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Systems with long-range interactions display a short-time relaxation toward quasistationary states �QSSs�
whose lifetime increases with system size. The application of Lynden-Bell’s theory of “violent relaxation” to
the Hamiltonian Mean Field model leads to the prediction of out-of-equilibrium first- and second-order phase
transitions between homogeneous �zero magnetization� and inhomogeneous �nonzero magnetization� QSSs, as
well as an interesting phenomenon of phase re-entrances. We compare these theoretical predictions with direct
N-body numerical simulations. We confirm the existence of phase re-entrance in the typical parameter range
predicted from Lynden-Bell’s theory, but also show that the picture is more complicated than initially thought.
In particular, we exhibit the existence of secondary re-entrant phases: we find unmagnetized states in the
theoretically magnetized region as well as persisting magnetized states in the theoretically unmagnetized
region. We also report the existence of a region with negative specific heats for QSSs both in the numerical and
analytical caloric curves.
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I. INTRODUCTION

In statistical physics, phase re-entrance is a quite typical
phenomenon occurring in many physical systems, such as
spin-glasses, colloids, and polymers, in which there is a com-
petition between different entropic terms �1–6�. A phase re-
entrance is normally associated with inverse melting, a coun-
terintuitive phenomenon in which isobaric addition of heat
causes a disordered �e.g., liquid� phase to crystallize, the re-
verse of the usual situation. Phase re-entrance occurs when,
providing additional heating to the system, the latter under-
goes a new transition, from the ordered to the disordered
phase. The phenomenon of phase re-entrance has been
widely studied at thermodynamic equilibrium in systems
whose constituents interact through short-range forces.

In this paper we give evidence to the existence of phase
re-entrance also in the case of long-range interacting systems
in out-of-equilibrium dynamical conditions.

Long-range interactions are such that the two-body inter-
action potential decays at large distances with a power-law
exponent which is smaller than the space dimension. The
dynamical and thermodynamical properties of these systems
were poorly understood until a few years ago, and their study
was essentially restricted to astrophysics �stellar systems�
and two-dimensional turbulence �large-scale vortices� �7�.
Later, it was recognized that long-range systems exhibit uni-
versal, albeit unconventional, equilibrium and out-of-
equilibrium features �8�. It is for instance well-known that
such systems get trapped in long-lasting quasistationary
states �QSS� �9–16�, before relaxing to thermal equilibrium.
The duration of a QSS increases with the number of particles
N in the system. Remarkably, when the thermodynamic limit
�N→�� is performed before the infinite time limit �t→+��,
the system remains permanently trapped in QSSs. As a con-

sequence, QSSs represent the only accessible experimental
dynamical regimes for systems composed by a large number
of long-range interacting particles. This includes systems of
paramount importance, such as non-neutral plasmas confined
by a strong magnetic field �17,18�, free-electron lasers �19�,
and ion particle beams �20�. The ubiquity of QSSs has origi-
nated an intense debate �21� about the mechanisms respon-
sible for their emergence, their persistence, and their even-
tual evolution toward statistical equilibrium. In fact, QSSs
keep memory of the initial condition and, as a consequence,
they cannot be interpreted by making use of the classical
Boltzmann-Gibbs approach.

In a series of recent papers �22–26�, an approximate ana-
lytical theory based on the Vlasov equation and inspired by a
seminal work of Lynden-Bell �27� in astrophysics has been
proposed. This is a fully predictive approach, enabling one to
explain the emergence and the properties of QSSs from first
principles �28�.

In this paper we utilize a well-known Hamiltonian toy
model, the so-called Hamiltonian mean field �HMF� model
�29�, to demonstrate that phase re-entrance�s� may also occur
in a long-range interacting system, dynamically trapped in a
QSS. The HMF describes the motion of N rotators, coupled
through an equal strength cosine interaction. The Hamil-
tonian reads

H =
1

2�
j=1

N

pj
2 +

1

2N
�
i,j=1

N

�1 − cos�� j − �i�� , �1�

where � j represents the orientation of the j-th rotator and pj
stands for its conjugated momentum. To monitor the evolu-
tion of the systems it is customary to introduce the magneti-
zation, an order parameter defined as
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M =
��imi�

N
where mi = �cos �i,sin �i� . �2�

The infinite-range coupling between rotators, provides the
system with all typical characteristics of a long-range sys-
tem, as clearly displayed in Fig. 1. Here, the magnetization is
monitored as a function of time: after an initial “violent”
relaxation, the system reaches a QSS, which is followed by a
slow relaxation toward Boltzmann statistical equilibrium.
The larger the system, the longer the intermediate phase
where it remains confined before reaching the final equilib-
rium.

The paper is organized as follows: in Sec. II, we present
the continuous Vlasov picture and review the maximum en-
tropy principle based on the Lynden-Bell approach. This the-
oretical setting is used to obtain the HMF phase diagrams in
different representations from which out-of-equilibrium
phase transitions �22–26� and phase re-entrance �22,26� can
be predicted. In Sec. III, these theoretical predictions are
compared to N-body simulations based on �1�. Finally, in
Sec. IV we sum up our results and draw our conclusions.

II. OUT-OF-EQUILIBRIUM PHASE RE-ENTRANCE: THE
PREDICTION OF LYNDEN-BELL THEORY

A. General theory and two-level approximation

In a recent series of papers �22–26�, an approximate ana-
lytical theory based on the Vlasov equation has been pro-
posed for the HMF model stemming from the seminal work
of Lynden-Bell �27�. This is a fully predictive approach, jus-
tified from first principles, which captures most of the pecu-
liar traits of the HMF out-of-equilibrium dynamics. The phi-
losophy of the proposed approach is briefly reviewed in the
following:

In the limit of N→�, the HMF dynamics can be formally
described using the Vlasov equation

� f

�t
+ p

� f

��
− �Mx�f�sin � − My�f�cos ��

� f

�p
= 0, �3�

where f�� , p , t� is the one-body microscopic distribution
function �DF�, and the two components of the magnetization
are, respectively, given by

Mx�f� =� f cos �d�dp ,

My�f� =� f sin �d�dp . �4�

The mean-field energy can be expressed as

U =
1

2
� fp2d�dp −

Mx
2 + My

2

2
+

1

2
. �5�

Working in this setting, it can be then hypothesized that
QSSs correspond to stable stationary equilibria of the Vlasov
equation on a coarse-grained scale. Lynden-Bell’s idea goes
as follows: the Vlasov dynamics induces a progressive fila-
mentation of the initial single-particle distribution profile,
i.e., the continuous counterpart of the discrete N-body distri-
bution, which proceeds at smaller and smaller scales without
reaching an equilibrium. Conversely, at a coarse-grained
level, the process comes to an end, and the distribution-

function f̄QSS�� , p , t�, averaged over a finite grid, eventually
converges to an asymptotic form. Following Lynden-Bell,
one can then associate a mixing entropy to this process. As-

suming ergodicity �i.e., efficient mixing�, f̄QSS�� , p�, is ob-
tained by maximizing the mixing entropy, while imposing
the conservation of Vlasov dynamical invariants. It is worth
emphasizing that the prediction of the QSS depends on the
details of the initial condition �30�, not only on the values of
energy and mass as for the Boltzmann statistical equilibrium
state.

For a two-level initial condition f�� , p , t=0�� �0, f0	, the
Lynden-Bell entropy is explicitly constructed from the

coarse-grained distribution function f̄ as �22,31�

S� f̄� = −� dpd�
 f̄

f0
ln

f̄

f0
+ �1 −

f̄

f0
�ln�1 −

f̄

f0
�
 . �6�

We thus have to solve the maximization problem

max
f̄

�S� f̄��U� f̄� = U, M� f̄� � � f̄d�dp = 1� . �7�

This maximization problem assures that the distribution
function is thermodynamically stable �most probable mac-
rostate� in the sense of Lynden-Bell �27� and also that it is
nonlinearly dynamically stable with respect to the Vlasov
equation �32�. From Eq. �6�, we write the first-order varia-
tions as �S−��U−��M=0, where the inverse temperature
�=1 /T and the “chemical-potential” � are Lagrange multi-
pliers associated with the conservation of energy and mass.
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FIG. 1. Magnetization as a function of time, for systems with
different sizes. The continuous, dashed, short-dashed, dotted, and
dot-dashed lines correspond, respectively, to N=2·104 ,
104 ,5 ·103 ,2 ·103 ,103. We see that QSSs start approximately at t
=40, and their duration increases with the system size; eventually,
they relax to Boltzmann equilibrium �thick line�. Simulations are
performed starting from a two-level distribution with energy U
=0.6400, f0=0.094, and averaging over different system realiza-
tions with the same initial distribution �50, 100, 200, 500, and 1000,
respectively�.
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Requiring that this functional is stationary, one obtains the
following distribution �22–24�:

f̄QSS��,p� =
f0

1 + e��p2/2−Mx� f̄QSS�cos �−My� f̄QSS�sin ��+�
. �8�

As a general remark, it should be emphasized the “fermi-
onic” form of the distribution, which arises because of the
form of the entropy. Notice also that the magnetization is
related self-consistently to the distribution function by Eq.
�4�, and the problem hence amounts to solving an integro-
differential equation. In doing so, we have also to make sure
that the critical point corresponds to an entropy maximum,
not to a minimum or a saddle point. Let us now insert ex-
pression �8� into the energy and normalization constraints
and use the definition of magnetization �4�. Further, defining
�=e� and m= �cos � , sin �� yields �38�

f0�2

�
� d�I−1/2��e−�M·m� = 1,

f0
1

2
� 2

�
�3/2� d�I1/2��e−�M·m� = U +

M2 − 1

2
,

f0�2

�
� d� cos �I−1/2��e−�M·m� = Mx,

f0�2

�
� d� sin �I−1/2��e−�M·m� = My , �9�

where we have defined the Fermi integrals

In�t� = �
0

+� xn

1 + texdx . �10�

Their asymptotic limits are recalled in Ref. �22�.
If we consider spatially homogeneous configurations

�MQSS=0�, the Lynden-Bell distribution becomes

f̄QSS�p� =
f0

1 + �e�p2/2
. �11�

In the nondegenerate limit �→+�, the latter reduces to the

Boltzmann distribution f̄ = �� /2��1/2e−�p2/2 and in the com-
pletely degenerate limit �→0, it becomes a step function:

f̄ = f0 for �p�	1 / �4�f0� and f̄ =0 otherwise. If we make use
of Eq. �9�, we get the caloric curve ��U� for a fixed value of
f0 parametrized by � �22�

U −
1

2
=

1

8�2f0
2

I1/2���
I−1/2���3 , �12�

� = 8�2f0
2I−1/2���2. �13�

The homogeneous Lynden-Bell distribution with fixed value
of f0 exists only for �22�

U 
 Umin�f0� �
1

96�2f0
2 +

1

2
. �14�

Let us now address the problem of stability of the homo-
geneous Lynden-Bell distribution. In Ref. �22� it has been
shown that the critical curve Uc�f0� separating stable and
unstable homogeneous Lynden-Bell distributions is given by
the parametric Eq. �12� and

I−1/2�����I−1/2� ���� =
1

�2�f0�2 , �15�

where � goes from 0 to +�. In fact, the curve Uc�f0� delimi-
tates the region where the homogeneous Lynden-Bell distri-
bution is a local entropy maximum, at fixed mass and energy.
If several local entropy maxima are found �for example, ho-
mogeneous and inhomogeneous Lynden-Bell distributions�,
we must compare their entropies to determine the stable state
�global entropy maximum� and the metastable states �sec-
ondary entropy maxima�. For systems with long-range inter-
actions, metastable states have in general very long lifetimes,
scaling like eN, so that they are stable in practice and must
absolutely be taken into account �33,34�. For this reason,
�out-of-equilibrium� stability diagrams do not coincide with
phase diagrams. In fact, the latter require a careful investiga-
tion of metastable states.

B. Phase diagram in the (f0 ,U) plane

The phase diagram of the Lynden-Bell distribution in the
�f0 ,U� plane is shown in Fig. 2. We have also plotted the
stability curve Uc�f0� of the homogeneous phase �split in two
parts, Uc

f�f0� and Uc
s�f0�� parameterized by �. On the left of

this curve, the homogeneous phase is stable �maximum en-
tropy state� and on the right of this curve it is unstable
�saddle point of entropy� �39�. For f0→+�, the homoge-
neous Lynden-Bell distribution is stable only if U
Uc
=3 /4 �22�. This is the critical energy associated with the
Maxwell distribution �nondegenerate limit�. On the line of
minimum-energy U=Umin�f0�, we are in the completely de-
generate limit �→0 and the homogeneous Lynden-Bell dis-
tribution is stable when f0� �f0�c=1 / �2��2�, i.e., U
Uc
=7 /12. This is the critical energy associated with the spa-
tially homogeneous water-bag distribution. Therefore, the
minimum-energy curve Umin�f0� crosses the stability curve
Uc�f0� at ��f0�c ,Uc���0.1125,0.5833�.

If we now take into account Lynden-Bell’s inhomoge-
neous states, solving numerically Eq. �9�, we find that the
phase diagram displays first- and second-order phase transi-
tions. The curve Uc�f0� splits in two curves Uc

f�f0� and
Uc

s�f0�. In the case of a second-order phase transition, the
stability threshold corresponds to the transition between a
homogeneous and an inhomogeneous distribution. The
second-order phase transition corresponds to the branch
Uc

s�f0�. On the other hand, for a first-order phase transition,
as we have the coexistence of two entropy maxima, the sta-
bility condition of the homogenous phase is no more suffi-
cient to find the transition line, which has to be calculated by
making a comparison between the two entropy maxima. This
procedure has been followed to plot the line Ur�f0� in Fig. 2.
This line of first-order phase transition is reached when the
homogeneous and inhomogeneous phases have the same en-
tropy. The line Ur�f0� �first order� and the line Uc

s�f0� �second
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order� merge together at a tricritical point, located at
��f0�� ,U����0.10947,0.608� and corresponding to ��

=0.024. We have also plotted the curves Uc
f�f0� and Umeta�f0�

giving the lateral edges of the metastability regions for the
homogeneous and inhomogeneous phases �see figure caption
for more details�.

In conclusion, the second-order phase transition occurs
for a range of values of U�f0� bounded by the tricritical point
�U� , �f0���, and by Uc=3 /4, reached for f0→+�. For U
�Uc=3 /4, the Lynden-Bell theory always predicts a homo-
geneous phase �for any value of f0�. For f0	 �f0��, the ho-
mogeneous phase is always stable �for any U
Umin�f0��.
For f0� �f0�c, the homogeneous phase is stable for U
�Uc�f0� and unstable for Umin�f0��U	Uc�f0�. The first-
order phase transition occurs for a range of Uc�f0� bounded
by the tricritical point �U� , �f0��� and by the point
��f0�r ,Ur��f0�r����0.1098,0.5875�. As can be seen in Fig. 2,
the theory predicts a phase re-entrance, for a set of values of
f0� ��f0�� , �f0�c�. This means that, decreasing U in the dia-
gram at fixed f0� ��f0�� , �f0�c�, the homogeneous phase is
stable for U�Uc

s�f0�, unstable for Uc
f�f0�	U	Uc

s�f0�, and
stable again �or metastable� for Umin�f0�	U	Uc

f�f0�. In the
metastability region Umin�f0�	U	Uc

f�f0�, the system can be
found either in the homogeneous or inhomogeneous phase

depending on how it has been prepared initially �recall that
metastable states are highly robust for systems with long-
range interactions�. By contrast, for Uc

f�f0�	U	Uc
s�f0�, the

theory predicts an inhomogeneous phase and for U�Uc
s�f0�

a homogeneous phase.

C. Phase diagram in the (M0 ,U) plane

The preceding results are valid for any initial condition
with two phase levels f =0 and f = f0, whatever the number of
patches and their shape. In the two-level case, the relevant
control parameters are �f0 ,U� �22�. They fully specify the
Lynden-Bell equilibrium state from the initial condition. This
means that, assuming ergodicity, the system remembers the
initial condition through the values of these parameters. In
this sense, the general phase diagram in the two-level case is
the one represented in Fig. 2.

Now, many numerical simulations of the N-body system
�23,25�, or of the Vlasov equation �24�, have been performed
starting from a family of rectangular water-bag distributions.
The latter correspond to assuming a constant value f0 inside
the phase-space domain D

D = ���,p� � �− �,�� 
 �− �,+ ������ 	 ��, �p� 	 �p	
�16�

and zero outside. Here 0����� and �p
0. The normal-
ization condition results in

f0 =
1

4���p
. �17�

Notice that, for this specific choice, the initial magnetization
M0 and the energy density U can be expressed as functions
of �� and �p as

U =
��p�2

6
+

1 − �M0�2

2
, �18�

M0 =
sin����

��
. �19�

For the case under scrutiny, 0�M0�1 and U
UMIN�M0�
��1−M0

2� /2. The energy UMIN�M0� represents the absolute
minimum accessible energy for a rectangular water-bag dis-
tribution with magnetization M0. The initial configuration is
completely specified by the variables ��� ,�p� or, equiva-
lently, by the variables �M0 ,U�. On the other hand, for the
determination of the Lynden-Bell equilibrium state, only the
variables �f0 ,U� matter. Now, we note that different values
of �M0 ,U� can correspond to the same �f0 ,U� and, conse-
quently, to the same Lynden-Bell equilibrium �see Sec. II D�.
Therefore, the use of these variables leads to some redundan-
cies. Nevertheless, their advantage is that they are more di-
rectly related to physically accessible parameters. In any
case, it is of interest to compare the two phase diagrams in
�f0 ,U� and �M0 ,U� planes to see their similarities and
differences.

For the rectangular water-bag initial condition, using Eqs.
�17� and �18�, we can express f0 as a function of M0 and U
by

FIG. 2. Phase diagram in the �f0 ,U� plane. The homogeneous
phase only exists above the line Umin�f0�. The stability curve Uc�f0�
is parameterized by �. For �→0 �completely degenerate limit�, we
get f0= �f0�c=1 / �2��2� and Uc=7 /12. For �→+� �nondegenerate
limit�, we get f0→+� and Uc=3 /4. On the left of this curve, the
homogeneous phase is stable and on the right of this curve it is
unstable. The stability curve is divided in two parts, i.e., Uc

f�f0� and
Uc

s�f0�, by the tricritical point �full round dot� located at ��f0�� ,U��.
The continuous line corresponds to the second-order transition line.
The thick line represents the first-order transition line while the
dotted lines correspond to the borders of the metastable region. All
these lines divide the diagram in four regions. In region �I�, the
homogeneous phase is stable and the inhomogeneous phase does
not exist; in �II�, the homogeneous phase is stable and the inhomo-
geneous phase metastable; in �III�, the homogeneous phase is meta-
stable and the inhomogeneous phase stable; in �IV� the homoge-
neous phase is unstable and the inhomogeneous phase stable.
Umin�f0� is the line below which the homogeneous phase does not
exist, and UMIN�f0� is the lowest accessible value of energy for a
rectangular water-bag initial condition �see Sec. II E�. The square
dot is ��f0�c ,Uc��f0�c��, the diamond is ��f0�m ,Um� �Sec. II E�, and
the empty round dot is ��f0�r ,Ur��f0�r��. For f0� ��f0�� , �f0�c� there
is a re-entrant phase.
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f0
2 =

1

48��2U − 1�����2 + sin2 ���
, �20�

where �� is related to M0 by Eq. �19�. Inserting this expres-
sion in Eqs. �12� and �13�, we obtain after some algebra the
caloric curve ��U� for fixed M0 parameterized by �

U −
1

2
=

sin2 ��

�2

6
I−1/2���3

I1/2��� − 2����2
, �21�

� =
1

sin2 ��
��2

6
I−1/2���2 − 2����2 I1/2���

I−1/2���� . �22�

The homogeneous Lynden-Bell distribution with fixed M0
exists if and only if

U 
 Umin�M0� �
1

2
� sin2 ��

�2 − ����2 + 1� . �23�

On the other hand, regrouping all the preceding results, the
critical curve Uc�M0� separating stable and unstable homo-
geneous Lynden-Bell distributions is given by the parametric
Eqs. �12�, �15�, �20�, and �19� where � goes from 0 to +�.

The phase diagram of the Lynden-Bell distribution in the
�M0 ,U� plane is represented in Fig. 3. We have first plotted
the minimum accessible energy of the homogeneous phase
Umin�M0� defined by Eq. �23�. We have also plotted the sta-
bility curve Uc�M0� of the homogeneous phase parameter-
ized by �. Above this curve the homogeneous �MQSS=0�
phase is stable �maximum entropy state� and below this
curve it is unstable �saddle point of entropy�. For M0=1, we
are in the nondegenerate limit �→+� �because f0→+�� and
the critical energy is Uc=3 /4 �Maxwell distribution�. For
M0=0, we are in the completely degenerate limit �=0 and

the critical energy is Uc=7 /12 �spatially homogeneous water
bag�.

If we now take into account Lynden-Bell’s inhomoge-
neous states, solving numerically Eqs. �9�, we find that the
phase diagram displays first- and second-order phase transi-
tions. The second-order phase transition corresponds to the
branch Uc

s�M0� and the first-order phase transition to the
branch Ur�M0�. These two lines merge together at the tric-
ritical point, located at ��M0�� ,U����0.1757,0.608� corre-
sponding to ���=2.656. . . Using Eq. �20�, we readily check
that this tricritical point ��M0�� ,U�� corresponds to the tric-
ritical point ��f0�� ,U�� in the �f0 ,U� plane. We have also
plotted in the inset the lateral edges Uc

f�M0� and Umeta�M0�
of the metastability region associated with the first-order
phase transition.

Therefore, the phase diagrams in �f0 ,U� and �M0 ,U�
planes are fully consistent �see Sec. II D for more details�
and both display first- and second-order phase transitions.
The correctness of the above analysis is assessed in Ref. �25�
where numerical simulations are performed for different val-
ues of the system size N. The transitions predicted in the
realm of Lynden Bell’s theory are indeed numerically ob-
served, thus confirming the adequacy of the proposed inter-
pretative scenario. Note, however, that the physics is differ-
ent whether we vary the energy at fixed f0 or at fixed M0. In
particular, there is a “re-entrant” phase when we vary the
energy at fixed f0 �22� but there is no re-entrant phase when
we vary the energy at fixed M0 �25�.

D. Connection between the two phase diagrams

To make the connection between the phase diagram
�f0 ,U� of Sec. II B and the phase diagram �M0 ,U� of Sec.
II C, we can plot the iso-M0 lines in the �f0 ,U� phase dia-
gram or the iso-f0 lines in the �M0 ,U� phase diagram.

Let us first consider the iso-M0 lines in the �f0 ,U� phase
diagram. If we fix the initial magnetization M0, or equiva-
lently if we fix the parameter ��, the relation between the
energy U and f0 is

U���f0� =
1

6�4��f0�2 −
1

2
� sin ��

��
�2

+
1

2
. �24�

Therefore, the iso-M0 lines are of the form

U���f0� =
A����

f0
2 − B���� , �25�

with A����= 1
6�4���2 and B����= 1

2 � sin ��
�� �2− 1

2 , which are eas-
ily represented in the �f0 ,U� phase diagram �see Fig. 4�.
Figure 4 is in good agreement with the structure of the phase
diagram in the �M0 ,U� plane. Indeed, along an iso-M0 line,
we find that for large energies U�Uc�M0� the homogeneous
phase is stable and for low-energies U	Uc�M0� the homo-
geneous phase becomes unstable. In that case, there is no
re-entrant phase. We also note that for M0	 �M0��, the phase
transition goes from second order to first order. This corre-
sponds to the case where the iso-M0 line crosses the tricriti-
cal point.

f s

f

FIG. 3. Phase diagram in the control parameter plane �M0 ,U�
for a rectangular water-bag initial profile. UMIN�M0� is the absolute
minimum energy, and the homogeneous phase only exists above the
line Umin�M0�. The stability curve Uc�M0� is parameterized by �.
For �→0 �completely degenerate limit�, we get M0=0 and Uc

=7 /12. For �→+� �nondegenerate limit�, we get M0=1 and Uc

=3 /4. Above this curve, the homogeneous phase is stable and be-
low this curve it is unstable. The full dot is the tricritical point. In
the inset is showed the region of the first-order phase transition,
indicated by the line Ur�M0�, connected to the second-order phase-
transition line Uc

s�M0� by the tricritical point. The dotted lines are
the borders of the metastability region.
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Remark: we see on Fig. 4 that different iso-M0 lines can
cross each other. This means that different initial conditions
�M0� ,U� and �M0� ,U� can correspond to the same �f0 ,U�
hence to the same Lynden-Bell distribution. In other words,
in Lynden-Bell’s theory the couples �M0� ,U� and �M0� ,U� are
equivalent. There is therefore some redundance in using the
variables �M0 ,U� instead of the variables �f0 ,U�. Note, how-
ever, that the Lynden-Bell prediction does not always work
so that, in case of incomplete relaxation, the couples �M0� ,U�
and �M0� ,U� may lead to different QSS. However, this hap-
pens for f0
0.11053. . ., i.e., in a parameter range which is
only marginally interesting for our analysis.

Let us now consider the iso-f0 lines in the �M0 ,U� phase
diagram. If we fix the phase level f0, the relation between the
energy U and M0, or equivalently ��, is

Uf0
���� =

1

6�4��f0�2 −
1

2
� sin ��

��
�2

+
1

2
. �26�

Therefore, the iso-f0 lines are of the form

Uf0
���� =

C�f0�
����2 −

1

2
� sin ��

��
�2

+
1

2
, �27�

with C�f0�= 1
6�4f0�2 , which are easily represented in the

�M0 ,U� phase diagram �Fig. 5�. Recall that �� is related to
M0 by Eq. �19�. Figure 5 is in good agreement with the
structure of the phase diagram in the �f0 ,U� plane. In par-
ticular, we can see that for a set of values of f0
� ��f0�� , �f0�c�, it intersects the curve Uc�M0� twice leading
to re-entrant phases. We also note that the iso-f0 lines cannot
cross each other contrary to the iso-M0 lines.

E. Determination of the absolute minimum energy in the
(f0 ,U) plane for a rectangular water-bag initial condition

We recall that homogeneous Lynden-Bell distributions ex-
ist only for U�Umin�f0�. However, there can exist inhomo-

geneous Lynden-Bell distributions for U	Umin�f0�. Let us
determine the minimum accessible energy UMIN�f0� when we
start from a rectangular water-bag initial condition. For fixed
f0 the energy of the initial condition is a function of �� �or
initial magnetization M0� given by

Uf0
���� =

1

6�4��f0�2 −
1

2
� sin ��

��
�2

+
1

2
. �28�

We thus have to determine the minimum of this function for
0�����. First of all, the condition Uf0

� ����=0 is equiva-
lent to

f0 =
1

�48 sin�����sin���� − �� cos�����
. �29�

This function is represented in Fig. 6. For f0	0.11053. . .
there is no solution and for f0�0.11053. . . there are two
solutions ��1 and ��2 corresponding to one local minimum
and one local maximum �see Fig. 7�. For f0=0.11053. . ., we
have ��1=��2=2.2467. . .. Then, we find that the local mini-
mum is the absolute minimum if Uf0

���1�	Uf0
���. This is

the case if f0� �f0�m=0.12135. . . corresponding to an energy

FIG. 4. Iso-M0 lines in the �f0 ,U� phase diagram. This graphical
construction allows one to make the connection between the �f0 ,U�
phase diagram of Fig. 2 and the �M0 ,U� phase diagram of Fig. 3.
We can vary the energy at fixed initial magnetization by following a
dashed line. The intersection between the dashed line and the curve
Umin�f0� determines the minimum-energy Umin�M0� of the homoge-
neous phase. The intersection between the dashed line and the curve
Uc�f0� determines the energy Uc�M0� below which the homoge-
neous phase becomes unstable.

FIG. 5. Stability diagram in the �M0 ,U� plane, with iso-f0 lines.
The thick lines are the two parts of the stability curve, the dotted
line is the iso-f0 line with f0=0.1096 and the dash-dotted line is the
iso-f0 line with f0=0.1100.

FIG. 6. Graphical construction determining the solutions of the
equation Uf0

� ����=0.
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Um=0.57167. . . �see Fig. 7�. For f0	 �f0�m, the absolute
minimum corresponds to ��=�.

In conclusion, for f0	 �f0�m, we find that UMIN�f0�
=Uf0

��� so that

UMIN�f0� = Umin�f0� =
1

96�2f0
2 +

1

2
. �30�

For f0� �f0�m, we find that UMIN�f0�=Uf0
���1� where ��1 is

the smallest root of Eq. �29�. Combining these equations, we
find that the absolute minimum-energy UMIN�f0� is given in
parametric form by

UMIN =
1

2
�1 −

sin�2��1�
2��1

� , �31�

f0 =
1

�48 sin���1��sin���1� − ��1 cos���1��
, �32�

with 0���1�1.85063. . .. For f0→+� �nondegenerate
limit�, we get ��1→0 and UMIN�f0�→0. This is the energy
corresponding to an initial condition f�� , p , t=0�=��p�����.

Remark: for f0�0.11053, we confirm on Fig. 7 that there
can exist several initial conditions with the same f0 and U
but a different initial magnetization M0. They lead to the
same Lynden-Bell prediction.

III. NUMERICAL RESULTS

To assess the correctness of the above theoretical predic-
tion about the existence of a phase re-entrance, we have per-
formed direct numerical simulations of the HMF model �1�
for finite N. For that, we have chosen f0 in the interval
�f0��	 f0	 �f0�c and ran simulations at different energies.
Results for f0=0.1096 are shown in Fig. 8, where both the
theoretical and numerical values of magnetization at the
QSS, MQSS, are plotted as a function of the energy.

Simulations �dashed line� confirm the existence of a re-
gime of phase re-entrance. However, the agreement with
theory �continuous line� is mainly qualitative, as there is a
systematic shift between the two curves, although the mag-

netization value of the main bump is consistent with the one
predicted from Lynden-Bell’s approach. Moreover, simula-
tions show the existence of two zones of magnetization re-
vival at both sides of the central magnetized region. If we
move at f0=0.1100 �Fig. 9�, we find that one of the two
bumps has grown; this confirms that the structure of the
phase diagram is more complex than predicted by the theory,
as we find the existence of additional phase re-entrances.
Simulations performed using different numbers of particles
show that the magnetization values of the central magnetized
region and of the two bumps do not depend on the system
size. Instead, as expected, the curve offset goes to zero when
the system size is increased �see Fig. 9�.

A possible explanation for the discrepancies between
theory and simulations can be found by considering that the
energy range in which phase re-entrance is observed is quite
narrow. In fact, the iso-f0 lines, in the interval �f0��	 f0
	 �f0�c, are very close to the theoretical phase-transition
curve �see Fig. 5�. This means that any possible �i.e., even

FIG. 7. Energy of the initial condition as a function of �� for
different values of f0. From top to bottom: f0=0.10, f0= �f0�m

=0.12135, and f0=0.14.
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FIG. 8. Magnetization value at QSS, MQSS, versus energy for
f0=0.1096. Comparison between theory �continuous line� and
simulations �dashed line�. Simulations, done with N=106, are per-
formed using a symplectic integration algorithm, and averaging the
magnetization over the time window 40	 t	140, and over 50 dif-
ferent realizations. For this f0, Umin=0.5878, Ur=0.5955, Uc

f

=0.6026, and Uc
s =0.6131.
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FIG. 9. Magnetization value at QSS, MQSS, versus energy for
f0=0.1100. For this f0, Umin=0.5872, Uc

f =0.5980, and Uc
s =0.6177.

We plotted it for different sizes of the system: the continuous line
corresponds to N=106, the dashed line to N=5·105 and the dotted
line to N=105.
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small� disagreement between the theoretical and the numeri-
cal one may easily lead: �a� to a further numerical phase
re-entrance, if the iso-f0 line crosses the numerical phase-
transitions curves without crossing the theoretical one; �b� to
a larger numerical value of MQSS, if the iso-f0 separates from
the numerical curve, while staying close to the theoretical
one.

We also compared theory and simulations for higher f0
���f0�c�. As shown in Fig. 10, here theoretical and numerical
results are close. This is in agreement with what is reported
in Ref. �25�. In Fig. 11, we plotted our numerical results for
a f0 lower than �f0��. For f0=0.1085, close to the critical line
Uc�f0�, we observe a magnetized phase although Lynden-
Bell’s approach predicts a nonmagnetized phase. For lower
values of f0, homogeneous QSS are observed in agreement
with the theoretical prediction �data not shown�.

To provide a complete picture of the whole phase dia-
gram, we carried out simulations on a grid in the �f0 ,U�
plane and plotted the numerically obtained values of MQSS in
color scale �see Fig. 12�. At first order, we observe a fair
agreement between theory and simulations. In particular, the
predicted re-entrant phase phenomenon is clearly observed.
This can be considered as a success of the Lynden-Bell
theory. We also note that the region �III� of the phase dia-

gram appears to be nonmagnetized. It corresponds therefore
to a local Lynden-Bell entropy maximum. This confirms our
claim about the robustness of metastable states. Note, how-
ever, that starting from different initial conditions �with iden-
tical values of U and f0�, we could have found that the QSSs
in this region are magnetized. Indeed, in the metastability
region, the selection between local �metastable� or global
�state� entropy maxima depends on a complicated notion of
basin of attraction. Furthermore, we also find some unpre-
dicted phenomena, as the additional phase re-entrance, for
U�0.605 �see also Fig. 9� and a persisting magnetized phase
for low f0 �see also Fig. 11�.

We also studied the order of phase transitions, by plotting
the probability histogram of MQSS sampled with 300 differ-
ent realizations. We show the results for two of the transi-
tions occurring in Fig. 9. In Fig. 13, one can see that for the
transition at U�0.5980, distributions are characterized by a
double peak, which is a clear signature of a first-order phase
transition. For the one at U�0.6230 �see Fig. 14�, the dis-
tributions are instead characterized by a single peak, which
validates the prediction of a second-order phase transition.
The two transitions at the boundaries of the smaller phase
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FIG. 10. Magnetization value, MQSS, versus energy for f0

=0.1130� �f0�c. Comparison between theory �continuous line� and
simulations �dotted line�. Umin=0.5826 and Us=0.6325.
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FIG. 11. Magnetization value, MQSS, versus energy for f0

=0.1085	 �f0��. For f0	 �f0��, the Lynden-Bell approach predicts
that the QSS should be nonmagnetized so there is a disagreement
with theory when f0 is close to the tricritical point.
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FIG. 12. �Color online� Stability diagram in the f0-U space with
numerically calculated mean magnetizations. The dashed line is the
stability curve. The theoretical re-entrant phase is clearly visible as
well as the second �unexpected� re-entrant phase. In addition to this
interesting new re-entrance phase, the other main discrepancy is the
persisting magnetized phase for low f0.

FIG. 13. Probability distributions of MQSS for different U values
at f0=0.1100. Here in �a� U=0.5970, in �b� U=0.5980, �c� U
=0.5990, and in �d� U=0.6000.

STANISCIA et al. PHYSICAL REVIEW E 80, 021138 �2009�

021138-8



re-entrance, occurring around U�0.605, not predicted by the
theory, are found to be of first �at low energy� and second �at
high energy� order �data not shown�.

Finally, we compared the analytical and numerical caloric
curves ��U� for a given value of f0. In the simulations, the
temperature has been calculated from the usual expression

1

�kin
= �p2� =� d�dpf̄QSS��,p�p2. �33�

We note that the “kinetic” temperature defined by Eq. �33�
does not coincide with the Lagrange multiplier � associated
with the energy conservation in the Lynden-Bell distribution
�8�. This is due to the fermionic nature of this distribution.
Therefore, in order to make the comparison between simula-
tions and theory relevant, we have calculated the theoretical
temperature from the mean-square momentum �33� averaged
with the Lynden-Bell distribution given by Eq. �8�. The re-
sults are reported in Fig. 15. In continuity with the results of
Fig. 8, the range of energies where the inhomogeneous phase
appears is shifted with respect to the theoretical prediction.
As a further point, we also notice the presence of a region
with negative specific heat, both in the numerical and ana-

lytical curves. To the best of our knowledge, this is the first
time negative specific heat is observed out of equilibrium.
Surprisingly, this phenomenon is here observed in correspon-
dence of a second-order transition line.

IV. CONCLUSION

In this paper, we have confronted the predictions �22–26�
of a theory based on Lynden-Bell’s statistical mechanics of
violent relaxation �27� to the results of numerical experi-
ments. The application of Lynden-Bell’s theory to the HMF
model predicts a re-entrant phase in the �f0 ,U� plane �22�
and, indeed, we observe it. It occurs for a narrow range of
parameters which would have been difficult to find without
such a theoretical prediction. In this sense, this is a great
success of Lynden-Bell’s approach. The theory also predicts
the correct value of the magnetization in the inhomogeneous
phase and the correct order of the phase transition. This is
again remarkable because the phase diagram displays first
and second-order phase transitions in a very narrow range of
parameters �f0 ,U�. All these predictions are confirmed by
direct N-body experiments. We have also numerically ob-
served that metastable states �local Lynden-Bell entropy
maxima� can be very robust, so that they are stable in prac-
tice. This is a specificity of systems with long-range interac-
tions �33,34�.

However, we have also found some discrepancies with
respect to Lynden-Bell’s theory. In particular, numerical
simulations have demonstrated the existence of second re-
entrant phases: a band of unmagnetized states in the theoreti-
cally magnetized region, as well as persisting magnetized
states in the theoretically unmagnetized region. As a matter
of fact, there is a systematic shift in the transition line with
respect to theory. We must emphasize, however, the very
small selected region of parameters in Figs. 8 and 12. This
gives the impression of a big discrepancy although the dis-
crepancy is in fact very small.

Therefore, from these numerical experiments, we can
conclude that the Lynden-Bell statistical theory gives a fair
first-order description of QSSs in the HMF model. However,
for some initial conditions, there can be more or less severe
discrepancies with respect to the prediction. This is a well-
known fact in stellar dynamics �27� and vortex dynamics
�18� to which this theory was initially applied �see a detailed
discussion in Ref. �35��. Discrepancies with the Lynden-Bell
theory have also been reported for the HMF model in Refs.
�22,36�. These discrepancies are usually the result of an in-
complete relaxation �27�, i.e., a lack of efficient mixing in
the system phase space. Indeed, the Lynden-Bell theory is
based on a hypothesis of ergodicity and the prediction fails
�by definition� if the evolution is not ergodic. A detailed un-
derstanding of incomplete violent relaxation is still lacking
and appears to be very difficult �7�.

Another cause of discrepancy may be related to the prox-
imity of the numerically considered parameters �f0 ,U� to the
critical line and to the tricritical point. Indeed, it is well-
known in equilibrium statistical mechanics that strong fluc-
tuations are present close to a critical point, and that the

FIG. 14. Probability distributions of MQSS for different U values
at f0=0.1100. Here in �a� U=0.6150, in �b� U=0.6190, �c� U
=0.6230, and in �d� U=0.6270.

FIG. 15. Comparison between theoretical �continuous line� and
numerical �dashed line� caloric curves, for f0=0.1096.
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mean-field results cease to be valid in the vicinity of a criti-
cal point �37�. In the present case, we are studying out-of-
equilibrium phase transitions and it is not clear if we can
directly extend equilibrium results to that situation. Never-
theless, it is not unreasonable to expect that the theoretical
results may be altered close to the critical line and this is

indeed what we observe numerically. Further away from the
critical line �i.e., for larger or smaller values of f0�, we find a
very good agreement with the Lynden-Bell prediction �see
also �23��. These different observations concerning the suc-
cess or the failure of the Lynden-Bell theory are consistent
with the discussion given in �22�.
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