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Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-
Jones mixture with components differing only in their particle mass are studied up to high values of the mass
ratio �, including the limiting case �=�, for different mole fractions x. Within a large range of x and � the
product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture �m is
found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass
ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity
autocorrelation function, and the van Hove correlation function.
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I. INTRODUCTION

The dynamic properties of binary fluid systems where one
particle species differs from the other only in size, mass, or
both of these parameters have been the subject of a large
number of studies during the last years �1–12�. The increas-
ing interest is, on the one hand, due to the fact that such
systems serve as simple models for colloids and micellar
solutions, which are of prime importance in many scientific
areas such as biology or biochemistry, and, on the other
hand, it is sparked by the rapidly growing capabilities of
modern computer hardware which allows us to investigate
parameter ranges and system sizes that were not accessible
before.

In general, there are two important limiting cases that can
be focused on. The first and best investigated so far is the
so-called tracer or Brownian limit of one single heavy and/or
large molecule suspended in a solvent of light particles �in-
finite dilution�. This is especially interesting because for the
case of a macroscopically sized and in comparison to the
solvent infinitely heavy tracer particle, there is a simple re-
lation between the tracer diffusivity D and the viscosity of
the solvent �. This Stokes-Einstein �SE� relation states that

D =
kBT

C�
,

where kB denotes Boltzmann’s constant, T is the temperature,
and C is a numeric constant depending on geometric bound-
ary conditions. Several studies have been devoted to the
Brownian limit �1,2,4,6,8,11�, some of them especially to the
question, for which range of tracer mass and size this purely
hydrodynamic relation also holds on the microscopic level
�5,7�. Depending on whether the mass is changed at constant
size ratio or not, the SE relation was found to hold for mass
ratios larger than 10 �5� and larger than 100 �7�, respectively.
Above these values, the tracer diffusion was considered mass
independent. �In this context, it is also interesting to note that
even for a pure simple fluid the SE relation was found to
hold in a large part of the phase diagram �13�.�

Considerably less studies exist on the approach to the
Brownian limit �small but finite concentration of heavy par-

ticles �3,9,10�� and mixtures with larger mole fractions of the
heavy component �12�.

The second limiting case corresponds to the scenario
when the mass of the heavy species goes to infinity. For the
case of a single Brownian particle, this situation was covered
in �1�, where it is explained why it makes sense to attribute a
finite friction coefficient to an immobile particle. For a finite
concentration of heavy particles, on the other hand, the
infinite-mass limit effectively transforms the system into a
one-component fluid in a random porous matrix of fixed ob-
stacles that takes up a finite fraction of volume. As a conse-
quence, there exists a percolation transition at large density
and concentration of the heavy component which ultimately
prevents the light particles from diffusing through the sys-
tem.

But also in the case of finite mass ratio and concentration,
the heavy particles influence the dynamics of the light ones.
Since different masses induce different time scales, the heavy
molecules act as a cage for the light ones, stalling their dif-
fusion until they themselves have finally moved significantly
from their starting position. This leads to so-called hopping
processes, characterized by particles moving from one cage
to the next. These complicated dynamic processes, which
also occur near the glass transition in supercooled liquids
�14,15�, have made it difficult to tackle such systems by
theory, which is why many of the existing studies rely mostly
on computer simulations. The most successful theory at
present is the mode-coupling theory, which in its general
form incorporates a mathematical description of hopping
processes and also in its idealized form yields already rather
good results for glassy systems �14,16–18� as well as highly
mass- or size-asymmetric mixtures �12�. Recently, the mean-
field theory of Tokuyama has also been applied successfully
to diverse glass-forming systems �19–23�.

Now, the goal of our work is to study the approach to the
infinite-mass limit in an asymmetric binary mixture at finite
concentrations of the heavy component using molecular dy-
namics �MD� calculations on a model as simple as possible.
In particular, we have chosen a truncated and shifted
Lennard-Jones interaction potential with a cutoff radius of
rc=2.5, where both species have equal interaction strength
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and particle size. We perform simulations at two state points
away from the critical region, one with moderate and one
with high liquid density �the phase diagram for this system
can be found in �24��. The only two remaining system pa-
rameters, the mass ratio � and mole fraction x, do not influ-
ence the static properties of the system at all. What we are
interested in are the transport coefficients of self-diffusion D1
and D2 and the shear viscosity �m of the mixture, especially
the dynamics for high � including the case �=�. In order to
avoid dealing with the percolation threshold, we focus on
small concentrations x�0.2. Although there are no critical
fluctuations, due to the periodicity of the simulation box the
diffusivity is afflicted with a finite-size effect that has to be
accounted for �25�. We also study a possible relation between
D2 and �m �generalized SE relation� and the influence of
high � on the dynamics of the light particles �cage effect�.

The paper is organized as follows. In Sec. II, we discuss
in more detail the model system and the simulation methods
we apply. After that, we give a brief overview on the basic
formulas for the dynamic quantities we are going to look at,
and subsequently we present the results we have obtained.
Finally, we end with a conclusion and a short outlook.

II. MODEL AND SIMULATION DETAILS

We consider a two-component mixture consisting of N
=N1+N2 particles in a cubic volume V with periodic bound-
ary conditions. A pair of particles i, j of species � and �,
respectively, separated by a distance r= �ri−r j�, interacts via
a truncated and shifted Lennard-Jones potential ��r� given
by

��r� = ��LJ�r� − �LJ�rc� , r 	 rc

0, r 
 rc
� �1�

and

�LJ�r� = 4����	���

r

12

− 	���

r

6� , �2�

where rc=2.5 and the two species have the same interaction
strengths �11=�22=�12�� and particle sizes �11=�22=�12
��, but different masses m2
m1. From the point of view of
statics, such a system is identical to a one-component
Lennard-Jones fluid, the dynamic properties, however, will
of course depend on the mass ratio �=m2 /m1 and the con-
centration specified by the mole fraction x=N2 /N. In the
extreme limit of �→� we are effectively dealing with a
system of N1 particles moving in a disordered matrix of N2
fixed obstacles of the same size.

We performed MD simulations in the NVT ensemble us-
ing a Nosé-Hoover thermostat �26–29� in the formulation of
Martyna et al. �30� and a velocity Verlet integration scheme.
A multiple time step algorithm �31� was applied in order to
deal with the different time scales due to the high mass
asymmetry of the two mixture components. Simulations usu-
ally lasted at least 2
106 time steps, where one time step of
the light species was chosen as �t=0.005
m1�2 /�, with
equilibration times of 2
105 time steps.

Simulations for infinite-mass ratio �=� were performed
by fixing the positions of the heavy particles at random con-

figurations obtained from short simulation runs under identi-
cal thermodynamic conditions but with equal masses for
both species. Usually, the reported simulation results were
averaged over ten different configurations, which turned out
to be a large enough number since we found the dependence
on the exact configurations to be quite small. Also in the case
of finite mass ratios each result is obtained as an average of
several simulation runs in order to improve the statistics and
calculate standard deviations of the dynamic quantities.

The question how the limit �→� is to be interpreted is a
delicate one �1�. Since the heavy particles have infinite mass
and zero velocity, their momentum P2=�i=1

N2 m2vi is in prin-
ciple undefined. However, the total momentum of the light
particles P1=�i=1

N1 m1vi is known at any time, and therefore
by requiring the total momentum P of the system consisting
of light and heavy particles to be fixed and �by convention�
equal to zero—just the same as in the simulations with finite
�—we can assign them the finite momentum P2�t�=−P1�t�.
In this way, we define the system at any time step t as the
limiting case of a system where m2 goes to infinity and vi
goes to zero for all i� �1, . . . ,N2�, while P2 is held constant
at the value −P1�t�. The same procedure was applied in �1� to
calculate the momentum autocorrelation function of a single
Brownian particle with infinite mass.

In the following, all quantities will be given in reduced
units: energy is measured in �, length in �, mass in m1, and
time in 
m1�2 /�. Temperatures are given in � /kB and densi-
ties are given in 1 /�3.

III. THEORETICAL BACKGROUND

A. Mean square displacement and diffusion coefficients

The mean square displacement �MSD� of a particle of
species � is defined as

��r�
2�t�� =

1

N�
�
i=1

N�

��ri�t� − ri�0��2� , �3�

where ri�t� is the three-dimensional trajectory of particle i
and � · � denotes a canonical average. In the case of normal
diffusion according to Fick’s law, the MSD obeys the so-
called Einstein-Helfand relation �32�, which states that the
self-diffusion coefficient of light or heavy particles is given
by its slope at large times according to

D� = lim
t→�

��r�
2�t��
6t

. �4�

Another way to obtain the diffusion coefficients of the two
components is via their velocity autocorrelation functions
�VACFs� ���t�, defined as

���t� =
1

3N�
�
i=1

N�

�vi�t�vi�0�� . �5�

These allow us to calculate the self-diffusion through the
Green-Kubo relation �33�,

D� = �
0

�

���t�dt . �6�
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B. Mean-field theory

Tokuyama established a mean-field theory �19� for the
MSD near the glass transition in colloidal suspensions and
molecular systems. In three dimensions, the MSD denoted
by M�t� is described by the nonlinear differential equation,

d

dt
M�t� = 6D + 6�v0

2t − D�e−M�t�/l2, �7�

with the formal solution

M�t� = 6Dt + l2 ln�e−6Dt/l2 +
l2

6D2 �1 − �1 + 6Dt/l2�e−6Dt/l2�� .

�8�

Here, D is the self-diffusion coefficient, l is the mean free
path, and v0 denotes the average velocity of an atom. We
have applied this theory to the MSD data for the light par-
ticles from our MD simulations, taking the value of the dif-
fusion coefficient from the Green-Kubo results and fitting the
value of l in Eq. �8� to the MD data.

C. van Hove correlation function

Space-time correlations between two particles in a pure-
fluid system are described by the van Hove correlation func-
tion �VHCF� G�r , t�, which is defined as �34�

G�r,t� =
1

N��
i,j=1

N

��r + ri�0� − r j�t��� . �9�

For an isotropic system, G�r , t�d3r=4�r2G�r , t�dr gives the
probability to find a particle at time t a distance r from the
origin, provided that at time t=0 a particle was located at the
origin. The VHCF can be separated into a self- and a distinct
part,

G�r,t� = Gs�r,t� + Gd�r,t� , �10�

where Gs includes the terms with i= j and Gd includes those
with i� j. The self-part, on the one hand, is the time-
dependent conditional probability density that a particle
moves a distance r= �r�0�−r�t�� during time t. At t=0,
Gs�r ,0�=��r�, whereas limr→� Gs�r , t�=limt→� Gs�r , t�
=1 /V�0. It is normalized to unity, 4��r2Gs�r , t�dr=1, and
connected to the MSD via the relation

��r2�t�� =� r2Gs�r,t�d3r . �11�

For large enough r and t, the self-part approaches a Gaussian
distribution whose width grows with 
Dt, where D is the
diffusion coefficient of the system,

Gs�r,t� →
t,r→� 1

�4�Dt�3/2exp	−
r2

4Dt

 . �12�

The distinct part, on the other hand, represents the condi-
tional probability density of finding a particle at time t a
distance r apart from the location of another particle at time
t=0. At t=0, Gd�r ,0�=�g�r�, and limr→� Gd�r , t�
=limt→� Gd�r , t�=�. The normalization is 4��r2Gd�r , t�dr
=N−1.

In a binary mixture one has to differentiate between the
different species �, and the corresponding VHCFs are de-
fined as

Gs
��r,t� =

1

N�
��

i=1

N�

��r + ri�0� − ri�t���
and

Gd
���r,t� =

N1 + N2

N��N� − 1���
i=1

j�i

N�

��r + ri�0� − r j�t��� , �13�

Gd
12�r,t� =

N1 + N2

N1N2
��

i=1

N1

�
j=1

N2

��r + ri�0� − r j�t��� .

�14�

D. Shear viscosity

The total stress tensor of a one- or multicomponent sys-
tem is given by �35�

�xy = �
i=1

N �mivi
xvi

y − �
j
i

N
rij

x rij
y

rij
���rij�� . �15�

Now, the stress tensor of component � in a mixture can be
defined as

�xy
� = �

i=1

N� �mivi
xvi

y − �
j
i

N
rij

x rij
y

rij
���rij�� , �16�

such that the total stress tensor is the sum of those of the two
species,

�xy = �xy
1 + �xy

2 . �17�

Then one can write the stress-stress autocorrelation and
cross-correlation functions ����t� with � ,�� �1,2� as

����t� = ��xy
� �t��xy

� �0�� , �18�

and thus the total correlation function is given by

��t� = ��xy�t��xy�0�� = �11�t� + �22�t� + 2�12�t� . �19�

The corresponding shear viscosities are computed via the
Green-Kubo formula,

��� =
1

VkBT
�

0

�

����t�dt , �20�

and the total shear viscosity of the mixture �m can be ob-
tained as

�m = �1 + �2 + 2�12, �21�

where we write �1 instead of �11 and �2 instead of �22. The
reason for separating �m into two contributions is that by
doing so we can compare the results for finite � with those
for �=�. In this limit, the total viscosity goes to infinity
while �1 stays finite and approaches �1��=��, the viscosity
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of the light particles moving through the porous matrix.
The numerical procedure we used to calculate Eq. �20�

was to store the values of �xy
� �t�, �yz

� �t�, and �xz
� �t� at every

third time step on disk and perform the integration via a fast
Fourier transformation after the simulation, averaging over
the three tensor elements in order to decrease statistical er-
rors. In this way, it was not necessary to know the maximum
integration time beforehand.

E. Stokes-Einstein relation

If we consider a macroscopic sphere �tracer� of radius R
moving at a velocity V in a liquid with shear viscosity �,
according to Stokes’ law, the frictional force acting on the
sphere is given by

F = − �V , �22�

where � denotes the friction coefficient,

� = C��R , �23�

and the constant C depends on the boundary conditions. In
the case that the viscous fluid sticks perfectly to the surface
of the sphere �rough surface; stick boundary condition�, i.e.,
the fluid velocity is v=V everywhere on the surface, C is
equal to 6. If, on the other hand, one assumes that the fluid
slips perfectly over the sphere �smooth surface; slip bound-
ary condition�, the value obtained for C is 4. In this case,
only the normal component of the fluid velocity at the sur-
face of the sphere is equal to that of the sphere velocity
�v�=V�; no fluid can enter or leave the sphere�, and the
tangential force at the surface is zero. These two values of C
can be found through purely hydrodynamic calculations �see,
for example, �36,37��.

Now, according to Einstein �38�, the friction coefficient �
is inversely proportional to the diffusion coefficient D of the
sphere with the thermal energy kBT as the constant of pro-
portionality,

D =
kBT

�
. �24�

Equation �24� is known as the SE relation. In the Brownian
limit �tracer limit� of a binary isotopic mixture �only one
particle of the heavy component�, the Stokes-Einstein rela-
tion was also verified to hold in the form �5,7�

DB =
kBT

C��SRH
, �25�

where DB is the diffusion coefficient of the Brownian par-
ticle, �S is the shear viscosity of the solvent �light compo-
nent�, and RH is the so-called hydrodynamic radius.

IV. RESULTS

A. Mean square displacement and cage effect

We first want to focus our attention to the diffusion of the
light particles. Figure 1 shows the MSD of species 1 divided
by t in mixtures with �=2, �=20, �=500, and �=�
�circles� for a density of �=0.9, concentration x=0.2, and

temperature
T=1 along with the fitted MF curves �Eq. �8�; solid lines�.
The dashed horizontal lines indicate the values of the diffu-
sion coefficients times 6, obtained from independent calcu-
lations via the Green-Kubo formula �Eq. �6��. Obviously,
there is consistency between the two calculation routes in the
cases of finite �, whereas for infinite-mass ratio the MSD
does not reach a linear-time behavior within the length of the
simulation. In general, we can distinguish three regimes of
the MSD: the quadratic regime for small times where the
particles move ballistically at constant velocity, the linear
regime with the usual diffusion as given in Eq. �4� for large
times, and an intermediate region of anomalous diffusion.
Such a diffusion is often explained by the so-called “cage
effect” denoting the fact that particles are trapped inside a
cage formed by their surrounding neighbors for some time
before they can escape and diffuse in the usual way. As seen
from Fig. 1 the region of anomalous diffusion increases with
�. This supports the idea �39� that the trajectories of the light
particles for large enough � change from relatively smooth
ones �Gaussian-like process� to intermittent ones with a large
amplitude of displacements �highly non-Fickian process or
activated hopping�. This cage effect can be seen in several
other quantities apart from the MSD.

For example, the VACF of the light particles shows a
distinct negative minimum, which becomes more pro-
nounced if � increases, as can be seen in Fig. 2�a�. In the
VACF of the heavy particles, on the other hand, the mini-
mum vanishes with increasing mass ratio �Fig. 2�b��. The
position of the minimum tmin offers a way to estimate the
typical size of a cage. With a mean thermal velocity of
v0=
3 at T=1 the light particles on average travel a distance
v0tmin=0.26 until they are reflected by the surrounding cage.
Together with the particle radius of 0.5 this results in a cage
diameter of about 1.5.

Another indicator for the cage effect is the so-called non-
Gaussian parameter �NGP� �2, considered as a measure of
dynamic heterogeneity on intermediate time scales. Based on

FIG. 1. �Color online� Points: MD data of the MSD of the light
species divided by time for x=0.2 and mass ratios �=2 �red�,
�=20 �purple�, �=500 �blue�, and �=� �green�. Solid lines: mean-
field results, fitted for the mean free path length l, which are 0.15,
0.15, 0.155, and 0.164, respectively. Dashed lines: diffusion coeffi-
cients obtained from the Green-Kubo relation multiplied by 6. The
density �=0.9 and temperature T=1.
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Eq. �11� and the fact that the self-part of the VHCF takes a
Gaussian form in the case of normal diffusion �Eq. �12��, one
defines �40�

�2�t� =
3�r4�t��
5�r2�t��2 − 1. �26�

Typically, �2 takes a value of �0.1–0.2 in the normal fluid
regime �41�. Our simulation results of the NGP for the same
system as in Fig. 1 are shown in Fig. 3. As one can see, with
increasing mass the peak value of the NGP reaches almost
0.6, starting from the value 0.12 for �=1, indicating that the
cage effect becomes more pronounced for larger �. This is in
accordance with the behavior of the MSD seen in Fig. 1. It is
also visible that for infinite mass �2�t� is still nonzero at the
largest times considered in our simulations.

Finally, the cage effect should be observable via the
VHCF. For normal diffusion, the value of the distinct VHCF
at the origin goes monotonically from 0 to � with increasing
time �34�. An additional peak appearing at r=0 indicates that
a particle has “hopped” into the cage where the reference
particle has been at t=0, which by this time has escaped this
cage formed by the surrounding particles �14�. Figures 4–6
show the normalized distinct VHCFs Gd

11�r , t� /� and
Gd

12�r , t� /� for the same density, concentration, and tempera-
ture as in Figs. 1–3 and large mass ratios �=104, 3
105,
and �, where this effect is well seen. At �=104 �Figs. 4�a�
and 5�a��, Gd

11 exhibits a peak at r=0 with about the size of

the first peak of the pair distribution function g�r�. With in-
creasing mass ratio, both the height and the width �in time
direction� of the peak grow, until for infinite-mass ratio
�Figs. 4�c� and 5�b�� the peak persists even up to the largest
time, which is 0.015
219. In Gd

12, shown in Fig. 6, the effect
of increasing mass is apparent in the fact that the structure of
the pair distribution function g�r� which is present at t=0
dissolves at later and later times until it remains unchanged
throughout the whole simulation time for �=� �Fig. 6�c��,
reflecting the “frozen” configuration of the heavy particles.

But also the self-part of the van Hove function can reveal
something about the cage effect and dynamic heterogeneity.
As we already mentioned, the usual shape for Gs�r , t� is a
Gaussian distribution in r for any large enough time, with its
width increasing like 
Dt. This reflects a Fickian process.
However, if the dynamics is strongly intermittent, it becomes
heavily non-Gaussian at intermediate time range. For such an
anomalous or hopping diffusion, the appearance of an addi-
tional peak is typical �14�. We show the self-part of the
VHCF of the light particles Gs

1�r , t� multiplied by 4�r2 to
obtain the probability density, in Fig. 7, for the same systems
as in Figs. 4 and 6. The formation of a multipeaked structure
when � takes large values ranging from 104 to infinity is
clearly visible in Fig. 7. This figure also demonstrates the
three-peaked nature of Gs

1 for �=�. The distance between
the peaks indicates that the typical distance of two cages is
about the size of a particle.

In order to examine the hopping behavior and cage en-
trapment more closely, we have taken a look at the trajectory
of a single light particle in the course of a simulation run
with infinite-mass ratio. The mole fraction of the heavy spe-
cies was again x=0.2, the density �=0.9, the temperature
T=1, and the number of particles used in the simulation was
N=500. Figure 8�a� shows the obtained three-dimensional
path through the simulation box �the fixed heavy particles are
depicted by gray spheres; periodic boundary conditions ap-
ply�, whereas Fig. 8�b� shows the distance �r�t� from the
starting position at t=0 covered by the tagged particle. Both
figures demonstrate that the particle is repeatedly trapped at
some place, oscillating around a position with an amplitude
smaller than the particle size before it hops again to some

(b)

(a)

FIG. 2. �Color online� Normalized velocity autocorrelation
functions �a� �1�t� of the light and �b� �2�t� of the heavy particles in
a system with T=1, �=0.9, x=0.2, and different mass ratios �.

FIG. 3. �Color online� Non-Gaussian parameter �2�t� of the
light species for a concentration of x=0.2 and different mass ratios.
The density �=0.9 and temperature T=1.
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other trap. Hence this trajectory demonstrates well the inter-
mittent process discussed above. In Fig. 8�a� these traps ap-
pear as black regions where the trajectory passes many times.
In order to verify that the traps are indeed minima of the
potential energy landscape created by the fixed particles, we
have plotted in Fig. 9 a magnified portion of the trajectory,
corresponding to the time period 1200� t�1350, during
which the particle is trapped according to Fig. 8�b�. It is

obvious that for �=1 �r�t� in Fig. 8�b� would show the
known behavior of a pure fluid where plateau ranges are
practically absent. Only for large enough values of the mass
ratio and intermediate concentrations time intervals of con-
stant �r�t� become visible. Also shown in Fig.9 is a surface
of constant potential energy �the other mobile particles are
not included in the calculation�. It is apparent that the surface
forms a kind of bag, and the trajectory lies almost completely

(b)(a)

(c)

FIG. 4. �Color online� Normalized distinct part of the van Hove function Gd
11�r , t� /�. The concentration of the heavy particles is

x=0.2 and the mass ratios are �a� �=104, �b� �=3
105, and �c� �=�. The density �=0.9 and temperature T=1 in all cases.

(b)(a)

FIG. 5. �Color online� Normalized distinct part of the VHCF, Gd
11�r , t� /�, as a function of r at constant time t, with x=0.2 and �a�

�=104 and �b� �=�. The times are t=2i
0.015, with i given by the number next to each curve. The density �=0.9 and temperature
T=1 in both cases.
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(b)(a)

(c)

FIG. 6. �Color online� Normal-
ized distinct part of the van Hove
function Gd

12�r , t� /�. The concen-
tration of the heavy particles is
x=0.2 and the mass ratios are �a�
�=104, �b� �=3
105, and �c� �
=�. The density �=0.9 and tem-
perature T=1 in all cases.

m2 � 104, x � 0.2
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FIG. 7. �Color online� Self-
part of the van Hove function for
the light particles Gs

1�r , t� times
4�r2. The concentration of the
heavy particles is x=0.2 and the
mass ratios are �a� �=104, �b�
�=3
105, and ��c� and �d�� �
=�. The density �=0.9 and tem-
perature T=1 in all cases. Low
values are shaded in blue; high
values are shaded in red. The plot
range in z direction is �0,2�; the
difference between two contour
lines is 0.12. Clipped regions are
shown in white. The thick black
lines correspond to the root-mean-
square displacement 
��r1

2�t��.
The curves shown in �d� corre-
spond to the times t=2i
0.015,
with i given by the number next to
each curve.
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on the inside of it, where the potential energy is smaller than
on the outside. The dimensions of the portion are roughly
�
�


�
2 , and there is no heavy particle inside.

B. Diffusion coefficients

Simulation results for the diffusion coefficients of light
and heavy particles, D1 and D2, as functions of the mass ratio
� are presented in Fig. 10 for three different concentrations,
x=0.05, 0.1, and 0.2. The temperature T=1.05 and the den-
sity �=0.6. The results were corrected for finite-size effects
according to the equation �25,42,43�

D�L� = D��� −
�

L
, �27�

where � is a fitting parameter. Figure 11 shows the depen-
dence of D2 on the system size L for some concentrations
x=0.2, 0.1, and 0.03. In each case the mass ratio is �=10. As
one can see, the curves exhibit an increasing curvature with
decreasing x, reflecting a departure from the 1 /L-scaling be-
havior predicted by Eq. �27�. Extrapolations to 1 /L=0 were
performed using the two data points with the highest particle
number in each case.

Another difficulty that is caused by a small number of
particles with high mass is that the mean kinetic energies,
and thus the temperatures, of the light and heavy subsystems

may deviate from each other. For a single Brownian particle
of mass mB, this problem was studied in detail by Nuevo
et al. �2�. For a total number of particles N and a mass m of
the solvent particles, the mean square momentum of the
Brownian particle �pB

2� will differ from its value in the ther-
modynamic limit, 3TmB, by a factor of

fB =
N − 1

N − 1 + mB/m
. �28�

Equation �28�, derived in �1�, can be generalized to an arbi-
trary number N2 of heavy solute particles and N1=N−N2
light solvent particles, yielding

fx =
N1 + �N2 − 1��

N1 + N2�
=

1 − x + �x − 1/N��
1 − x + x�

. �29�

Table I gives some examples of measured kinetic energies of
the two species, E1

kin and E2
kin, compared to the value pre-

dicted by Eq. �29�. The thermodynamic limit value for this

0 500 1000 1500 2000
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�
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t�

(b)(a)

FIG. 8. �Color online� �a� Trajectory of a particle of the light
species in a system with fixed heavy particles ��=��, mole fraction
x=0.2, density �=0.9, and temperature T=1. �b� Displacement
�r�t� of the same particle.

FIG. 9. �Color online� Part of the trajectory shown in Fig. 8 for
t between 1200 and 1350. The particle is trapped in a potential
energy minimum. The isosurface corresponds to the total potential
of all heavy particles. Inside the surface, the potential is lower than
−5.

FIG. 10. �Color online� Diffusion coefficient of the heavy �full
symbols� and light species �open symbols� as a function of the mass
ratio � for concentrations x=0.05 �green�, x=0.1 �blue�, and
x=0.2 �red�. The dashed curves correspond to the linear model �see
text�. The density �=0.6 and temperature T=1.05.

FIG. 11. �Color online� System size dependence of the diffusion
coefficient of the heavy species for �=10 and different concentra-
tions. Solid curves are extrapolations to 1 /L=0; dashed curves are
only guides for the eyes. The density �=0.6 and temperature
T=1.05.
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temperature is Ekin= 3
2T=1.575. In some cases with low con-

centration and small system size the deviations are found to
reach up to 10%.

C. Shear viscosity

For the same systems as in Fig. 10 we have calculated the
shear viscosities of the mixtures via Eqs. �20� and �21�. The
results are presented in Figs. 12 and 13. We compare them
with a simple linear model assuming the mixture is ideal, and
therefore the total viscosity �m

id is given by

�m
id = �1 − x��1

0 + x�2
0, �30�

where �1
0 and �2

0 denote the shear viscosities of the two com-
ponents in their pure form. Since the viscosity of a pure fluid
scales with the square root of the mass of its particles, �2

0

=
��1
0, we have

�m
id

�1
0 = 1 + x�
� − 1� . �31�

The dotted lines in Figs. 12 and 13 were obtained from Eq.
�31�. Agreement with the MD data is in general quite good,
only for x=0.2 the model overestimates the real values by up
to 20%. Figure 13 shows additionally the contributions �1
and �2 of the two mixture components as defined in Sec.
III D. It can be seen that while �m and �2 are both increasing
as 
� for large mass ratios, �1 is growing only slowly and
reaches the value obtained for �=� �blue dashed line� at
�=104.

In Fig. 14, we plot several stress-stress autocorrelation
functions �2�t���22�t� �see Eq. �18�� for the systems with
x=0.2 and various values of the mass ratio �. It is obvious

TABLE I. MD results for the kinetic energies E1
kin and E2

kin of the light and heavy subsystems for various
concentrations, mass ratios, and system sizes. The temperature T=1.05 and the density �=0.6 in all cases.

x � N E1
kin E2

kin

E2
kin

1.575 fx

0.2 100 250 1.5801�4� 1.5541�14� 0.987 0.981

0.2 100 500 1.5776�4� 1.5646�15� 0.993 0.990

0.2 100 1000 1.5762�1� 1.5703�5� 0.997 0.995

0.2 3000 250 1.5748�7� 1.5757�15� 1.000 0.980

0.2 3000 500 1.5740�11� 1.5792�42� 1.003 0.990

0.2 3000 1000 1.5764�2� 1.5695�9� 0.996 0.995

0.02 100 250 1.5784�1� 1.4093�63� 0.895 0.866

0.02 100 500 1.5768�1� 1.4893�40� 0.946 0.933

0.02 100 1000 1.5760�1� 1.5291�16� 0.971 0.966

0.02 100 2000 1.5755�1� 1.5515�16� 0.985 0.983

0.02 3000 250 1.5750�1� 1.5737�72� 0.999 0.803

0.02 3000 500 1.5753�2� 1.560�11� 0.991 0.902

0.02 3000 1000 1.5754�1� 1.555�7� 0.987 0.951

FIG. 12. �Color online� Total shear viscosity �m as a function of
the mass ratio � for systems with �=0.6, T=1.05, and different
mole fractions x=0.2, 0.1, and 0.05. The dotted curves correspond
to the linear model �see text�.

FIG. 13. �Color online� Total shear viscosity �m and the contri-
butions �1 and �2 of the two components as functions of the mass
ratio � for a system with �=0.6, T=1.05, and mole fractions x
=0.2. The black dotted curve correspond to the linear model �see
text�; the blue dashed line indicates the value of �1 obtained for
�=�.
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that with increasing � the relaxation times grow in a similar
manner as we observed for the VACF �2�t�. Consequently,
the numerical integration of Eq. �20� has to be extended up
to very large times tmax�100 in order to reach the plateau
value of �2.

D. Stokes-Einstein relation

In order to look for a relation between the diffusion coef-
ficient of the heavy particles and the shear viscosity, we plot
D2 from Fig. 10 and �m from Fig. 12 in a double-logarithmic
scale in Fig. 15 �full symbols�. We observe that these data
points lie close to a straight line, which might be represented
by the equation

D2 = A�m
−�, �32�

where A and � are fitting parameters �a similar relation was
also suggested in �12��. Indeed, a linear fit leads to the values
�=1.07 and A=0.131. Thus, we propose a Stokes-Einstein-

like relation with �=1 which yields a value of A=0.122
�solid line in Fig. 15�. From such a relation one may extract
an effective hydrodynamic radius RH by identifying
A=kBT /C�RH according to Eq. �25�. Assuming slip bound-
ary conditions, we obtain RH=0.68, which seems to be rea-
sonable for our interaction potential. Similar values have also
been found before, e.g., in �9�.

Equation �32� also allows us to apply the linear ideal-
mixture model �Eq. �31�� for �m to the diffusivity D2. Com-
bining the two equations yields

D2�x,�� =
B

1 + x�
� − 1�
, �33�

with B=A /�1
0=0.156. The curves resulting from Eq. �33� for

x=0.05, 0.1, and 0.2 are shown by the dashed lines in Fig.
10.

E. Concentration dependence

Finally, we investigated the dependence of D2 and �m on
the concentration. Figure 16�a� shows the diffusivity of the
heavy component as a function of x for �=0.6, T=1.05, and
�=10, 100, 500, and 3000 �see Table II�. For comparison,
we also include the curves predicted by the linear model,
namely, Eq. �33� at fixed values of �. In this case, however,
we set B=D2��=1�=0.187 since otherwise the value of
D2�x→0� predicted by SE relation �32� is too low, which is
also apparent from Fig. 15. It seems that for not too small
values of x, the linear model describes the behavior quite
well, while for small concentrations the deviations are get-
ting larger. Also, from the MD data it is not clear whether D2
approaches the same value for any � as x goes to zero. Since
finite-size effects increase when approaching the Brownian
limit, we could not answer this question.

A clearer picture can be given regarding the concentration
dependence of the shear viscosity, shown in Fig. 16�b�. For
x→0, �m of course approaches the pure-fluid value �1

0 of the
light component, which is 0.786�12� for the chosen density
and temperature. At small concentrations, the function
�m�x ,�� can be approximated by a linear ansatz,

�m�x,��
�1

0 = 1 + k����x + ¯ , �34�

with a �-dependent coefficient k�. Comparison with Eq. �31�
yields k����=
�−1 for the simple linear model. The slopes
obtained from the simulation data �k�=19 for �=500,
k�=70 for �=3000, and k�=186 for �=10 000� are in quali-
tative agreement with this assumption. In any case, the

FIG. 14. �Color online� Normalized stress-stress autocorrelation
function �2�t� for the heavy component of the system with x=0.2 of
Fig. 12.

FIG. 15. �Color online� Fit of the MD data to Eq. �32� for
concentrations x=0.2, 0.1, and 0.05 and different mass ratios
�=1,10,100,500,3000,104. The straight line corresponds to an
exponent of −1, and the fit yields a hydrodynamic radius
RH=0.68 �assuming slip boundary conditions�. The density �=0.6
and temperature T=1.05.
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observed numbers are much larger than the well-known
value of 2.5 proposed by Einstein for a suspension of solid
particles in a liquid at small concentrations �38,44�.

V. CONCLUSION

We have performed extensive MD simulations of binary
Lennard-Jones fluids whose components are identical except
for their mass, such that only dynamic properties such as
transport coefficients and time correlation functions change
with varying mass ratio � and concentration x of the two
species. In particular, we have studied the diffusion coeffi-
cient, the shear viscosity, the velocity and stress-stress auto-
correlation functions, the van Hove space-time correlation
function and the mean-square displacement for a range of
�small� mole fractions of the heavy component and high
mass ratios up to infinity. The latter case was realized by
fixing the heavy particles at their starting positions during the
whole simulation run.

We found that especially at high liquid densities and high
mass ratios the large difference in relaxation times of light
and heavy particles leads to a pronounced cage effect for the
light component. It can be observed as an intermediate re-
gion of anomalous diffusion in the mean-square displace-

ment, a large maximum of the non-Gaussian parameter, and
additional peaks in both the self- and distinct part of the van
Hove correlation function. When tracing the trajectory of a
single light particle, it turns out that its motion is character-
ized by hopping between separate local minima of the poten-
tial energy landscape. Thus our study gives in fact an ex-
ample that a rather stable “solvent cage” can be formed in
mixtures just because of a strong mass asymmetry effect.

Furthermore, we established a generalized Stokes-
Einstein relation between the diffusion coefficient of the
heavy component and the total shear viscosity of the mixture
that is valid in the whole range of mass ratios and concen-
trations. In order to obtain accurate results, it was necessary
to correct for the system size dependence of the diffusivity
and to ensure that the Green-Kubo integral for the shear vis-
cosity has reached its plateau value.

Mass dependences of both viscosity and diffusivity are
approximately predicted by a simple linear model assuming
an ideal-mixture behavior. For small concentrations, the
shear viscosity follows a linear dependence on x with a slope
going roughly as 
�, whereas for the diffusion coefficient of
the heavy species due to computational limitations no con-
clusive result could be obtained.

TABLE II. MD results for the diffusion coefficients and viscosi-
ties, obtained via the Green-Kubo formulas �6� and �20�, for various
concentrations and mass ratios. The temperature T=1.05 and the
density �=0.6 in all cases.

x � D2 �m �1 �2

0.2 1 0.1865�7� 0.786�12� 0.593�9� 0.121�3�
0.2 10 0.1278�5� 1.001�9� 0.683�7� 0.238�5�
0.1 10 0.142�2�
0.05 10 0.154�2�
0.03 10 0.158�3�
0.02 10 0.169�3�
0.2 100 0.0725�5� 1.536�18� 0.696�12� 0.746�13�
0.1 100 0.1013�6� 1.246�31� 0.758�22� 0.428�14�
0.05 100 0.131�2� 1.016�18� 0.768�9� 0.216�4�
0.02 100 0.151�3�
0.2 500 0.042�1� 2.660�67� 0.769�16� 1.864�61�
0.1 500 0.0652�15� 2.165�40� 0.798�32� 1.269�38�
0.05 500 0.091�3� 1.544�28� 0.769�22� 0.762�16�
0.02 500 1.088�26�
0.2 3000 0.0166�3� 6.44�22� 0.895�28� 5.61�19�
0.1 3000 0.0277�3� 4.41�15� 0.779�36� 3.69�12�
0.05 3000 0.040�1� 3.14�11� 0.795�29� 2.385�82�
0.02 3000 0.056�2� 1.896�34� 0.780�14� 1.076�22�
0.2 104 0.00844�3� 12.87�40� 1.013�60� 11.46�36�
0.1 104 0.01313�7� 9.37�39� 0.78�4� 8.31�35�
0.05 104 0.0194�15� 6.14�26�
0.02 104 3.85�17�
0.01 104 2.25�9�

(b)

(a)

FIG. 16. �Color online� Dependence of �a� the diffusion coeffi-
cient of the heavy species and �b� the shear viscosity of the mixture
on the concentration for different mass ratios. The dotted curves in
�a� correspond to the linear model �see text�; the dashed curves in
�b� are linear fits. The density �=0.6 and temperature T=1.05.
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There are several possible ways of extending the results
presented here. Apart from studying other transport coeffi-
cients such as thermal conductivity or mutual diffusion, it
would be interesting to perform a similar investigation close
to the critical point of the phase diagram. Furthermore it is
planned to study the percolation threshold at high concentra-
tions of the heavy component and to leave the hydrodynamic
regime and look at the wave-vector dependence of the dy-
namic quantities �see, e.g., �45��. For the latter problem, cal-

culations have already been performed the results of which
will be published elsewhere.
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