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The second law of thermodynamics represents a universal principle applicable to all natural processes,
physical systems, and engineering devices. Hatano and Sasa have recently put forward an extended form of the
second law for transitions between nonequilibrium stationary states �Phys. Rev. Lett. 86, 3463 �2001��. In this
paper we further extend this form to an instantaneous interpretation, which is satisfied by quite general
time-dependent stochastic processes including master-equation models and Langevin dynamics without the
requirements of the stationarity for the initial and final states. The theory is applied to several thermodynamic
processes, and its consistence with the classical thermodynamics is shown.
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I. INTRODUCTION

Equilibrium thermodynamics emerges when Carnot pro-
posed the first theoretical treatise on mechanical work and
efficiency in heat engines in the early nineteenth century.
However, 150 years after its formulation, the second law of
thermodynamics still appears more as a program than a well
defined theory, and all the thermodynamic potentials could
be well defined only in equilibrium states. This is one of the
main reasons why the classic thermodynamics could not be
applied to living biochemical systems: living cells must con-
tinually extract energy from their surroundings in order to
sustain the characteristic features of life such as growth, cell
division, intercellular communication, movement, and re-
sponsiveness to their environment.

The researches on irreversible systems far from equilib-
rium began with the works by Haken �1,2� about laser and
Prigogine, etc. �3,4� about oscillations of chemical reactions.
Prigogine and his collaborators also provided explicit expres-
sions for entropy production in various situations, and re-
garded a nonequilibrium steady state as a stationary open
system with positive entropy production rate �4�.

In 1998, Oono and Paniconi �5� proposed a framework of
steady-state thermodynamics, and distinguished the steadily
generated heat which is generated even when the system re-
mains in a single steady state and the total heat. They called
the former the “housekeeping heat,” which is equal to the
entropy production in steady state and may come from the
chemical driven force in biochemical systems �6,7�. The key
point of their work is that “if we can carefully remove the
steadily produced heat due to housekeeping dissipation, then
the state should not be very different from equilibrium.”
Moreover, they also put forward a phenomenological ex-
tended form of the second law: “a process converting work
into excess heat is irreversible. And “reversibility” is modulo
house-keeping heat, which is produced anyway.”

On the other hand, it has been known for several decades
that one can use stochastic processes as mathematical repre-

sentations for nonequilibrium states and steady cycle fluxes.
In 1953, Onsager and Machlup �8,9� proposed the Onsager-
Machlup principle, which is actually a functional, i.e., path
integral, formula about the probability density of a stochastic
process close to equilibrium. Hill �10–13� and Schnakenberg
�14� successfully constructed a general mesoscopic master-
equation model for biochemical systems and investigated its
properties far from equilibrium. Since then, a rather com-
plete mathematical theory for nonequilibrium steady states
has been developed for stochastic, Markov processes �15�.

In recent years, a few interesting relations that describe
the statistical dynamics of driven systems even far from
equilibrium have been discovered, including the fluctuation
theorems of sample entropy production �16–19�, Jarzynski’s
equality �20–22�, Hatano-Sasa equality �23�, etc. The main
contribution of Hatano and Sasa’s work �23� is to derived the
first explicit expression for the extended form of the second
law of thermodynamics, namely, T�S�Qex, where S is the
general entropy defined in their paper, and Qex is the excess
heat.

However, they only derived this form for transitions be-
tween nonequilibrium stationary states, and the proof is
based on a generalized version of the Jarzynski’s equality.
Their derivation is not so straightforward; furthermore, we
believe that second law is a much more universal principle
that should be satisfied by not only the specified processes.
Indeed, an instantaneous form can be developed.

In the present paper, we extend the extended form of the
second law for the first time to an instantaneous interpreta-
tion, which is satisfied by quite general time-dependent sto-
chastic processes including master-equation models and
Langevin dynamics without the requirements of the station-
arity for the initial and final states. It says that the entropy
production rate after subtracting the house-keeping heat is
still non-negative, namely, Tep�t�−Qhk�t��0, which conse-
quently gives rise to the extended form of the Clausius in-
equality, and takes Hatano-Sasa’s work as a special example.
Then the theory is carefully applied to several thermody-
namic processes, and its consistence with the classical ther-
modynamics is clearly shown.*gehao@fudan.edu.cn

PHYSICAL REVIEW E 80, 021137 �2009�

1539-3755/2009/80�2�/021137�7� ©2009 The American Physical Society021137-1

http://dx.doi.org/10.1103/PhysRevE.80.021137


II. THEORY

A. Master-equation processes

Stochastic models are widely used in physics, chemistry,
biology, and even in economics. The master-equation process
discussed here could be applied to model chemical reactions,
which are of special interest in biology, in relation with their
coupling with active transport across membrane �12,24� and
also recent mechanisms of molecular motors �25�. Further-
more, in real biochemical systems, the external parameters
such as the concentrations of external signal proteins can
oscillate or fluctuates. These considerations motivate the ne-
cessity for the analysis of time-dependent processes.

In physics, master equation is a set of first-order differen-
tial equations of the mesoscopic system:

d

dt
pi�t� = �

j=1

N

�qji�t�pj�t� − qijpi�t�� , �1�

describing the dynamical evolution of a probability distribu-
tion pi�t� over states i=1,2 , . . . ,N. The quantity qij�t� is the
transition density �probability per time� to state j from state i.
It contains internal rate constants as well as external condi-
tions imposed by the coupling to the reservoir systems. The
basic properties of this model have been recently established
�26�.

One could take a stationary Markov chain, in which the
probability transition density Q�t� is invariant, as the math-
ematical model of the combination and transformation of
biochemical polymers �11,12�. Each state of the Markov
chain corresponds to a mesoscopic state of polymers.

Let us also mention that the number N need not to be
finite, and the system could also be regarded as the stochastic
model of coupled chemical reactions �chemical master equa-
tion� �14,27,28�.

1. Essential notations and fundamental relations

Unlike the traditional approach of equilibrium thermody-
namics, we should start with the general definition of en-
tropy. The common definition of Gibbs entropy associated
with any discrete probability distribution �pi� is

S��pi�� = − k�
i

pi log pi,

where k is the Boltzmann constant.
In statistical mechanics, it gives the entropy for a canoni-

cal ensemble of a molecular system at constant temperature,
and is a generalization of Boltzmann’s formula to a situation
with nonuniform probability distribution.

Denote the real distribution at time t is p�t�= �pi�t��, and
we define the general entropy at time t as S�t�=
−k�ipi�t�log pi�t�.

It is widely known that the entropy change dS could be to
distinguished in two terms �4,6,29�: the first, deS is the trans-
fer of entropy across the boundaries of the system, and the
second diS is the entropy produced within the system.

Here, it is easy to derive that �6,29�

dS�t�
dt

= diS + deS = ep�t� − hd�t� , �2�

where

ep�t� = diS =
1

2
k�

i,j
�pi�t�qij�t� − pj�t�qji�t��log

pi�t�qij�t�
pj�t�qji�t�

is just the instantaneous entropy production rate �26�, and

hd�t� = deS =
1

2
k�

i,j
�pi�t�qij�t� − pj�t�qji�t��log

qij�t�
qji�t�

is due to the exchange of heat with the exterior, called the
heat dissipation rate.

The heat dissipation hd�t� could be regarded as the total
heat conduction Qtot�t� with the medium, i.e.,

Qtot�t� = Thd�t� .

By convention, we take the sign of heat to be positive when
it flows from the system to the heat bath.

The idea of decomposing the total heat into a “housekeep-
ing” part and another “excess” part was put forward by Oono
and Paniconi �5�, and made explicit in Langevin systems by
Hatano and Sasa �23�.

For any fixed t, there is a steady distribution ��t�
= ��i�t�� corresponding to Q�t� satisfying ��t�Q�t�=0, which
need not obey the detailed balance condition �i�t�qij�t�
=� j�t�qji�t�.

Then we could define the other two kinds of heat: the
housekeeping heat and excess heat

Qhk�t� =
1

2
kT�

i,j
�pi�t�qij�t� − pj�t�qji�t��log

�i�t�qij�t�
� j�t�qji�t�

,

Qex�t� =
1

2
kT�

i,j
�pi�t�qij�t� − pj�t�qji�t��log

� j�t�
�i�t�

,

and obviously Qtot�t�=Qex�t�+Qhk�t�.
More importantly, the housekeeping heat is always non-

negative, which implies the nonequilibrium essence of the
system,

Qhk�t� = kT�
i,j

pi�t�qij�t�log
�i�t�qij�t�
� j�t�qji�t�

� − kT�
i,j

pi�t�qij�t�

��� j�t�qji�t�
�i�t�qij�t�

− 1	 = − kT�
i

pi�t�
�i�t�

�
j

� j�t�qji�t�

+ kT�
i,j

pi�t�qij�t� = 0,

by making use of a simple inequality log x�x−1 for x�0,
and the identity � jqij�t�
0. Similar results have been de-
rived by Speck and Seifert �30�.

For equilibrium system, Qex reduces to the total heat Qtot,
because in this case Qhk
0 due to �i�t�qij�t�=� j�t�qji�t�.

2. Second law of thermodynamics

Traditional second law of thermodynamics has two kinds
of statements �31�: The Kelvin-Planck statement “No process
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is possible whose sole result is the complete conversion of
heat into work” and the Clausius statement “No process is
possible whose sole result is the transfer of heat from a
colder to a hotter body.”

Then how does these thermodynamic laws apply to such a
nonequilibrium time-dependent process? Although all the
thermodynamic quantities in the previous sections could be
defined along the sample trajectory, the Clausius inequality
and many other thermodynamic constrains related to the sec-
ond law should be interpreted statistically through ensemble
average.

Traditional second law is built on the non-negativity of
the entropy production rate. To be more precise, notice that
every term in the expression of the entropy production rate,
i.e.,

ep�t� =
1

2
k�

i,j
�pi�t�qij�t� − pj�t�qji�t��log

pi�t�qij�t�
pj�t�qji�t�

is non-negative, and the equality holds if and only if
pi�t�qij�t�= pj�t�qji�t� for each pair of states i and j.

Then according to Eq. �2�, we derived that

T
dS�t�

dt
+ Qtot�t� = Tep�t� � 0, �3�

Equation �3� is just the well-known Clausius inequality �dS

�−
Qtot

T �, which is rectified to obtain expressions for the en-
tropy produced �dS� as the result of heat exchanges �Qtot�.

It is well-known that “only irreversible processes contrib-
ute to entropy production,” so here we need to check the
condition for which the entropy production vanishes and try
to answer a fundamental question “what is precisely the re-
versible process that connects two different equilibrium
states?”

For the time-dependent process discussed in the present
paper, let ep�t�=0 for each time t, then we find that all the
steady distributions ���t�� must be independent with time t
�i.e., ��t�
some fixed distribution �� and the detailed bal-
ance condition holds, i.e., �iqij�t�=� jqji�t�. Therefore, dur-
ing this process, the transient state at each time t is just the
real equilibrium state corresponding to the transition law
Q�t�. It is just equivalent to the new concept “instantaneous
reversibility” �26�, which actually corresponds to the ideal
reversible process involved in the classic theory of equilib-
rium thermodynamics. But unfortunately, these equilibrium
states are all essentially the same as the initial one, only with
different time scales, i.e., Q�t�= f�t�Q�0� for some function f .
In other words, there is no real reversible process between
two different equilibrium states, which confirms the well-
known belief in equilibrium thermodynamics.

Note that, all the fundamental equations in classic equi-
librium thermodynamics, such as dU=TdS− pdV, requires
that initial and final equilibrium states be defined and that
there is some reversible path between them �31�. But unfor-
tunately it is not true, and this is just why equilibrium ther-
modynamics could not be directly generalized to the far-
from-equilibrium case.

Now it is time to derive the extended quantitative form of
the Second Law of Thermodynamics. Here we give a rather

different but much more general derivation from Hatano-
Sasa’s, only need to notice that the quantity Tep�t�−Qhk�t�
�0 again due to the simple inequality log x�x−1 for x
�0,

Tep�t� − Qhk�t� = �
ij

pi�t�qij�t�log
pi�t�� j�t�
pj�t��i�t�

� �
ij

pi�t�qij�t�

�� pj�t��i�t�
pi�t�� j�t�

− 1	 = �
j

pj�t�
� j�t�

�
i

�i�t�qij�t�

− �
i

pi�t��
j

qij�t� = 0, �4�

Then according to Eqs. �2�, we have

T
dS�t�

dt
+ Qex�t� = Tep�t� − Qhk�t� � 0, �5�

followed by its corresponding integral forms

T � S +� Qex�t�dt � 0, �6�

Equation �6� is the extended form of Clausius inequality dur-
ing any nonequilibrium time-dependent process, whose spe-
cial case is included in Hatano and Sasa’s work �23�.

For equilibrium case, Qex=Qtot, then they both return
back to Eq. �3� actually. And then if in steady state, then
Tep�t�−Qhk�t�
0, and this form of the Second Law com-
pletely disappears.

B. Langevin dynamics

Here we consider the dynamics of a Brownian particle in
a circuit driven by an external force, i.e.,

�Ẋ�t� = − � �V�x;t�
�x

�
x=X�t�

+ f„X�t�,t… + ��t� ,

where ��t� represents Gaussian white noise whose intensity
is 2�kT according to the Einstein’s relation. We employ pe-
riodic conditions as Kurchan and Hatano-Sasa have done in
their previous works �18,23�. This time-dependent system is
realized by changing the time-dependent potential V�x , t� and
nonconservative force f .

Langevin differential equations which govern a random
variable X can also be reformulated as “Fokker-Planck dif-
ferential equations,” which govern the real probability distri-
bution p�x , t� of X�t�. Denote the drift coefficient b�x , t�

=
−�V�x;t�

�x
+f�x,t�

� , it reads

�p�x,t�
�t

= −
� j�x,t�

�x
, �7�

where the current j�x , t�=b�x , t�p�x , t�− kT
�

�p�x,t�
�x .

We write the steady-state probability distribution function
as ��x , t� for which the right-side of Eq. �7� vanishes for any
fixed t, i.e.,

EXTENDED FORMS OF THE SECOND LAW FOR GENERAL … PHYSICAL REVIEW E 80, 021137 �2009�

021137-3



�
b�x,t���x,t� −
kT

�

���x,t�
�x

�
�x

= 0.

Let us introduce the general entropy at time t as

S�t� = − k� p�x,t�log p�x,t�dx .

Here, it is easy to derive that �6,29�

dS�t�
dt

= diS + deS = ep�t� − hd�t� , �8�

where ep�t�=diS=� �j�x,t�2

Tp�x,t� dx is the entropy production rate at
time t, and hd�t�=−deS= �

T�b�x , t�j�x , t�dx is due to the ex-
change of heat with the exterior, called the heat dissipation
rate.

The heat dissipation hd�t� could be regarded as the total
heat conduction Qtot�t� with the medium, i.e.,

Qtot�t� = Thd�t� .

The housekeeping heat is always non-negative.

Qhk�t� =� ��b�x,t� −
kT

�

� log ��x,t�
�x

	 j�x,t�dx

=� ��b�x,t� −
kT

�

� log ��x,t�
�x

	2

p�x,t�dx � 0.

And the excess heat

Qex�t� = kT� � log ��x,t�
�x

j�x,t�dx

= kT� �p�x,t�
�t

log ��x,t�dx ,

due to the Fokker-Planck Eq. �7�.
Finally, it is not difficult to compute in this case that

Tep�t� − Qhk�t� = �kT�2� p�x,t�� � log
��x,t�
p�x,t�

�x
�

2

dx � 0.

III. APPLIED TO CLASSIC THERMODYNAMIC
PROCESSES

A. Time-independent case

For stationary states, we have the important relations

Thd = Tep = Qhk = Qtot � 0,

and the equality holds if and only if at equilibrium states
�15�.

1. Relaxation process toward equilibrium state

For systems approaching to equilibrium, the free energy
could be defined as

F�t� = kT�
i

pi�t�log
pi�t�
�i�t�

in the master-equation model and

F�t� = kT� p�x,t�log
p�x,t�
��x,t�

dx

in Langevin systems. It is just the Gibbs free energy in a
spontaneously occurring chemical reaction at constant pres-
sure p and temperature T, and also the Helmholtz free energy
for systems at constant V and T �32�. Its change gives the
maximum work, other than pV work. Therefore, it is called a
“hybrid free energy” by Ross �32�.

From a mathematical point of view, it is just the relative
entropy of the distribution �pi�t�� �or �p�x , t��� with respect to
another one ��i�t�� �or ���x , t���. Hong Qian �33� has proved
that this relative entropy from information theory could be
identified as the free energy difference associated with a fluc-
tuating density in equilibrium, and is also associated with the
distribution deviate from the equilibrium sate in nonequilib-
rium relaxation.

Due to the Jensen’s equality for the convex function
−log x, we have F�t��0, and the equality holds if and only if
it reaches the final stationary state, i.e., pi�t�=�i�t� for each
state i.

The extended form of the second law now gives

dF�t�
dt

= − Tep�t� � 0,

thus F�t� serves as a Lyapunov function for the relaxation
process toward equilibrium state �14�.

2. Relaxation process toward nonequilibrium steady state

The relaxation process toward nonequilibrium steady
states has been extensively discussed by Glansdorff and Pri-
gogine �3,4�, and then by Schnakenberg for the master-
equation systems �14�.

The extended form of the second law in this case could be
reformulated as

dF�t�
dt

= − Tep�t� + Qhk�t� � 0,

thus we know F�t� could also serve as a Lyapunov function
for this relaxation process toward nonequilibrium steady
state. Until now we know that this Lyapunov property is just
a directly corollary of the extended form of the second law,
and we have already extended Schnakenberg’s result �14� to
Langevin systems.

B. Time-dependent case

Time-dependent processes are causing more and more in-
terests from physicists nowadays �23,34–36�, and it will un-
cover many important thermodynamic properties that origi-
nally hidden behind the stationary time-independent case.

1. Cyclic process

Second, the thermodynamic cyclic process. In equilibrium
thermodynamics, a thermodynamic cycle is a series of ther-
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modynamic processes which returns a system to its initial
state. As a conclusion of cyclic process, all the state variables
should have the same value as they had at the beginning,
thus �S=0.

But variables such as heat are not zero over a cycle, but
rather are process dependent. Hence in this case, the tradi-
tional form of the second law �3� gives �Qtot�t�dt�0, then it
is just the familiar statement of traditional second law of
thermodynamics “the conversion from work to total heat is
irreversible.”

Then, the extended form �6� gives

� Qex�t�dt � 0,

which explicitly confirms the claim that “the conversion
from work to excess heat is irreversible” �5�. In other words,
during a cyclic process, not only the total heat but also the
excess heat could only be from the system into the heat bath
rather than follow the opposite direction.

2. Transitions between equilibrium states

Jarzynski provided an expression for the equilibrium free
energy difference between two configurations of a system, in
terms of an ensemble of finite-time measurements of the
work performed through switching from one configuration to
the other �see a recent review �35� and references in�.

In the stochastic-process approach �21,37,38�, we con-
sider the transition between two equilibrium states realized
in the time interval �0,T� where the detailed balance condi-
tion is satisfied., i.e., Qhk�t�
0.

Here we could define an thermodynamic quantity “dissi-
pative work” called by Jarzynski and Crooks �20–22,39–41�,
and rigorously formulated by Min Qian and the author �38�.
To be more precise, it is just

W�t� = − kT�
i

pi�t�
d log �i�t�

dt

in the master-equation models and

W�t� = − kT� p�x,t�
���x,t�

�t
dx

for the Langevin systems.
Notice that when one finishes the task of driving the pro-

cess from time 0 to time T through modulating the time-
dependent transition density matrix Q�t� �denoted as process
1�, the system has not reached the final equilibrium state yet.
Then we should wait until it really arrives �denoted as pro-
cess 2�, which is just the “relaxation process toward equilib-
rium state” with the fixed transition density Q�T� described
in the previous subsections.

It is easy to derive that for equilibrium systems

dF�t�
dt

= W�t� − Tep�t� .

Therefore, we have �F1��1W�t�dt, and �F2��2W�t�dt for
process 1 and 2, respectively.

Finally, since �2W�t�=0, and �F=�F1+�F2 is just the
free energy difference between the initial and final equilib-
rium states, we conclude �F��1W�t�dt. It is just why we
could neglect process 2 when applying Jarzynski’s work re-
lation in experiments.

Note that the situation is quite different when regarding
Hitano-Sasa’s equality for transitions between steady states
�23�. It has not been explicitly pointed out in previous works
�23,35,37,38�. See below for details.

3. Transitions between steady states

The previous steady-state thermodynamics of Langevin
systems �23� is based on a generalized version of the Jarzyn-
ski work relation �20,21,35�, and concluded that Qex should
correspond to the change of a generalized entropy S in an
appropriate limit. In fact, the extended form of the second
law derived by Hatano and Sasa �23� is just a straightforward
consequence of Eq. �6�, which is satisfied by any transient
state.

However, what they defined is just the general internal
energy consistent with the first law of thermodynamics rather
than the general Gibbs entropy in the present paper and also
in Seifert’s recent work �34�. Note that the two quantities are
always different except for steady states, hence the extend
form of second law of thermodynamics during the course of
transition between two steady states derived by Hatano and
Sasa is not flawed.

Similar to the preceding transition process between two
equilibrium states, when one finishes driving the process
from time 0 to T �also denoted as process 1� through varying
the time-dependent transition density Q�t�, the system has
not reached the final steady state yet, and we should wait
until it arrives �denoted as process 2�, which is just the “re-
laxation process toward steady state” where the transition
density is fixed at Q�T�.

According to Eq. �6�, we get
�1Qex�t�dt�−�S1, and �2Qex�t�dt�−�S2 for processes 1

and 2, respectively.
Finally, since �S=�S1+�S2 representing the energy �en-

tropy� difference between the initial and final steady states,
we derive that

� Qex�t�dt = �
1

Qex�t�dt + �
2

Qex�t�dt � − �S .

Hatano and Sasa �23� concluded that the equality held for an
infinitely slow operation in which the system is in a steady
state at each time during a transition �“slow process”�.

It is indispensable to emphasize that we could not neglect
process 2 this time when applying Hitano-Sasa’s identity,
because here �2Qex�t�dt may not be zero, which implies that
the relaxation process toward the final steady state will also
contribute to the heat dissipation. This critique has already be
pointed out by Cohen and Mauzerall �42�, but unfortunately
what they criticized is the Jarzynski’s equality rather than
Hatano-Sasa equality. In real experiment, this relaxation pro-
cess may be rapid enough and could somehow be omitted.
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C. Summary

The essential difference between these typical processes
relies mainly on the signs of the three key thermodynamic
quantities: the housekeeping heat, entropy production, and
Tep�t�−Qhk�t�. And also the dissipative work would disap-
pear for time-independent processes. See Table I for details.

IV. DISCUSSION

Various kinds of approaches have been put forward to
nonequilibrium thermodynamics in the last several decades
�43,44�, but in contrast to equilibrium systems, with their
elegant theoretical framework, the understanding of nonequi-
librium systems is still primitive.

It is the main thesis of this paper that we are only at the
beginning of a development of theoretical chemistry and
physics in which thermodynamic concepts may play an even
more basic role. “In any case, the number of thermodynamic
or macroscopic variables is much less than the large number
of the microscopic degrees of freedom. Hence, the transition
from a microscopic to a macroscopic description involves a
drastic reduction of the information about the system”�45�.

However, the study of thermodynamics before is largely
confined to equilibrium states. Although the field of “non-

equilibrium thermodynamics” has successfully extended the
19th century concepts of equilibrium thermodynamics to the
systems that are close to, or near equilibrium, the under-
standing of far-from-equilibrium systems is still poor.

To investigate these points, stochastic thermodynamics
has advanced much further than other approaches during the
last two decades �34,46–48�. For stochastic systems, the cen-
tral problem is around the extension of the second law, which
originally describes the fundamental limitation on possible
transitions between equilibrium states. The main purpose of
the present paper is to investigate the extended form of the
second law, up to a degree of universality as general as pos-
sible.

It would be interesting to test experimentally all the quan-
tities and relations. Although here we only study the stochas-
tic process, the extended form of the second law derived here
may be valid for many other real physical processes, since
these thermodynamic quantities involved could be obtained
phenomenologically �5�.
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