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We present or recall several equilibrium methods that allow one to compute isentropic processes, either
during the compression or the release of the material. These methods are applied to compute the isentropic
release of a shocked monoatomic liquid at high pressure and temperature. Moreover, equilibrium results of
isentropic release are compared to the direct nonequilibrium simulation of the same process. We show that due
to the viscosity of the liquid but also to nonequilibrium effects, the release of the system is not strictly
isentropic.
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I. INTRODUCTION

The exploration of the thermodynamic behavior of mate-
rials under extreme conditions usually follows two paths cor-
responding to two experimental devices: isothermal com-
pressions and shock compressions. Isothermal compressions
are performed with diamond-anvil cell �DAC� techniques,
and are used to compress materials up to very high pressures,
although with limited temperatures. On the other hand, shock
compression experiments investigate the high-pressure/high-
temperature regions through the propagation of dynamic
shock waves in the system. Nevertheless, the thermodynamic
domain available using shock experiments remains limited to
the so-called Hugoniot curve, which is, by definition, the
collection of thermodynamic states which can be reached
from a system at fixed initial conditions with shocks of in-
creasing strengths. Another constraint is that shock wave are
adiabatic, therefore leading to very large temperature in-
creases in the material, which limits its compressibility. The
equations of state �EOS� used to predict the material’s be-
havior at the extreme conditions encountered are often
simple extrapolations of EOS fitted on available data, i.e.,
shock data and DAC data. It then appeared interesting to
enlarge the experimental domain of investigation of materi-
als behavior using dynamic compression setups, and particu-
larly isentropic compressions. Several experimental setups
allow to load a pressure ramp in a material. The first one is
the high pulsed power �of which the sandia Z machine and
the High Explosive Pulsed Power �1,2� at LANL are good
examples�. The second one consists in using an impactor
with a varying density along one direction, as proposed ini-
tially at the AIP-SWCM conference �3�. A successful tech-
nique is to stack slices of different materials, leading to the
so-called PILLOW impactors at Sandia �4�, MIVAR impac-
tors in France �5�, and more recently the FGM �Functionaly
Graded Materials� impactors at LLNL �6�, allowing a real
design of a thermodynamic path as a succession of shock and

release waves. The last one concerns experiments of Barnes’
type where the compression is the consequence of the isen-
tropic release of another material, as for example detonation
products �7,8�.

Experiments involving isentropic compression are of
great interest to reach high compression states, or in geo-
physic applications to reach states representative of the
earth’s core. Experiments involving a precise evaluation of
release waves in materials need also general numerical meth-
ods to compute the states reached by isentropic processes.

Up to now, simulations involving shock processes are
rather well developed due to the simplicity of the Hugoniot
equations. Those studies are performed within the framework
of statistical physics, see Refs. �9,10�� for reference text-
books on computational statistical physics, and Ref. �11� for
reference works on nonequilibrium simulation of shock
waves. Any state lying on the Hugoniot can be reached from
the reference state by searching for a given compression the
temperature for which the pressure and the total energy of
the system satisfies the Hugoniot relation. The search can be
implemented in very efficient manners �12–14�. Those meth-
ods are now adapted to classical �equilibrium� molecular dy-
namics and Monte Carlo, as well as quantum molecular dy-
namics �15�.

Such an easy method does not exist for isentropic pro-
cesses. In this paper, we present or recall several equilibrium
methods which allow one to follow isentropic paths, both for
classical or quantum �equilibrium� molecular-dynamics
simulations. We contrast these methods in terms of their pre-
cisions, rigor, and computational requirements. We compare
the results obtained from equilibrium simulations with re-
lease waves observed in nonequilibrium molecular dynam-
ics. The comparison between equilibrium and nonequilib-
rium methods therefore measures how isentropic the
expansion of the system is. It is expected that release waves
of a perfect nonviscous fluid are isentropic. For simple
monoatomic fluids such as argon, it is often assumed that the
release is isentropic, and viscosity effects are neglected. Our
results show that even in this simple case, the release is not
strictly isentropic and some corrections have to be taken into
account. As a by-product of our study, we also explore more*Corresponding author; jean-bernard.maillet@cea.fr
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precisely the relationship between the Hugoniot and the isen-
trope curves, from a numerical viewpoint, but also giving a
statistical physics proof of the coincidence of the curves for
small compressions �see Appendix B�.

The paper is organized as follows. In Sec. II, we present
the nonequilibrium method used to simulate rarefaction
waves, while some equilibrium methods for constant entropy
sampling are recalled in Sec. III. In Sec. IV, a comparison of
numerical results obtained in the case of release waves in
argon is performed, and we discuss whether release waves
are isentropic.

II. NONEQUILIBRIUM SIMULATIONS

A. Notation

We consider in all this study a microscopic system com-
posed of N particles of masses mi, interacting through a po-
tential U, confined in a simulation box D= �0,Lx�� �0,Ly�
� �0,Lz�. The volume of the domain is V= �D�=LxLyLz. The
positions and momenta of the particles are denoted by q
= �q1 , . . . ,qN� and p= �p1 , . . . , pN�, respectively, and the phase
space is �. The Hamiltonian reads

H�q,p� = �
i=1

N
pi

2

2mi
+ U�q1, . . . ,qN� . �1�

The associated canonical measure is

�V,T�q,p� =
1

ZV,T
e−�H�q,p�, �−1 = kBT , �2�

where kB is the Boltzmann constant, and

ZV,T = �
�

e−�H�q,p�dqdp . �3�

We have indicated explicitly the dependence of the canonical
measure �Eq. �2�� and the partition function �Eq. �3�� on the
temperature T and the volume V since these will be the pa-
rameters allowed to vary in the sequel. Average thermody-
namic properties of the system with respect to the canonical
measure at a temperature T and for a given simulation box
are of the general form

�O	V,T = �
�

O�q,p��V,T�q,p�dqdp . �4�

B. Nonequilibrium simulation of release waves

Similarly to what has been proposed for the simulation of
shock waves �11�, isentropic compressions or releases can be
simulated directly using nonequilibrium molecular dynamics
�NEMD�. A straightforward numerical setup to this end is
simply to throw a low speed piston toward the sample �cre-
ating a weak shock�, and then accelerating the piston in time.
Except this external forcing, the system evolves according to
the standard Hamiltonian dynamics

q̇i =
pi

mi
,

ṗi = − �qi
U�q� , �5�

which is integrated in time with the Verlet scheme �16�. A
linear compression ramp would be obtained in the case
where the acceleration is constant in time.

To obtain isentropic releases, a shock wave can be loaded
in a sample; when this shock wave is reflected when inter-
acting with a free surface, it transforms into an isentropic
release wave. In this study, we start the release from an
equilibrated state obtained from a preliminary canonical
simulation, using three-dimensional periodic boundary con-
ditions. When the system is equilibrated, the periodic bound-
ary conditions are removed in the x direction. Two release
waves are then created at the two free surfaces, and they
propagate in opposite directions toward the center of the box.
This process is illustrated in Fig. 1.

From the simulation data presented in Fig. 1, profiles of
thermodynamic quantities �average densities, �kinetic� tem-
peratures and pressures� can be extracted and averaged over
thin slices. Moreover, the two release waves being symmet-
ric, their related profiles can be averaged. A superposition of
the profiles, taken at different times but projected back in the
same thermodynamic diagram, is then obtained and averaged
over, leading to a single profile.

The accuracy of the computation increases with the sys-
tem size: an increase in the size of the transverse directions
decreases the uncertainties on the slice averages �thanks to a
thermodynamic limit�, and an increase in the longitudinal
direction allows to accumulate more profiles in time, there-
fore reducing statistical errors.

III. EQUILIBRIUM METHODS FOR CONSTANT
ENTROPY SAMPLING

We present in this section three methods to compute the
collection of all states �in terms of their temperature, volume
and pressure� which have the same entropy as some refer-
ence state. These methods therefore allow to draw a curve in
the �V ,T� diagram �or in the �P ,T� or �P ,V� diagrams�,
called the isentrope, and will be used as benchmark methods
in Sec. IV to check whether release waves computed by
NEMD simulations are indeed isentropic or not. We empha-
size that, although presented for the computation of isentro-
pic releases, all the methods described in this section may
also be used to determine isentropic compressions. We also
recall a fourth method, used to obtain the entropy of a system
once the entropy of some reference state �such as the perfect
gas� is fixed. The computational cost of the latter method as
well as its low accuracy for dense states prevented us from
applying it to enough points to obtain an entire isentrope
curve, and we therefore limited its use to a consistency check
on the results obtained with the other methods.

A. Thermodynamic integration

The entropy of the system varies when the simulation
conditions are changed. Here, we consider that the states
visited by the release wave are a succession of local equilib-
rium states, which can be described within the canonical en-
semble as given by statistical physics. Therefore, the state of
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the system is defined by two parameters, its volume �equiva-
lently, the density� and its temperature.

1. Variables indexing the variations

Consider a general transformation in which both the vol-
ume accessible to the system �equivalently, the density� and
the temperature are varied. We restrict ourselves to variations
in the domain in one spatial direction only, to model the
anisotropic behavior of release waves. Assuming that the
state of the system at rest can be described by some cubic
simulation box with periodic boundary conditions, the vol-

ume under compression may be indexed by a variable �1, so
that the associated simulation domain D��1�= �0, �1+�1�Lx�
� �0,L�2 has a volume

V��1� = �1 + �1�LxL
2.

Notice that we consider Lx�L since we may start from a
compressed state. The temperature variations are indexed by
a parameter �2,

T��2� = �1 + �2�T�T ,

for some reference temperature T and a given relative tem-
perature variation �T, the temperature variation being there-
fore �T=T�T. The reference inverse temperature is still
�−1=kBT. The particular case where only the temperature is
changed �while the volume is kept constant� corresponds to
�1 constant, while isothermal transformations are character-
ized by �2 remaining constant. Expansions correspond to
�1�0.

2. Parametrization of the isentrope curve

The isentrope is the locus of the points in the ��1 ,�2�
space such that the entropy normalized by the Boltzmann
factor

S
kB

=
U − F
kBT

�6�

is constant, F denoting the free energy of the system, and U
its energy. This thermodynamic relation can be converted
into an equivalent formula in the framework of statistical
physics, which is much more convenient from a computa-
tional viewpoint

U 
 U�T,V� = �H	V,T,

where the canonical average is defined in Eq. �4�, and

F 
 F�T,V� = − kBT ln �
�

e−�H�q,p�dqdp .

We start from some reference state �the pole� described by
the parameters ��1 ,�2�= �0,0�. The statistical physics refor-
mulation of the requirement that Eq. �6� be constant is then

S��1,�2� − S�0,0� =
1

kBT��2�
�H	V��1�,T��2�

−
1

kBT�0�
�H	V�0�,T�0�

+ ln�����1�
e−H�q,p�/kBT��2�dqdp

�
��0�

e−H�q,p�/kBT�0�dqdp � = 0.

In this expression, the phase-space ���1� is the collection of
all possible microscopic configurations of the system associ-
ated with a domain D��1� of volume V��1�.
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FIG. 1. �Color online� �a� Nonequilibrium molecular dynamics
of isentropic release waves. The four pictures represent snapshots of
slices of the system in the �x ,y� plane during the release process,
the expansion proceeding in the longitudinal x direction. Atoms are
colored according to their potential energies �scaling corresponding
to −1.38�10−20 J for blue up to 7.55�10−20 J for red�. �b� Den-
sity profiles taken at different times of the simulation. The slope at
the ends of the system are less steep as time advances.
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3. Numerical implementation

To determine the isentrope curve, we compute the entropy
variation along a given path in ��1 ,�2� space going through
the pole �the reference initial state�, and search for the point
such that the entropy difference with the pole is 0. A simple
choice is illustrated in Fig. 2. It consists in performing

�i� an isothermal rarefaction, going from the initial com-
pressed state �0,0� to an intermediate state ��1 ,0� with �1
	0;

�ii� in a second step, an isochore cooling, going from the
intermediate state ��1 ,0� to some final state ��1 ,�2�, resort-
ing to a maximal temperature difference �2�T
0 large
enough.

The idea is that, in general, the first part of the transfor-
mation increases the entropy of the system �since more space
becomes available for the particles�, while the entropy de-
creases in the second part �since the temperature decreases�.
Of course, more general paths, with joint variations of �1 and
�2, could be considered.

The energies �H	V��1�,T��2� are computed using standard
sampling strategies, while the remainder in the expression of
S��1 ,�2�−S�0,0�, a ratio of partition functions, is estimated
using standard techniques for free-energy calculations. This
is detailed in Appendix A.

We emphasize that this procedure is time consuming since
it requires many equilibrium samplings to obtain one point
on the curve. It is however exact �up to statistical errors and
discretization errors in the integrals defining A�, and can be
straightforwardly parallelized since the equilibrium sam-
plings required are independent.

B. Successive Hugoniostat simulations

The variations in macroscopic quantities across a shock
interface are governed by the Rankine-Hugoniot relations,

which relate the jumps of the quantities under investigation
�pressure, density, velocities� to the velocity of the shock
front. The third Rankine-Hugoniot conservation law for the
Euler equation governing the hydrodynamic evolution of the
fluid reads �macroscopic quantities are denoted by curly let-
ters�

H = U − U0 −
1

2
�P + P0��V0 − V� = 0. �7�

In this expression, U is the internal energy of the fluid, P its
pressure, and V its volume. The subscript 0 refers to the
initial state �the pole�, the other quantities are evaluated at a
state obtained from some shock compression, after equilibra-
tion. The Hugoniot curve corresponds to all the possible
states satisfying Eq. �7�. In practice, the collection of these
states may be computed by nonequilibrium simulations with
shocks of different strengths, inducing various compressions.

Alternatively, small equilibrium simulations may be used,
relying on the statistical physics reformulation of the Hugo-
niot relation,

H��1,�2� − H�0,0� = �H	V��1�,T��2� − �H	V�0�,T�0� +
�1

2
V�0�

���Pxx	V��1�,T��2� + �Pxx	V�0�,T�0�� = 0.

�8�

The xx component of the pressure tensor is, for a simulation
domain of volume V��1�,

Pxx�q,p� =
1

V��1��i=1

N
pi,x

2

mi
− qi,x�qi,x

U�q� . �9�

For a given variation in the volume for instance �indexed by
�1�, the variation �2T�T of the temperature is sought for,
using for instance the techniques described in Refs. �12,13�.

The Hugoniot curve does not have a priori any relation-
ship with the isentrope curve. However, it can be shown that
the entropy variation along the Hugoniot curve is negligible
up to terms of order three in the volume variable; the Hugo-
niot and the isentropic curves are osculatory. The usual proof
relies on standard thermodynamic computations �see for in-
stance Ref. �17��, but we present in Appendix B a proof fully
relying on a statistical physics reformulation.

The good agreement between the Hugoniot and the isen-
trope for small compressions and/or expansions can be used
to compute the isentropic curve as a succession of weak
shocks or weak releases, this approximation getting more
accurate as the shock compressions are weakened. The only
parameter left in this method is the relative volume change
�V /V=�1

n+1−�1
n during the instantaneous compressions or re-

leases. We used the Hugoniostat method �12,13� to compute
a sequence of states ��1

n ,�2
n� such that H��1

n+1 ,�2
n+1�

=H��1
n ,�2

n�, the corresponding thermodynamic properties at
these states being obtained as a by-product of the simulation.

C. Isentropic integration

Another way to perform thermodynamic integration along
an isentropic path has been proposed by Desjarlais �18�. The
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FIG. 2. Path in the ��1 ,�2� space used to compute states with
the same entropy as the pole. Each cross represents some equilib-
rium canonical sampling along the thermodynamic path. First, the
isothermal expansion is performed �horizontal line in the diagram�,
starting from the pole �0, 0�, until the required density is reached.
The entropy of the state ��1 ,0� is Spole+�Sexpansion. Then, an isoch-
ore cooling is performed ��1 is kept fixed; vertical line in the dia-
gram�, until the entropy difference during this process is the oppo-
site of the entropy variation found in the expansion part. The final
state ��1 ,�2�, located at the intersection of the curve �S=0 and the
vertical line, has then the same entropy as the pole.
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method relies on the equilibrium evaluation of �P
�U �see Eq.

�11� below�. It could be applied to a system where the pres-
sure is not isotropic upon replacing the pressure observable
by the xx component of the pressure tensor.

The total differential of the entropy can be written as

dS = 
 �S
�T



V

dT + 
 �S
�V



T

dV . �10�

For constant entropy processes,


 �S
�T



V

=
1

T

 �U

�T



V

= − 
 �P
�T



V

, 
 �S
�V



T

= 
 �P
�T



V

,

so that, along the isentrope,

dT

T
= −


 �P
�T



V


 �U
�T



V

dV = − 
 �P
�U
V

dV .

This equation can be integrated as

T2

T1
= exp�− �

V1

V2 
 �P
�U
V

dV� , �11�

giving the temperature T2 at which the system at volume V2
has the same entropy as the system in the reference state
�T1 ,P1�. This formula is evaluated in practice by discretizing
the integral appearing in the exponential, and approximating
the integrand using standard canonical sampling procedures.
We refer to Appendix C for more precisions.

D. Evaluation of the entropy based on the chemical potential

This technique, which can be used only for systems in a
fluid phase, follows the classical methodology of computing
the free energy F of a system starting from the thermody-
namic relation �19�,

F = U − TS = N� − PV , �12�

where � the chemical potential, defined in the canonical en-
semble as

� =
�F
�N

. �13�

In the case of a canonical simulation, all thermodynamic
quantities are functions of the volume and the temperature,
so that

S =
U�T,V� + N��T,V� − P�T,V�V

T
. �14�

This expression allows to compute the absolute entropy of
the system provided the chemical potential is known �20�,
the average pressure and energy being computed using stan-
dard sampling techniques. The chemical potential is esti-
mated using the Widom insertion method.

IV. NUMERICAL RESULTS FOR RELEASE WAVES

We compare in this section the results for the different
techniques presented in Secs. II and III, for a release in a
Lennard-Jones system �argon�. The aim is to assess whether
the release is indeed isentropic, and also to demonstrate that
approximate equilibrium computations for small systems
�successive Hugoniostat, isentropic integration� can approxi-
mate the isentrope curve obtained from the more rigorous
and costly thermodynamic integration technique.

A. Numerical parameters

1. Initial state

We consider argon in an initial shocked state, located on
the Hugoniot curve for a compression such that Lx=cL with
c=0.65, and corresponding to T=1758 K and P=1.7
�1010 Pa. At these thermodynamic conditions, the system is
in a liquid state. The interactions within noble gas atoms are
well described by a Lennard-Jones potential,

V�q1, . . . ,qN� = �
1�i
j�N

v��qi − qj��, v�r� = 4
���

r
�12

− ��

r
�6� .

In the case of argon, 
 /kB=120 K and �=3.405 Å. The
cutoff radius for the Lennard-Jones interaction is here rcut
=2.5�.

2. Nonequilibrium simulations

In order to reach this initial state before performing the
NEMD release, a preliminary Hugoniostat simulation is run
for a system of 50�50�500 unit cells, using periodic
boundary conditions. Then, the boundary conditions in the
longitudinal direction are removed, and the system evolves
according to the Hamiltonian dynamics. Profiles of thermo-
dynamic quantities are computed every 0.25 ps for the post-
processing procedure described at the end of Sec. II B.

3. Equilibrium simulations

Equilibrium computations have been performed with a
system composed of N=4000 atoms, starting in a FCC crys-
tal geometry before melting, using periodic boundary condi-
tions in all directions.

(a) Thermodynamic integration. As shown in Sec. III A,
the search of states having the same entropy can be per-
formed using thermodynamic integration, which amounts to
performing many equilibrium simulations. The canonical
sampling for a given set of parameters ��1 ,�2� is done with a
Langevin dynamics for Nsteps=217 time steps, with �t=2
�10−15 s, and a friction coefficient �=1013 s−1.

First, the entropy variation along the isothermal release is
computed, with canonical samplings along the path �0,0�
→ �0,�1� with �1=0.54 �using M +1=15 states�. Then, for
each compression of interest, the isochore cooling is per-
formed using temperature steps �T=−25 K for expansions
�1�0.25, and �T=−50 K for states �1	0.25 �these paths
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can be restated in terms of �2� �0,1� upon considering a
temperature modification �T depending on the compres-
sion�. The numerical integration for computing the value of
A is finally performed using the trapezoidal rule.

Error estimates on the canonical samplings are obtained
with block averaging �21�. In all the cases considered, the
statistical error �as measured using the 95% confidence inter-
val associated with the variance computed from block aver-
aging� is inferior to 1%. Therefore, the entropy difference is
computed within 1% errors. For fixed �1, the state �2 such
that S��1 ,�2� is constant is then known with an error de-
pending on the local value of the partial derivative of S with
respect to �2. This error can immediately be reformulated as
an error on the estimated temperature. The error on the com-
puted pressure is the error arising from the error on the state
�2, plus the sampling error. It is found to be at most 2%.

(b) Successive Hugoniostat. Successive Hugoniostat
simulations have been performed with a Langevin version of
the Hugoniostat method �see Eq. �11� in Ref. �22�, with the
parameters �=1012 s−1 and �=1012 s−1�. Trajectories of
Nsteps=50,000 time steps at each compression are consid-
ered, with a time step �t=5�10−16 s. The relative volume
change �V /V0 from one point on the curve to another is set
to 0.01.

(c) Isentropic integration. See Appendix C.
(d) Entropy evaluation. The test particle insertion method

used to evaluate the chemical potential requires many more
iterations than the other equilibrium techniques. In the same
framework as for isentropic integration �see Appendix C�,
Nsteps=5�108 iterations were needed to obtain a satisfactory
convergence. The statistical error on the calculated entropy
�as measured using the 95% confidence interval associated
with the variance computed from block-averaging� is esti-
mated to be inferior to 1.2%.

B. Discussion of the numerical results

Release waves are presented in Figs. 3–5 in three different
diagrams, �P ,��, �P ,T�, and �T ,��. It can clearly be seen that
the results coming from the three equilibrium techniques of
isentropic simulations are very close. This shows that pro-
vided the relative volume change parameter is carefully cho-
sen in either the successive Hugoniostat method or the isen-
tropic integration, the propagating error remains at a low
level; these methods can then be as accurate as the more
rigorous and costly method of thermodynamic integration.
Moreover, evaluating the chemical potential, we have com-
puted absolute value of the entropy at three densities, �
=2780 kg m−3, �=2190 kg m−3, and �=1806 kg m−3. The
corresponding values, 83.2�0.95, 83.1�0.42, and
83.2�0.18 J mol−1, confirm that the entropy is indeed con-
stant �within the error bars� on the calculated curve, validat-
ing once again the different methods.

The comparison with the results of the expansion of the
liquid using nonequilibrium MD is also fruitful. The overall
agreement is fair enough, which means that release waves
are indeed almost isentropic. However, it can be noticed that
the temperature is not predicted correctly. While the different
curves look very similar in a �P ,�� diagrams, some discrep-

ancies appear in the �T , P� diagram, which are even more
obvious in the �T ,�� diagram. Indeed, for the latter diagram,
the observed temperatures around the final density are
greater than the error bars. The thermodynamic path fol-
lowed by the system during its release exhibits systemati-
cally a higher temperature than the one of an isentropic pro-
cess. This means that the release of a monoatomic liquid is
not strictly isentropic, as is sometimes expected or assumed.

Recall however that a release is expected to be isentropic
only for nonturbulent flows of nonviscous fluids. In the case
considered here, the fluid has a finite, nonzero viscosity, and
therefore dissipates energy under the form of heat. As a con-
sequence, the temperature should be higher than for an isen-
tropic release. A tentative of evaluation of this effect is pre-
sented below. On the Hugoniot curve �32�, viscous effects
can be introduced in the Hugoniot relation �23� by means of
the ”viscous pressure” � as
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)
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P
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)

FIG. 3. �Color online� Isentropic release in a �P ,�� diagram.
Symbols represent results from equilibrium methods, red diamonds
for the successive hugoniostat �“SDLNVHug”�, blue squares for the
thermodynamic integration �“�S”� and yellow triangles for the en-
tropy integration �“�P /�E”�. NEMD results are plotted in green, the
width of the so-obtained tube corresponding to the error bars. The
arrow indicates the path followed during the release.
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FIG. 4. �Color online� Isentropic release in a �T , P� diagram.
The symbols are the same as in Fig. 3. Notice that there is slight
deviation of the NEMD results for the lowest temperatures.
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1

2
��V0 − V� = U − U0 −

1

2
�P + P0��V0 − V� , �15�

where � is defined as

� = − �
du

dx
, �16�

� being the fluid viscosity and du
dx the velocity gradient. Tak-

ing the viscosity of the argon fluid at T=700 K and P
=1 GPa �the most extremes conditions of available thermo-
dynamic tables�, and considering an average velocity gradi-
ent �taken during the fluid release�, we find a temperature
elevation of a few Kelvins. Considering that the pressure is
much higher in our simulation, and therefore that the viscos-
ity should be also greater, the actual temperature increase
due to the finite viscosity should rather be of the order of a
few tens of Kelvins, which is consistent with what can be
observed in our numerical results.

Finally, a purely nonequilibrium effect has been observed
during the NEMD simulations that also leads to a tempera-
ture increase in the system. Indeed, gradients of thermody-
namic and kinematic quantities are large at the first stages of
the release, when the hot and dense material is in contact
with void. The thermodynamic path followed by the system
at those early stages of the simulation does not correspond to
the thermodynamic path followed when the release has
reached its self-similarity regime. Some equilibration time is
needed for some steady-state regime to be reached. We
evaluated this time to be around 5 ps.

V. CONCLUSION

We have presented or recalled several equilibrium meth-
ods to compute isentropic processes in the high-pressure re-
gime, either for compressions or releases. These methods,
although very different in nature, lead to similar results when
applied to the release of a monoatomic liquid.

We have then compared release waves computed with
these equilibrium methods with the nonequilibrium simula-

tion of the release process. The results show that the release
is almost, but not strictly isentropic, the system’s temperature
being systematically greater than the one of the isentropic
process. This is the consequence of two effects. First, the
fluid actually has a finite viscosity and therefore dissipates
heat, leading to a temperature increase. To our knowledge,
this is the first time that this effect has been quantified rig-
orously using nonequilibrium molecular-dynamics simula-
tions. Moreover, the thermodynamic path followed by the
system during its release takes some time to reach a con-
verged profile. We anticipate that these effects will be en-
hanced in the case of a more complex fluid, for example in
the case of a release of detonation product. Therefore, the
assumption that release waves are isentropic should be care-
fully verified in each case.

APPENDIX A: PRACTICAL IMPLEMENTATION OF THE
THERMODYNAMIC INTEGRATION

1. Reformulation of the problem in a fixed geometry

From a computational viewpoint, it is more convenient to
work with a fixed simulation domain. For instance, the un-
perturbed domain V�0� may be used to fix the geometry of
the system. The volume variations are then rephrased as
variations in the interaction scale between the particles in the
direction of compression or release. In the same vein, the
temperature may be kept constant, upon rescaling the inter-
actions strength by a factor depending on the temperature
variation. Introducing the rescaled potential energy for a con-
figuration q= �x ,y ,z�,

U�1,�2
�q� =

1

1 + �2�T
U��1 + �1�x,y,z� .

and the associated Hamiltonian

H�1,�2
�q,p� = U�1

�q� +
1

1 + �2�T
�
i=1

N
pi

2

2mi
,

canonical averages for a volume V��1� at a temperature
T��2� can be reformulated as canonical averages in terms of
the rescaled Hamiltonian H�1,�2

at the reference state at vol-
ume V�0� and temperature T�0�. More precisely,

�H	V��1�,T��2� =
3N

2
kBT��2� + �1 + �2�T���U�1,�2

		�1,�2
,

where

��f		�1,�2
=

�
��0�

f�q,p�e−H�1,�2
�q,p�/kBT�0�dqdp

�
��0�

e−H�1,�2
�q,p�/kBT�0�dqdp

.

It is then easily seen that
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FIG. 5. �Color online� Isentropic release in a �T ,�� diagram. The
symbols are the same as in Fig. 3. There is a noticeable deviation of
the NEMD results for the lowest temperatures.
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S��1,�2� − S�0,0� =
3N

2
ln�1 + �2�T� + N ln�1 + �1�

+ ����U�1,�2
		�1,�2

− ��U0,0		0,0�

+ A��1,�2� , �A1�

with

A��1,�2� = ln��V�0�N
e−�U�1,�2

�q�dq

�
V�0�N

e−�U0,0�q�dq � .

In the above expression of the entropy difference, the first
line is the ideal-gas contribution to the entropy difference. As
a consistency check, we can verify that the entropy increases
when the volume or the temperature is increased, as ex-
pected. The terms on the second and third lines in Eq. �A1�
are the “excess” contributions associated with the potential
interaction energy.

2. Numerical evaluation of the different terms

To estimate S, two quantities are required:
�i� averages �� · 		�1,�2

with respect to the Hamiltonian
H�1,�2

are computed using standard sampling techniques
such as a Langevin dynamics at an inverse temperature �,
implemented using the so-called BBK algorithm �24�. Of
course, many other sampling techniques could be used to
estimate this canonical average, in particular Nosé-Hoover
dynamics �25,26� or Metropolis-Hastings schemes �27,28�
�see Ref. �29� for a mathematical review on sampling meth-
ods in the context of equilibrium molecular simulation�;

�ii� the term A��1 ,�2� requires more care in its estimation.
Since this term is a ratio of partition functions, standard tech-
niques used for the computation of free-energy differences
may be used. We resorted to thermodynamic integration �30�,
in which case the function is rewritten as the integral of some
canonical averages,

A��1,�2� = �
0

�1 �A

��1

�x,0�dx + �
0

�2 �A

��2

��1,x�dx ,

with

�A

��2
��1,�2� = �

�T

1 + �2�T
��U�1,�2

		�1,�2
, �A2�

and

�A

��1
��1,�2� = ��x · �xU��1 + �1�x,y,z�		�1,�2

. �A3�

In conclusion, the numerical procedure consists in first esti-
mating the derivatives of the function A and the average
potential energy, for as many points as required on the ther-
modynamic path chosen. Approximations of S can then be
obtained thanks to Eq. �A1�, after a numerical integration to
obtain A. The entropy difference along the path is then plot-
ted, and fixing the volume change �1, the temperature varia-

tion is chosen such that the entropy difference is 0. This
determines �2 as a function of �1.

APPENDIX B: RELATIONSHIP BETWEEN THE
HUGONIOT AND THE ISENTROPE CURVES

AT THE POLE

We present in this appendix a proof of the fact that the
isentrope curve and the Hugoniot agree at order 3 in the
volume change. Without loss of generality �and for nota-
tional simplicity�, we may set H�0,0�=S�0,0�=0 since we
are only interested in differences of F and S.

1. Some useful relations

The derivatives of the function A are useful for comparing
the Hugoniot and the isentrope relations. The average xx
component of the pressure tensor for the volume V��1� and
the temperature T��2� is obtained by averaging the observ-
able

Pxx�q,p� =
1

V��1�
�NkBT��2� − x · �xU�q�� .

Therefore,

�Pxx	V��1�,T��2� =
N

�1 + �1�V�0�
kBT��2�

−
1

V��1�

�
V��1�N

x · �xU�q�e−U�q�/kBT��2�dq

�
V��1�N

e−U�q�/kBT��2�dq

=
N

�V�0�
1 + �2�T

1 + �1

−
1 + �1

V��1�

�
V�0�N

x · �xU��1 + �1�x,y,z�e−�U�1,�2
�q�dq

�
V�0�N

e−�U�1,�2

.

This shows that, using Eq. �A3�,

�Pxx	V��1�,T��2� =
N

�V�0�
1 + �2�T

1 + �1
+

1 + �2�T

�V�0�
�A

��1

��1,�2� .

2. Hugoniot curve

With the above computations, it is easily seen that the
Hugoniot relation �Eq. �8�� can be restated as

�H��1,�2� =
3N

2
�2�T + ���1 + �2�T���U�1,�2

		�1,�2

− ��U0,0		0,0� +
N�1

2 �1 + �2�T

1 + �1
+ 1�

+
�1

2 � �A

��1

�0,0� + �1 + �2�T�
�A

��1

��1,�2�� .
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3. Comparison between the Hugoniot and the isentrope

We now Taylor expand the difference �H��1 ,�2�
−S��1 ,�2� up to the third order, i.e., neglecting a remainder
term r��1 ,�2� which is such that �r��1 ,�2���C���1�+�2 � �3.
We denote such remainders by O��3� in the sequel. It holds

�H��1,�2� − S��1,�2� =
3N

2
��2�T − ln�1 + �2�T��

+ N��1

2 �1 +
1

1 + �1
� − ln�1 + �1��

+ �1�2
�T

2 � N

1 + �1
+

�A

��1

��1,�2��
+ ��2�T��U�1,�2

		�1,�2

+
�1

2 � �A

��1

�0,0� +
�A

��1

��1,�2��
− A��1,�2� .

Introducing the notation

Ai =
�A

��i

�0,0�, Aij =
�2A

��i
��j

�0,0� ,

the Taylor expansions of the function A and its first deriva-
tives at an arbitrary state ��1 ,�2� read �using A�0,0�=0�,

A��1,�2� = �1A1 + �2A2 +
�1

2

2
A11 + �1�2A12 +

�2
2

2
A22 + O��3� ,

�A

��i

��1,�2� = Ai + �1Ai1 + �2Ai2 + O��2� .

With these Taylor expansions and the relation �A2�, it is
straightforward to show that

�H��1,�2� − S��1,�2� =
3N

4
�2

2�T2 + �1�2
�T

2
�N + A1�

+ �2�1 + �2�T�
�A

��2

��1,�2�

=
�2�T

2
��1�N + A1 +

A12

�T
�

+ �2�3N

2
�T + 2A2 +

A22

�T
��

+ O��3� .

Using Eq. �A2�, the derivatives of the entropy differences
can be computed,

�S
��1

��1,�2� =
N

1 + �1
+

�A

��1
��1,�2�

+
1 + �2�T

�T

�2A

��1 � �2
��1,�2� ,

�S
��2

��1,�2� =
3N�T

2�1 + �2�T�
+ 2

�A

��2
��1,�2�

+
1 + �2�T

�T

�2A

�2�2
��1,�2� .

This shows that

�H��1,�2� − S��1,�2� =
�2�T

2
��1

�S
��1

�0,0� + �2

�S
��2

�0,0��
+ O��3� , �B1�

so that, since

S��1,�2� = S�0,0� + �1

�S
��1

�0,0� + �2

�S
��2

�0,0� + O��2� ,

and S�0,0�=0, it holds

�H��1,�2� − �1 +
�2�T

2
�S��1,�2� = O��3� . �B2�

This relation shows immediately that H��1 ,�2�=O��3� on
the isentrope, and so, the initial slopes of the curves, and
their first derivatives, coincide.

APPENDIX C: PRECISIONS ON THE ISENTROPIC
INTEGRATION

Several numerical schemes may be used to integrate Eq.
�11�. The simplest one consists in approximating the integral
appearing in the exponential factor with a Riemman formula
using the value of the integrated function on the left side of
the interval,

T2 � T1 exp�− 
 �P
�U


V1

�V2 − V1�� . �C1�

Of course, higher order integration methods could be used.
It remains to decide how to compute the derivative �P

�U �V1
.

Finite differences may be used to this end, but this would
require at least two very carefully converged simulations
with volumes V1��V. It seems more appealing to compute
the partial derivative using standard fluctuations formulas
�14,31�,


 �U
�T



V1

= Cv�V1,T1� =
3

2
NkB +

1

kBT12
��U2	V1,T1

− �U	V1,T1

2 � ,

�C2�

and


 �P
�T



V1

=
NkB

V1
+

1

kBT1
2 ��PH	V1,T1

− �P	V1,T1
�H	V1,T1

� ,

�C3�

where Cv�V1 ,T1� is the specific heat at constant volume, and
the pressure observable for a simulation domain of volume
V1 reads
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P�q,p� =
1

3V1
�
i=1

N
pi

2

mi
− qi · �qi

U�q� . �C4�

The partial derivative �P /�U can then be evaluated in a
single simulation at �N ,V1 ,T1� using Eqs. �C2� and �C3�.

The numerical implementation of this method is done as
follows. The partial derivative of the pressure with respect to
the energy is first computed with a Monte Carlo simulation
for the given initial conditions �N ,V1 ,T1�. The temperature
T2 is then evaluated from Eq. �C1�. The partial derivative is
next computed at volume V2 to predict the next temperature.
Proceeding incrementally, the whole isentrope curve can be
constructed.

The numerical results presented in this work have been
obtained by performing canonical samplings with a Metropo-

lis algorithm, using the Monte Carlo Gibbs code �33�. Partial
derivatives have been computed in the NVT ensemble. The
convergence of simple thermodynamic averages was gener-
ally obtained after Nsteps=107 iterations, but derivative prop-
erties �related to the covariance of some observables� re-
quired about Nsteps=108 iterations for a satisfactory
convergence. Error estimates on the canonical samplings
have been obtained with block averaging �21�, and the error
propagation estimated along the integration scheme has been
computed using standard propagation rules. In all the cases
considered, the statistical error �as measured using the 95%
confidence interval associated with the variance computed
from block averaging� on the predicted temperature on the
isentrope curve is inferior to 1.5%.
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