow inhomogeneous in the whole domain, and the ob-
served nonmonotonicity could be a consequence of such par-
ticle clustering.

B. Slip velocity and its gradient

Since the walls are stationary, the mean streamwise veloc-
ity of particles in each bin adjacent to walls, Ux�yi=ywbin� as
defined in Eq. �3c�, is the slip velocity. In the following, we
define the nondimensional slip velocity as the ratio of the
average velocity in the bins adjacent to two walls �Uw� and
the centerline velocity �U0�.

Figures 7�a� and 7�b� show the combined effects of resti-
tution coefficient en and mean particle volume fraction � on

the slip velocity �Uw� and its gradient �dUw /dy�, respec-
tively, at a wall roughness of �w=0.1 �i.e., rough wall�. The
inelastic dissipation does not seem to have a noticeable effect
on both the slip velocity and its gradient, but they depend
strongly on mean density.

Figures 8�a� and 8�b� show the effect of wall roughness
��w� on slip velocity �Uw� and the streamwise velocity pro-
files. The parameter values used in Fig. 8�a� are en=0.99 and
�=0.015 and 0.30, and are en=0.99, �=0.015, and �w=0.1,
0.5 and 0.9 in Fig. 8�b�. As expected, the slip velocity in-
creases with increasing wall smoothness �that increases with
increasing �w� and vice versa as seen in Fig. 8�a�, which is
also evident from the velocity profiles in Fig. 8�b�. Note that
the velocity profile becomes more uniform across the chan-
nel width as the walls are made more smoother by increasing
�w. The slip-velocity gradient, dUw /dy, �not shown� is found
to decrease with increasing �w for �w�0 and it depends
strongly on mean volume fraction �see below�.

The effects of mean volume fraction ��� on the slip ve-
locity and its gradient are shown in Figs. 9�a� and 9�b�, re-
spectively; the corresponding streamwise velocity profiles
are shown in Fig. 9�c�. While the slip velocity deceases with
increasing volume fraction, the gradient of slip velocity in-
creases in the same limit. This overall trend holds at other
values of wall roughness �w. It is observed from Fig. 9�b�
that there is a power-law behavior for dUw /dy with � for the
whole range of �� �0.003,0.6� studied. In contrast, however,
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FIG. 4. �Color online� Effect of restitution coefficient �en� on �a� Knudsen number and �b� the distribution of particle displacement for a
rough wall ��w=0.1�.
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the variation in slip velocity with mean density cannot be
described by a single power-law exponent �and there is a
weak dependence on en too�, especially the data for very
dilute flows ���0.02� and dense flows ���0.4� have differ-
ent variations with �.

Since the Knudsen number is a strong function of the
mean density �Fig. 6�, the above variations in slip velocity
and its gradient with density, as depicted in Figs. 9�a� and
9�b�, can be directly translated into their variations with the
Knudsen number as we will discuss below.

Figure 10�a� shows the variation in slip velocity with
Knudsen number for a rough wall ��w=0.1� for different
values of en. In the main panel of Fig. 10�a� the black curve
represented by open circles was computed using N=1800
and W /d=31, and there is a good agreement with the results
obtained with N=900 and W /d=31 �filled circles�. It is ob-
served from the inset of Fig. 10�a� that the slip velocity can
be fitted via a power law,

Uw

U0
� Kn
1, �5�

over a decade of Kn��0.05–1� for en=0.99 and 0.9. �The
corresponding range of particle volume fractions was found
to vary from moderate to very dilute values ���0.4−0.02�;
see the inset of Fig. 9�a�.� It is worth pointing out that for

large dissipations �en
0.8� the slip velocity becomes a non-
monotonic function of en for Kn
0.2, and hence the above
power law �5� is strictly valid only for quasielastic collisions
en	0.9. Note that the exponent 
1 in Eq. �5� is a decreasing
function of en: for example, 
1�en�=0.57 and 0.75 for en
=0.99 and 0.9, respectively.

For large Knudsen numbers �Kn�1�, it is seen from the
inset of Fig. 10�a� that the power-law exponent, 
1
0.16, is
much lower than that for the intermediate range of Kn and
this appears to be independent of the restitution coefficient en
�note that the number of data points for Kn�1 is rather
limited�. For the other limit of low Knudsen numbers �Kn
�0.05�, our data for slip velocity �inset of Fig. 10�a�� seem
to plateau to a constant value, i.e., 
1
0, irrespective of the
value of en.

Figure 10�b� shows the variation in the gradient of slip
velocity, dUw /dy, with Knudsen number for a rough wall
��w=0.1�. From the inset of Fig. 10�b�, we find that there is
an excellent collapse of data for dUw /dy over two decades of
Kn for three values of restitution coefficients en=0.99, 0.9,
and 0.8. The slip velocity gradient varies as a negative power
of Knudsen number,

d

dy
�Uw

U0
� � Kn−
2, �6�

with an exponent of 
2
0.21 which is found to be indepen-
dent of en.

From the above two scaling relations �5� and �6�, a linear
relation between the slip velocity Uw and its gradient
dUw /dy can be constructed �see discussion in Sec. III C�:

Uw � Kn�dUw

dy
, �7�

with

��en� = 
1�en� + 
2. �8�

Our data suggest a dependence of this exponent � on the
range of Knudsen number. For example, �i� in the regime of
low Knudsen numbers �Kn�0.05� this exponent is

� = 
1 + 
2 
 0.21,

�ii� in the regime of large Knudsen numbers �Kn�1�
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FIG. 6. �Color online� Effect of particle volume fraction ��� on
Knudsen number for a rough wall ��w=0.1�.
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is set to �w=0.1 �i.e., rough wall�.
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� = 
1 + 
2 
 0.37,

and �iii� in the regime of intermediate Knudsen numbers
�0.05�Kn�1�

��en� = 
1�en� + 
2 
 �0.78 �en = 0.99�
0.96 �en = 0.9� .

�
In summary, while the gradient of slip velocity in GPF

follows a single power-law relation with Knudsen number
for the range of Knudsen numbers studied Kn� �0.01,3�, the
variation in slip velocity with Knudsen number reveals three

different regimes in terms of Kn. Although the validity of a
power law for Uw just over a decade of Kn �see inset of Fig.
10�a�� is questionable, here our emphasis is on the observa-
tion that Uw has different variations in three regimes of Kn:
�i� Kn�0.05, �ii� 0.05�Kn�1, and �iii� Kn�1. The slip
velocity and its gradient can be fitted to a linear relation with
a Knudsen-number-dependent proportionality constant, Eq.
�7�. Since the Knudsen number has been varied by varying
the mean density and dissipation in our simulations, the
above proportionality constant �Kn� also depends indirectly
on the mean density and other control parameters. In the
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is set to en=0.99 for all plots and the streamwise velocity in panel c is calculated at �=0.015.
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following section, we seek a possible theoretical justification
of this slip boundary condition.

C. Comparison with theory

Here we follow the heuristic transport theory of Hui et al.
�22� to determine an expression for the slip velocity. If the
mean velocity of particles near the wall differs from the wall
velocity, there is a flux of momentum to the wall due to
particle-wall collisions. In an averaged sense, this momen-
tum flux to the wall is the product of three terms: �i� the
collisional impulse per wall-particle collision, �ii� the colli-
sion frequency of wall-particle collision, and �iii� the number
density of particles near the wall. Equating this wall-
momentum flux along the direction of the wall with the bulk
shear stress of granular fluid near wall, we obtain the follow-
ing boundary condition for the slip velocity:

Uw = a����Kn

�
�dUw

dy
, �9�

where a��� is a function of particle volume fraction and � is
the specularity coefficient for particle-wall collisions which
is a measure of the “large-scale” roughness of the wall. For a
rough wall, the collisions are diffuse �i.e., the particles are
deflected in random directions uncorrelated with their ap-
proaching direction� and the specularity coefficient is �=1
resulting in a small slip velocity. For a smooth wall, the
particles are deflected without any change in their tangential
momentum for which �=0 resulting in a large slip velocity.

Note that the predicted boundary condition, Eq. �9�, is a
“first-order” correction �20,21� to the well-known no-slip
boundary condition and is strictly valid in the regime of low
Knudsen number �Kn
0.01�. In the regimes of slip and
transitional flows �0.01�Kn�1�, the linear relation �Eq.
�9�� still holds but with an additional correction term propor-
tional to the second derivative of slip velocity �21�.

Leaving aside the correct form of velocity boundary con-
ditions at large Knudsen number, we now return to our pro-
posed scaling relation �7� which can be compared with the
analytical relation �9� if we rewrite Eq. �7� as

Uw � � Kn

��Kn��dUw

dy
, �10�

where the specularity coefficient, ��Kn�, is now allowed to
depend on Knudsen number. In contrast, however, the specu-
larity coefficient is taken to be a constant, independent of
any flow parameter, in most theoretical models of granular
boundary conditions �22–24�. �Ideally, the specularity coef-
ficient � is tied to the wall geometry and the related wall-
particle collision parameters as in the kinetic-theory treat-
ment of boundary conditions.� Since both Knudsen number
and slip velocity are found to depend on the particle volume
fraction ���, the wall-particle tangential restitution coefficient
��w, i.e., “microscopic” or “small-scale” roughness� and nor-
mal restitution coefficient �en�, the large-scale roughness of
the wall ��� would therefore depend on Kn. It would be
interesting to determine the correct functional relation for the
specularity coefficient ��Kn;�w ,en , . . .�. A comprehensive
justification of our proposed boundary condition, Eq. �10�,
requires a full kinetic-theory treatment of wall-particle colli-
sions and the solution of Boltzmann-Enskog equation in the
half-space which is beyond the scope of the present paper.

However, from our simulation data we can check our pro-
posal about the Knudsen-number-dependent specularity co-
efficient if we know the correct form of a��� in Eq. �9�.
Focusing on the dense limit ��→�m, where �m is the maxi-
mum packing density� of low Knudsen number, we find that
a����� �22,23�. From our data in Fig. 6, we have Kn
��−
, with the exponent 
 being unknown since we have
only few data points in the dense limit �but a very crude
estimate is 

1.5 for en=0.99 and 0.9�. Therefore, a���
�Kn−1/
 which can be plugged into Eq. �9� and compared
with Eqs. �7� and �10�, leading to ��Kn��Kn1−�−1/
. With
�=0.21�Kn�0.05� and 
=1.5, we find ��Kn��Kn0.123 that
shows a weak dependence on Kn. On the other hand, ��Kn�
is a constant if 
= �1−��−1. We hope these results would be
useful to facilitate further comparison to any future theory
and would motivate further simulations.

IV. RHEOLOGY OF GRANULAR POISEUILLE FLOW

The momentum transfer at particle level manifests at the
macroscopic level as continuum stresses. The total stress ten-
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sor has two components: “kinetic” stress and “collisional”
stress. While the momentum transfer due to streaming mo-
tion of particles contributes to kinetic stress, the momentum
transfer due to particle collisions contributes to collisional
stress. In this section we present results for various rheologi-
cal quantities such as shear stress, pressure, viscosity, and
first normal stress difference. As discussed in Sec. III, all
mean field quantities vary across the channel width, and
hence the measurement of rheological quantities �pressure,
shear stress, and viscosity� must be done via binwise averag-
ing by dividing the channel width into a number of bins.

With W̃, W̃ / g̃, �W̃g̃�1/2, and m̃ as the reference length,
time, velocity, and mass, respectively, the relevant dimen-
sionless quantities are

d =
d̃

W̃
, t =

t̃

�W̃/g̃�1/2
, C =

C̃

�g̃W̃�1/2
,

P =
P̃

��̃pg̃W̃�
, T =

T̃

g̃W̃
, � =

�̃

�̃pg̃1/2W̃3/2
, �11�

where C̃ is the fluctuation �peculiar� velocity, �̃p the material
density of particles, P the stress tensor, T the granular en-
ergy, and � the shear viscosity.

Since the kinetic stresses arise due to the streaming mo-
tion of the particles, the expression for kinetic stress tensor is
given by

P̃k = m̃b
�C̃i � C̃i�

�d̃y��L̃�
=

nb
�

4
�̃pd̃2

�d̃y��L̃�
�C̃i � C̃i� = �b�̃pg̃W̃�Ci � Ci�

⇒ Pk =
P̃k

��̃pg̃W̃�
= �b�Ci � Ci� , �12�

where m̃b is the binwise mass of the granular fluid, �b is

binwise volume fraction, �L̃d̃y� is the area of each bin, and
�¯ � denotes binwise averaging over collisions.

Our interest is in the rapid flow regime where the particle
collisions are assumed to be instantaneous and binary. The
momentum change during a collision is given by the expres-

sion for collisional impulse Ĩ:

Ĩ = m̃
1 + en

2
�c̃12 · k�k , �13�

where k is the unit vector along the line of contact from
particle 1 to particle 2. Hence the collisional stress due to
this momentum exchange can be expressed as

P̃c =
d̃

�d
�
bin

Ĩ � k

�L̃d̃y�
= ��

4
���̃pg̃W̃�� d3

�d�Ldy���bin

I � k

⇒ Pc =
P̃c

��̃pg̃W̃�
= ��

4
�� d3

�d�Ldy���bin

I � k , �14�

where �d is the duration of the averaging time window and
the sum is taken over all collisions during �d. Note that ki-

netic stress �12� involves only bin averaging whereas colli-
sional stress �14� involves both bin and time averaging. At
low densities the kinetic stress is dominant since the collision
rate is small and the mean free path of particles is large,
whereas at high densities the collisional stress is dominant
since the collision rate is large and the mean free path is
small.

The total stress can be decomposed into an isotropic part
and a stress deviator:

P = Pk + Pc = p1 + � , �15�

where p is the pressure, � is the stress deviator, and 1 is the
unit tensor. From the off-diagonal components of the devia-
toric stress, we can calculate the shear viscosity which relates
the rate of strain to the shear stress:

� = − �xy/
du

dy
. �16�

The diagonal components of the stress deviator could be dif-
ferent from zero leading to an anisotropic stress tensor. This
stress anisotropy can be quantified by the first normal stress
difference �13�

N1 =
�xx − �yy

p
. �17�

Note that this quantity is scaled by pressure to obtain its
relative magnitude with respect to pressure. For a Newtonian
fluid N1=0 and a nonzero N1 indicates the non-Newtonian
character of the fluid.

A. Theoretical expressions for rheological quantities

The theoretical expressions for viscosity, shear stress, and
pressure for identical, rough, inelastic, and circular disks
were derived from dense-gas kinetic theory by Jenkins and
Richman �11�. For quasielastic collisions �en�1� of smooth
particles, these expressions reduce to the forms given below.

For a Navier-Stokes-order constitutive model, the total
stress is given by

P
� = p�
� + �
�, �18�

where p is the pressure �in dimensionless form�

p � �T�1 + 2G� �19�

and �
� is the shear stress which, for our unidirectional Poi-
seuille flow, reduces to

�xy = − �
dUx

dy
. �20�

The dimensionless expression for the shear viscosity, �, is

� � �T/4��1/2��8/��G + �G−1 + 2 + G�� . �21�

In the above expressions, G���, � is the volume fraction,
and � is the radial distribution function for disks at contact,
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���� =

1 −
7

16
�

�1 − ��2 . �22�

We substitute the granular temperature, volume fraction, and
velocity profiles from our simulations into the above equa-
tions to obtain theoretical predictions for shear stress, pres-
sure, and viscosity as functions of y coordinate.

B. Comparison of simulation and theory

In this section, we compare our simulation data on pres-
sure, shear stress, and viscosity with the prediction of Eqs.
�19�–�21�, respectively. All simulations were performed by
fixing the particle number at N=900 and the channel width at
W /d=31 with 24 bins across the channel width.

A comparison of simulation �symbols� and theoretical
�continuous lines� results in the quasielastic limit �en=0.99�
for smooth walls ��w=0.9� is shown in Fig. 11 and the re-
sults for rough walls ��w=0.1� are shown in Fig. 12; the
results for three values of mean particle volume fractions
��=0.05, 0.3, and 0.5� are shown. The shear stress and pres-
sure profiles scaled by the granular temperature �i.e., �xy /�T
and p /T� are displayed in the inset of respective plots. There
is a good agreement between simulation and theory over a
wide range of densities. Changing the wall roughness ��w
=0.9 and 0.1� does not seem to affect the degree of agree-

ment between simulation and theory as observed from a
comparison of Figs. 11 and 12. The profiles of particle vol-
ume fraction at different mean volume fractions are shown in
Figs. 11�d� and 12�d�. An increase in the average volume
fraction enhances the gradients of density along y direction,
which is an indication of clustering of particles around the
center of the channel. From the corresponding profiles of
granular temperature �not shown�, we find that the tempera-
ture is lower at denser regions around the centerline and
higher at dilute regions near the walls.

The effects of restitution coefficient �en� on rheological
quantities are presented in Figs. 13�a�–13�d� for which the
wall roughness is set to �w=0.9 with en=0.9. From the plots
of shear stress and pressure in Figs. 13�a� and 13�b�, it is
clear that the discrepancies between the theoretical and simu-
lation results become appreciable only at moderate and high
densities, and the agreement is reasonably good at low den-
sity ��=0.05�. The latter observation is surprising since the
flow is much beyond the Navier-Stokes regime �holds for
Kn�0.01� when the density is low ���0.2, see Fig. 6�. The
density profiles in Fig. 13 indicate the formation of a dense
plug around the center of the channel for ��0.5 and the
viscosity profile shows a divergence in the plug region. The
discrepancies between simulation and theory are further en-
hanced at en=0.8 as seen in Fig. 14. The results remain
qualitatively similar for rough walls �e.g., at �w=0.1, not
shown�.
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FIG. 11. �Color online� Variations in �a� shear stress, �b� pressure, �c� viscosity, and �d� particle volume fraction across the width of the
channel for a smooth wall ��w=0.9� with quasielastic collisions �en=0.99�. The symbols represent simulation data and continuous lines
represent theoretical results.
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On the whole, we find excellent agreement between simu-
lation and theory for pressure, shear stress, and viscosity
when the particle collisions are nearly elastic �en�1� and
this agreement deteriorates significantly with increasing dis-
sipation levels. This observation is expected since Navier-
Stokes’-order constitutive model �11� is strictly valid for en
�1 at low Knudsen numbers �Kn�0�. One interesting and
unexpected finding is that, even in the slip-flow �0.01�Kn
�0.1� and transitional-flow �0.1�Kn�1� regimes of Knud-
sen number, the theory predicts the simulation data nicely for
en�1. Changing the wall roughness ��w� does not seem to
affect the above findings. It is interesting to recall from our
recent work �9� that the local velocity distribution functions
in GPF remains a Gaussian for a wide range of densities at
quasielastic collisions �en�1� even when the Knudsen num-
ber is of order 1.

C. First normal stress difference

The first normal stress difference N1, Eq. �17�, is a mea-
sure of the degree of non-Newtonian character of the fluid.
The origin of N1 in the dilute limit has been tied to the
Burnett-order corrections to the Boltzmann equation and is
universally present in a molecular gas �12�. While the mag-
nitude of N1 is negligibly small in a molecular gas, it is a
measurable quantity in granular gases, with inelasticity being
the amplifier of N1. In the dense limit, however, the origin of
N1 has been tied to “collisional” anisotropy �13�. In this

section, we analyze the behavior of N1 in GPF which has not
been quantified before.

Figures 15�a� and 15�b� show the profiles of N1 at differ-
ent mean volume fractions for restitution coefficients of en
=0.99 and 0.8, respectively, with a wall roughness of �w
=0.9 �smooth wall�. The corresponding results for a rough
wall ��w=0.1� are qualitatively similar and hence not shown.
The magnitude of N1 is very small for en=0.99 over a wide
range of volume fractions; this is expected since the granular
fluid behaves like a Newtonian fluid for quasielastic colli-
sions �en�1�. The magnitude of N1 increases with increas-
ing dissipation �en=0.8� as in Fig. 15�b�. Further, N1 has a
nonmonotonic variation with density: initially N1 increases
at low densities, reaches a maximum value at some moderate
density, and then decreases with further increase in density.
Interestingly, N1 changes its sign near the channel centerline
beyond some critical density. For example, at �=0.5 and en
=0.8, the first normal stress difference is negative around the
channel centerline as seen in Fig. 15�b�.

To get a better picture of the negative first normal stress
difference, we shift our focus to the centerline region of the
channel where the density is relatively larger. In Fig. 16, the
effect of mean particle volume fraction on the first normal
stress difference at the channel centerline �i.e., the value of
N1 at the central bin positioned around y=0.5� is shown. It is
observed that N1 varies nonmonotonically with mean vol-
ume fraction and reverses its sign at a critical density de-
pending on the value of en. The inset of Fig. 16 displays N1
as a function of the “local” �binwise� volume fraction at the
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FIG. 12. �Color online� Same as Fig. 11, but for a rough wall ��w=0.1�.
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central bin; since the system is inhomogeneous, the variation
in N1 with the local volume fraction is more meaningful.
From the inset of Fig. 16, we find that decreasing the resti-
tution coefficient increases the critical density above which
N1 is negative. The latter observation is similar to the find-
ings of Alam and Luding �13–15� for the simple shear flow.
However, the nonmonotonic variation in N1 at lower densi-
ties is different in granular Poiseuille flow and has not been
reported before. Another noteworthy point is that the overall
variation in N1 with density and the critical density for the
sign reversal of N1 do not depend on the wall roughness
�compare open and solid symbols for �w=0.1 and 0.9, re-
spectively, in Fig. 16�.

The sign reversal of first normal stress difference N1 was
first reported by Alam and Luding �13� in a sheared granular
fluid. By decomposing N1 into two parts,

N1 = N1
k + N1

c =
�xx

k − �yy
k

p
+

�xx
c − �yy

c

p
, �23�

they showed that the kinetic component of first normal stress
difference, N1

k, is maximum in the dilute limit and decays to
zero at high volume fractions, whereas its collisional part,
N1

c, is a nonmonotonic function of density, which increases
from zero in the dilute limit, reaches a maximum value at
some intermediate density and then decreases, attaining a
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FIG. 13. �Color online� Same as Fig. 11, but for a restitution coefficient of en=0.9.
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FIG. 14. �Color online� Same as Fig. 11, but for a restitution coefficient of en=0.8.
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negative value above a critical density depending on the co-
efficient of restitution. They further showed that, in the dilute
limit, the total normal stress difference follows the behavior
of N1

k but at high densities its behavior is dictated by N1
c. The

reversal in the sign of N1
c was subsequently tied to a pre-

ferred value of the collision angle which is a direct conse-
quence of the microstructural reorganization of particles in
the dense limit. This explains the sign reversal of N1 in the
dense sheared granular fluid.

We take a similar approach here to understand the origin
of negative first normal stress difference in granular Poi-
seuille flow. In Figs. 17�a� and 17�b�, the kinetic and colli-
sional components of N1, respectively, are shown for differ-
ent densities at en=0.8 with smooth walls ��w=0.9�; similar
results for rough walls ��w=0.1� are displayed in Fig. 18. We
see that both N1

k and N1
c vary nonmonotonically with in-

creasing mean volume fraction �except near two walls�. In
GPF N1

k attains its maximum at some intermediate density
which is in contrast to the simple shear flow �Alam and Lud-
ing �13�� for which N1

k in the dilute limit ��→0�. In the
dense limit, however, N1

k, at the channel centerline, decays to
zero �Figs. 17�a� and 18�a�� since the streaming motion of

particles becomes negligible at large enough densities. How-
ever, the collisional component of N1 increases from zero in
the dilute limit, reaches a maximum positive value at some
intermediate value of �, and then decreases with further in-
crease in density and reverses its sign beyond a critical vol-
ume fraction �Figs. 17�b� and 18�b��. Therefore, the origin of
“sign reversal” of N1 in GPF is tied to the sign reversal of
N1

c as in the simple shear flow �Alam and Luding �13��.
The sign reversal of N1 can be concisely presented in the

form of a phase diagram in the ��bin ,en� and �� ,en� planes as
shown in Figs. 19�a� and 19�b�, respectively. Note that the
ordinate in Fig. 19�a� is �bin that corresponds to the “local”
particle volume fraction in the central bin, but the ordinate in
Fig. 19�b� corresponds to the mean particle volume fraction.
In each phase diagram, the solid line with black circles indi-
cates the zeros of N1 and the dashed line with cross marks
indicates the zeros of N1

c; each line demarcates the regions of
positive �below� and negative �above� normal stress differ-
ences. In Figs. 19�a� and 19�b�, we note that the zero lines of
N1 and N1

c coincide with each other at lower values of en

0.8, but deviate from each other at higher en. This devia-
tion becomes noticeable for en	0.9, with N1

c attaining a zero
at a lower volume fraction compared to N1. If the sign re-
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versal of N1 is solely due to that of N1
c, both solid and

dashed lines in Fig. 19 would have coincided with each
other.

To find out the reason for the deviation between the zero
lines of N1 and N1

c for quasielastic collisions, we show an
analog of Fig. 16 for N1

c in Fig. 20; parameter values are
same as in Fig. 18. At en=0.8, the variation in N1

c with vol-
ume fraction looks qualitatively similar to that of N1 and its
zero-crossing volume fraction is almost the same as that for
N1 �see Fig. 16�. In contrast to the nonmonotonic variation in
N1 with � and �bin at en, its collisional component N1

c at en
=0.9 decays monotonically with both � and �bin; N1

c has a
small negative value over a range of mean volume fractions
���0.3–0.5� and becomes of significant magnitude only at
large volume fractions ���0.6�. Similar observations could
be made from the inset of Fig. 20, where N1

c is presented as
a function of the local volume fraction �bin. Clearly, the finite
positive values for the kinetic component of N1, N1

k, at lower
volume fractions make the zero crossings of the total normal
stress difference, N1=N1

k +N1
c, at a relatively larger volume

fraction than that for N1
c as depicted in Fig. 19.

From the above discussion, we conclude that the origin of
sign reversal of N1 in GPF is the same �i.e., the sign change
of its collisional component� as in the simple shear flow
�13–15�. However, unlike in simple shear flow, this sign re-

versal can occur even at a modest density in GPF for quasi-
elastic collisions. This latter observation is possibly due to
the nonmonotonic variation in N1

k with density in GPF.

V. SUMMARY AND CONCLUSION

We have investigated the slip velocity and the stresses in
the gravity-driven granular Poiseuille flow �GPF� using
event-driven simulations in the rapid flow regime of dilute to
dense flows. The well-known “inelastic” smooth hard-disk
model, characterized by normal restitution coefficient �en�,
has been used to model particle-particle collisions. The wall
roughness, characterizing the frictional properties of walls,
has been modeled by specifying a single parameter, �w, the
tangential restitution coefficient for wall-particle collisions.

It is shown that the slip velocity �Uw� and its gradient
�dUw /dy� depend on the wall roughness, the mean particle
volume fraction, and the normal restitution coefficient. In
particular, the slip velocity decreases sharply with increasing
wall roughness and mean particle volume fraction, but de-
creases mildly with increasing inelastic dissipation in the in-
termediate range of Knudsen number, Kn� �0.05,1�. The
gradient of slip velocity is found to follow a single power-
law relation with Knudsen number, �dUw /dy��Kn−
2, for
the whole studied range of Kn� �0,3�. In contrast, the varia-
tion in slip velocity with Kn shows three distinct regimes in
terms of Knudsen number: �i� Uw is independent of Kn for
Kn�0.05; �ii� Uw�Kn��en� for Kn� �0.05,1�; �iii� Uw
�Kn0.37 for Kn�1. A qualitative comparison of our results
with a heuristic theory for the slip velocity �22� shows that
the specularity coefficient �or the tangential momentum ac-
commodation coefficient� depends not only on the wall
roughness ��w� but also on particle �en� and flow ��� param-
eters. Since the Knudsen number depends on �w, en, and �, it
is suggested that a Knudsen-number-dependent specularity
coefficient could be determined from simulations.

The rheological quantities such as pressure, shear stress,
viscosity, and first normal stress difference of granular Poi-
seuille flow have been obtained at various densities. In the
quasielastic limit �en�1�, the simulation results agree well
with expressions derived from kinetic theory by Jenkins and
Richman �11� for circular disks. As the level of inelastic
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dissipation increases the simulation results deviate from the-
oretical predictions, which is expected since the theory has
been developed for quasielastic collisions. The first normal
stress difference �N1� is negligible in the quasielastic limit
but displays nonmonotonic variation with the particle vol-
ume fraction at higher dissipations. Near the centerline of the
channel where the granular fluid is relatively denser, N1 in-
creases from zero in the dilute limit, reaches a maximum at

some intermediate density, and then decreases, attaining a
negative value beyond some critical density. Probing the ki-
netic �N1

k� and collisional �N1
c� components of N1 reveals

that the behavior of N1 at large densities is dictated by the
behavior of its collisional component �N1

c�, which reverses
sign beyond a certain density due to the structural reorgani-
zation of particles. Therefore, the origin of the sign reversal
of N1 in GPF is the same as in the dense plane shear flow of
granular materials �13�. In contrast to the plane shear case
�13�, this sign reversal in GPF can occur even at a much
lower particle volume fraction if the particle collisions are
quasielastic.

The present results on the non-Newtonian rheology of
GPF clearly indicate the shortcomings of the kinetic-theory
models for rapid granular flows. All kinetic-theory models
�12� predict that N1 is maximum in the dilute limit and de-
creases monotonically to zero in the dense limit. These theo-
ries are not able to predict the sign reversal of N1 for dense
flows; clearly, the Burnett-order corrections for dense flows
are inadequate to resolve this important issue. Moreover, we
have found that N1 can change sign in GPF at a much lower
density �than in plane shear flow� for quasielastic collisions.
Therefore, the use of Navier-Stokes-order continuum theory
even at a modest density needs to be critically judged for
GPF. Since the origin of the sign reversal of N1 in GPF is the
same as in shear flow, we suggest that the collisional aniso-
tropy �13� must be incorporated in kinetic-theory models.
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