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Recently there has been a certain controversy about the scaling properties of reaction-subdiffusion fronts.

Some works seem to suggest that these fronts should move with constant speed, as do classical reaction-
diffusion fronts, while other authors have predicted propagation failure, i.e., that the front speed tends asymp-
totically to zero. In the present work we confirm by Monte Carlo experiments that the two situations can
actually occur depending on the way the reaction process is implemented. Also, we present a general analytical
model that includes these two different behaviors as particular cases. From our analysis, we reach two main
conclusions. First, the differences found in the scaling properties show the lack of universality of reaction-
subdiffusion fronts. Second, we prove that, contrary to the widespread belief, the tail of the waiting time
distributions is not always decisive to determine the speed of these fronts, but sometimes it plays just a

marginal role in the front dynamics.
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I. INTRODUCTION

The field of anomalous diffusion has attracted a great in-
terest in the last years, as many systems out of equilibrium in
nature have been proved to exhibit power-law decays in the
distribution of their characteristic waiting times. This implies
a fundamental deviation from canonical (equilibrium) statis-
tics [1]. Of particular interest is the case when the particles in
these systems experience a reaction process too, so one can
try to analyze the influence of anomalous transport on usual
reaction-diffusion phenomena as wave propagation [2-5],
Turing patterns [6—8], segregation [9], etc. Mancinelli et al.
[10], for example, provided an interesting compilation of for-
mal situations where anomalous transport is encountered and
then explored the traveling front solutions obtained by intro-
ducing reaction as an additive term. Fractional diffusion
equations have also been used to explore the behavior of
traveling fronts for Lévy flights [11,12] finding that these
fronts exhibit in some cases exponential acceleration al-
though recent works have shown the limitations of that result
[13]. Finally, several attempts have been done to characterize
analytically reaction-subdiffusion fronts. These attempts
have been directed to determine either the speed of these
fronts [2,3,5,14] or their asymptotic scaling under different
initial conditions and different chemical kinetics [15,16].

Recently, the appropriate way to implement mathemati-
cally a reaction process for a system under subdiffusion has
been the subject of an important discussion (see [14,17,18]
and references there in). Sokolov et al. [17] first detected that
if local conservation of particles is imposed in a process A
— B and the (anomalous) transport is assumed to be com-
pletely independent of reaction, then the evolution equation
for species B contains a term where the Laplacian of species
A appears. This means that nontrivial coupled effects arise
due to subdiffusion. According to that, reaction-subdiffusion
processes cannot be simply described by the independent
contribution of transport and reaction terms, but this cou-
pling must be considered. This idea has important conse-
quences, for example, on the form of stationary solutions for
reaction-diffusion in finite domains [19].
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In the present paper we focus on the effects that couplings
between anomalous transport and reaction have on the dy-
namics of traveling fronts for the standard reaction A+B
—2A. Some recent works have predicted for this case a
propagation failure [14], i.e., the velocity of the fronts will
tend to zero for r— 0. This, however, is in contrast with the
results found in [2,5]. There, the Hamilton-Jacobi method
[20] has been used to obtain an explicit expression for the
speed of reaction-subdiffusion fronts, which seems to indi-
cate the existence of a well-behaved front with constant
speed. In order to explain this contradiction, in [14] it has
been argued that the details of the chemical kinetics consid-
ered are different in each case. More specifically, these dif-
ferences are in the way that the waiting time between jumps
gets modified as a consequence of the reaction process. So
that we can differentiate the following:

Case I (Refs. [2,5]): for the random-walk process consid-
ered in these references, the internal clock of a particle
(which measures the time elapsed since the last jump of that
particle) is set to O after it reacts. According to that, one
could think that the average time between consecutive jumps
gets increased, but in fact the contrary happens [18]. When
we set the internal clock to zero, we take the particle back to
the body of the waiting time distribution (see Fig. 1). It
means that we are giving the particle a higher probability to
jump. In consequence, jumps occur more frequently and the
traveling front can be sustained albeit the waiting time dis-
tribution exhibits a heavy tail.

Case II (Refs. [14,17]): in these works it is being assumed
that the reaction events that a particle can experience do not
modify the internal clock of the particle, i.e., the random
time between jumps will be exactly the same if the particle
has reacted meanwhile or not. Then the transport properties
of the system in the regime r— o will be completely gov-
erned by the tail of the distribution.

Despite all this discussion and all the efforts made to un-
derstand reaction-subdiffusion fronts, we stress that the re-
sults reported in [2,5] for case I have not been verified nu-
merically yet, and the results for case II have been
numerically tested only in a very recent work [21] which was
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FIG. 1. Schematic representation of a general probability distri-
bution function.

published at the moment that the current paper was in elabo-
ration. So our main objective here is to propose some nu-
merical (Monte Carlo) experiments able to confirm that (i) in
some situations reaction-subdiffusion fronts do exhibit
propagation failure while in other cases constant propagation
holds, and (ii) the Hamilton-Jacobi method can fit correctly
the values for the propagation speed. The recent work in Ref.
[21] will be also discussed here, as we have detected some
important discrepancies between the numerical results re-
ported there and ours. On the other side, we will propose a
general analytical model which includes the two cases I and
II as particular cases. Our analysis leads us to some impor-
tant conclusions regarding the role of the tails in these pro-
cesses. We shall prove that it is mainly the body (not the tail)
of the distribution what determines the front speed in case I.
As a consequence, the expressions obtained in [2,5] for the
speed of reaction-subdiffusion fronts are of limited utility
since only the effect of tails was considered there.

II. RESULTS FROM THE NUMERICAL EXPERIMENTS

Our Monte Carlo experiments have been performed by
following the prescriptions given in [15]. We set a fixed
number N of particles [N, (x) particles of species A and Ng(x)
of species B] at every xth node of a one-dimensional (1D)
lattice of size L. In order to generate symmetric traveling
fronts we choose all the particles in the lattice to be initially
of species B [it is, N4(x)=0 for any x] and replace at =0 the
B particles by A particles at the central node of the lattice,
denoted by x=0. Hence, the front position is defined as the
furthest node (from the center) where the number of particles
of species A is above a certain threshold N,. Every particle is
updated at periodic intervals separated by a time step Az. At
each time step every particle of species A is given the oppor-
tunity to react (become a particle of species B) with prob-
ability kN, (x)Ng(x)At, where k is the reaction constant. Also,
if the particle has been waiting at the same node for a time
larger or equal than its random time to the next jump, then it
jumps with probability 1/2 to the right and 1/2 to the left (we
only allow jumps to the nearest neighbors for simplicity).
The random waiting time 7 to the next jump for each particle
is chosen from a series of values distributed according to
[15,22]
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aB”

= (B+T)1+a’

o(7) (1)

with 0 <a<1, which is a treatable and well-studied expres-
sion exhibiting an asymptotic power-law decay ¢(7)
~a B—l T—l—a'

In order to compare with continuous models, which is one
of our main purposes, we must choose N sufficiently large
and Az small. We have taken N=10* and Ar=2 X 1073 (with
arbitrary units) in most of the results presented here and have
checked that more extreme values of N and At do not lead to
a significant improvement of our results. For small values of
N discretization effects would arise; these effects deserve an
exhaustive analysis and so they will be addressed by separate
in a forthcoming paper. Note also that according to our trans-
port algorithm, the number of particles at each node of the
lattice is not constant in time, but it will fluctuate around its
mean value N. This could be avoided by introducing a more
complex rule for transport. However, for N large the effect of
these fluctuations can be neglected, and actually we have
verified that they do not affect the results presented in this
paper. Also, in order to prevent undesirable boundary effects
we always use a lattice with periodic boundary conditions.

Cases I and II can be implemented in the experiments by
renewing the internal clock of particles in the same fashion
as described above. That is, a new waiting time is chosen for
a particle only in case it jumps for case II (so its internal
clock is set to 0), while in case I the waiting time of the
particle is renewed also after it reacts. In Fig. 2 we present
the results for both cases and for the same values of the
parameters k, a, and . For the case I there is always a linear
dependence between front position and time [Fig. 2(a)] so a
constant-speed stationary solution is found. On the contrary
the case II exhibits, after a short transient, a convex growth
which confirms the tendency v—0 found in [14,21]. To
stress the differences between both cases, in Fig. 2(b) we plot
the number of jumps performed in the whole lattice as a
function of time. For case II a scaling t*~! is found which can
be easily justified (see Sec. V below), while for case I this
scaling stops holding for large times and tends to a constant
value. This suggests that in case II, as time goes by more
particles get “trapped” in the tail of the waiting time distri-
bution and so they stay waiting for very long times, which
results in a continuously decreasing number of jumps in the
system and a failure in the front propagation. On the con-
trary, in case I the reset of the waiting times after a reaction
event ensures that there are always some particles which “es-
cape” from the tail of the distribution and so the number of
jumps do not decrease to 0 for r— ce.

III. MODEL

In order to understand in deeper detail the situation, let us
propose a model which is able to capture the essential dy-
namics of these processes. First, for the reaction kinetics we
consider the catalytic conversion A+B—2A of B particles
into A, which leads to the form
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FIG. 2. Results obtained from the Monte Carlo experiments for
the cases I and II in the text. Two different values of « are shown,
0.3 (circles and triangles for cases I and II, respectively) and 0.7
(squares and inverted triangles for cases I and I, respectively). The
rest of parameter are set as fixed, with 8=0.01 and k=0.2. (a) The
front position is computed as the furthest node from the center
where Ny >N*=0.1N, with N=10* The lines represent a scaling
proportional to #, which confirms the constant front speed found
only for case . (b) The total number of jumps includes jumps from
all particles (A and B) in the whole lattice. The lines represent the
scaling 17!,

Ry(x,1) = kN4 (x,0)[N = Ny (x,1)], (2)

where R,(x,7) represents the number of new particles of spe-
cies A appeared from the reaction.

In order to implement transport, we will follow the gen-
eral ideas from the continuous-time random walk [23,24]. So
the spatiotemporal evolution of the number of particles of
species A can be written as

t

Ny(x,1) = 8(x) () + f Jalx,t=1") plt")dt’

0
+ f Ru(x,t—1")pR(¢")ar', (3)
0

where J,(x, 1) represents the number of particles of species A
jumping to the xth node at time t. The first term on the
right-hand side (rhs) of Eq. (3) stands for the contribution
from those A particles initially at =0 that have not per-
formed their first jump yet. We define ¢(r) and ¢*(z) as the
probabilities to remain at the current node at least for a given
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time 7 for those particles appeared as a consequence of a
jump (¢) or as a consequence of a reaction event (). For
the former case, we have

(1) = f @(t)dt 4)

so there is a direct relation with the waiting time distribution
[Eq. (1)]. On the other hand, the specific form of ¢f(7) can
be independent of ¢(7) but depends on the way we assign
waiting times to the particles after they have reacted. This
will allow us to differentiate between cases I and II. Simi-
larly to Eq. (4), the relation

AGE f ¢"(")ar' )

must hold, where @®(7) is defined as the waiting time distri-
bution for particles A appeared from reaction kinetics.
According to the model, the quantity J,(x,7)+R,(x,1) de-
termine the total income of new particles A to the xth node at
time ¢. The contribution from jumps will be expressed by

Ju(x,1) = %[5(x— 1)+ 8x+ 1)]e(r) + %f [Jalx=1,0=1")
0

t

1
+ 4 (x+ 1,6 =1")]e(t")dt' + EJ [Ry(x—1,t—1")
0

+ Ry (x+ 1,t—1")]R(¢")dt' . (6)

The first term in the rhs of this equation represents the first-
jump contribution of those particles that have been waiting at
their initial position up to time 7. The second term follows
from the individuals jumping to the xth node from its neigh-
bors in the lattice. Finally, the third term represents those
particles of species A, having appeared at x—1 or x+1 as a
consequence of a reaction event, that jump to x after a ran-
dom time distributed according to @®(z).

Now, we can try to solve system (2)—(6) by transforming
from the real space (x,7) to the Fourier-Laplace space with
coordinates (q,s). By doing this, one obtains the explicit
expression

1 - ¢"(s) 1 + cosh(q) "(s)Ra(q.5)
1 - cosh(q) ¢(s)

NA(q’S) =

12 (g0 )

for the number of particles, where we use the variables s and
q to specify that the functions have been transformed to the
Fourier-Laplace space. The corresponding generalized mas-
ter equation (GME) from Eq. (7) is found by inverting back
to the real space
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IN,(x,t) 1 (7
ﬂ:—f [Ny(x=1,t=t)+ Ny(x+ 1,t—1")
ot 2J,

t

1
— 2N, (x,t=1") M (¢")dt’ + Ef [Ry(x—1,t—-1")
0

+Ry(x+ 1t =1t") M, (¢")dt'

+f R, (x,t — 1" )M5(t")dt', (8)
0

where the functions M () (i=1,2,3) are defined through
their Laplace transforms

_se(s) _ ¢*(s) — ¢ls)
M,(s) = 1 (p(s)’ M(s) = 1— ols) >
Mi(s) = 11%;(&)). 9)

Note that M, corresponds to the so-called memory kernel,
and so the GME of the standard CTRW is recovered from
Eq. (8) if the reaction process is obviated (it is, for R4=0).
Also, the explicit dependence of M, and M5 on the transport
functions ¢ and ¢ is a clear trace of the couplings between
reaction and diffusion mentioned above. So, in the present
model we find that the coupling is made evident within the
reaction term, while in the aforementioned approaches [17] it
is found that the master equation for species A depends ex-
plicitly on the transport properties of species B. At the end,
the idea is that memory effects due to anomalous transport
always make transport and reaction terms nonseparable
within the master equation.

IV. APPLICATION TO CASE I

Now we are in position to analyze cases I and II as par-
ticular cases of the model above. Case II has been defined by
the condition that the internal clock of particles is set to O
after the particles react. It leads to the identity @®(¢)=¢(1),
i.e., the random waiting times are distributed identically to
every newcome, no matter if it has appeared from a jump or
a reaction event. It is straightforward to see that for this case
the GME (8) turns into

IN,(x,t) 1 (7
M=—J’ [Ny(x=1,t=1") +Ny(x+1,1—1")
ot 2J,

= 2N, (x,e = ") IM(")dt’ + Ry(x,0),  (10)

which corresponds to the reaction-random-walk case already
studied in many previous works (see, for example, [2,20]).
For this specific case, it has been shown that wave-front
solutions can be analytically characterized by means of the
Hamilton-Jacobi method [2,5]. So that Monte Carlo experi-
ments are expected to yield a stationary front solution trav-
eling with constant speed as confirmed by our results in Fig.
2. If one applies the Hamilton-Jacobi method (see [2,20]) to
determine the front speed from Eq. (10) together with Eq.
(2), the expression found is
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FIG. 3. Comparison between the numerical values of the front
speed (Monte Carlo experiments, points) and the Hamilton-Jacobi
results derived here [Eq. (12), solid lines] and in Ref. [2] (dashed
lines). The value of the parameter C is chosen so that the distribu-
tion [Eq. (1)] coincides in the Laplace space with ¢~ 1—Cs® in the
asymptotic regime. Two different values of k are shown, while a
=0.5 is set as fixed.

v = min . (11)
: 1 1 - ¢(s)
cosh™'| — —k———
@(s) se(s)
After inserting Eq. (1) into Eq. (11) we obtain

N

., (12)

v =min
s

s —k[1 - a(Bs)%’T[- a, Bs]]

cosh™!
sa(PBs)%ePT[- a, Bs]

where I'[-,-] is the incomplete gamma function. So that we
can compare now the value of v from this expression (the
minimum must be computed numerically) with that found
from Monte Carlo experiments. In Fig. 3 we show this
comparison—the circles represent the numerical results and
the solid lines are obtained from Eq. (12)—which yields an
excellent agreement. Likewise, note that the results from Eq.
(12) are in disagreement with those found in Refs. [2,5] (rep-
resented by dashed lines in Fig. 3). There the front speed was
calculated by using the approximation ¢(s) ~1—Cs® (with C
constant) corresponding to an asymptotic decay ¢(7)
~ 771=% for large 7. This disagreement seems to suggest that
the tail of the waiting time distribution is not necessarily the
responsible for the dynamics of the front. Actually, the con-
trary is closer to truth in this case. The dynamics of the front
is governed by those particles that jump sooner, it is, those
which are in the body of the distribution (Fig. 1). As the new
A particles appeared from the reaction kinetics are assigned a
new random waiting time, these are the ones that are ex-
pected to determine the front speed. These ideas have been
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confirmed by our Monte Carlo experiments. We have found
that very similar front speeds are found for waiting time
distributions ¢(7) with the same body but very different tails,
while different speeds arise if the body is different albeit the
tails are exactly the same. This can also be seen in Fig. 3,
where we have chosen the parameter C from ¢(s) ~1-Cs®
in such a way that the tail of this distribution coincides with
that of Eq. (1). Despite the tail of the distribution is so ex-
actly the same, different values for v arise. Obviously, the
differences become notorious for 8> 1, as for that regime
the distribution [Eq. (1)] has a larger body. On the contrary,
for B<<1 the distribution tends to its asymptotic form ¢(7)
~ a3~ 717% very fast and so the front speeds become very
similar.

These ideas serve to solve the paradox reported in [2] and
later discussed in [5]. The authors there found that reaction-
subdiffusion fronts could be faster than classical reaction-
diffusion fronts. They suggested that this result was not pos-
sible since subdiffusive particles move asymptotically slower
than diffusive ones and so should do the corresponding front
solutions. Our present analysis show that in fact the paradox
does not exist. The speed of reaction-subdiffusion fronts aris-
ing from Eq. (10) must not necessarily be lower than that of
classical reaction-diffusion fronts, since the tail of the distri-
bution does not govern the front dynamics.

V. APPLICATION TO CASE II

Case II is a more complex situation, as we have to differ-
entiate the waiting time distributions for newcomes appeared
from a jump or from a reaction event. If the particles of
species A and B have exactly the same transport properties
(as assumed in [14,17]), then ¢®(7) can be interpreted in
terms of the distribution of waiting times of arbitrary age
(DWTAA) defined in [25]. This refers to the stationary ver-
sus non stationary state condition for the CTRW reported in
[24,26,27]. Consider that the CTRW process started at time
t=—t, but we start our observation (it is, we start counting
the waiting times) at r=0; the corresponding distribution of
random times to the first jump is called DWTAA and denoted
by ¢, (7). This formal definition coincides with the situation
considered in our case II, except that here the CTRW started
at t=0 and we want to determine the distribution of waiting
times to the first jump after a particle has reacted at time ¢.
So that we can write the distribution ¢®(7) as [see Eq. (5) in

[25]]

D= =gt+1+2 | o' +Denlt—1)dt'.
n=1+J0

(13)

Here, ¢(n|7) is the probability that n jumps occur during the
interval (0, 7) provided that the last jump is performed ex-
actly at time 7; so we can identify ¢(1|7)=¢(7). This n-jump
function can be determined from the convolution
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qD(n|T)=f e(n =1t p(r-1")dr". (14)
0

Equation (13) can then be understood as follows. The first
term in the rhs represents the contribution from particles that
have not performed their first jump when observation starts
(i.e., at time 1), while the second term gives us the contribu-
tion from particles that have already performed 1,2,3...
jumps before. For a more detailed description of the
DWTAA and its connection to the CTRW the reader is ad-
dressed to Refs. [25,28].

Despite we are able to propose an exact expression for
<pR(7'), note that the resolution of the problem comes out to
be very difficult if not impossible. First of all, it is not pos-
sible to find an exact analytical expression of ¢®(7) from Eq.
(13) with Eq. (1). What is more, we have that ¢*(7) depends
explicitly not just on the waiting time 7 but also on the ab-
solute time ¢. To stress this dependence we use in the follow-
ing the notation ¢®(7,) instead of @®(7). According to that,
the Fourier-Laplace transform of model (2)—(6) cannot be
analytically computed, and so a GME cannot be explicitly
found for this case. Anyway, we can still try to find some
approximated expressions in the asymptotic regime 7— .
For this limit, Eq. (13) together with Eq. (1) leads to the
expression

t—

sin( a7
() — T e

(B + T)“t

It means that the jump probability of a particle after a reac-
tion event tends to O for r— . So that we can assume that in
the asymptotic regime the contribution of newcomes arrived
from jumps is much larger than the contribution from par-
ticles arrived from reaction events. Accordingly, we assume
¢©®=~0 in expression (8). From that we can try to apply again
the Hamilton-Jacobi method to find the asymptotic value for
the front speed; this leads to the expression

v= min—l.
=0 cosh‘1<—>

@(s)

Since ¢(s) must be always a monotonically decreasing func-
tion of s, it follows that the function s/cosh™(1/¢(s)) grows
monotonically with s and so the minimum in expression (16)
will be always at s=0. In consequence, the asymptotic front
speed predicted is v=0, in accordance with the result found
in [14] by alternative methods.

The interpretation of this propagation failure is simple. In
the asymptotic regime all the particles are trapped in the tail
of the distribution and they just wait without performing any
jumps, so the front speed eventually tends to 0. The scaling
behavior 1! found in Fig. 2(b) for the number of jumps
versus time shows this tendency too and can be justified as
follows. According to the notation from our model in Sec.
III, the number of jumps performed is equivalent to
3 [Ja(x, 1) +J5(x,1)], where the sum is performed over all the
nodes of the lattice. The evolution of the total number of
particles (A plus B) is not affected by the reaction so we have
from the standard CTRW that

(15)

(16)
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Ta(e,0) + Jg(x, 1) = 2N f M, (¢)dr', (17)
0

which, after inserting Eq. (1), shows an asymptotic scaling
Ju(x,t)+Jp(x,1)~1t*"!, in agreement with the numerical re-
sults in Fig. 2(b).

Finally, from the results shown in Fig. 2(a) one may con-
clude that a scaling v ~~! holds too, at least for a certain
region of times. However, according to our Monte Carlo ex-
periments, this scaling is quite poor for a wide range of pa-
rameter values, specially for a small. Alternatively, we have
tried to determine from our model in Sec. III and by standard
scaling techniques [15,16] whether any simple scaling could
be analytically deduced, without success.

Comparison with Ref. [21]

As mentioned above, while the present manuscript was in
elaboration a new article [21] has been published where the
results predicted in [14] for the case II have been tested
numerically. Except for some minor details, which are not
expected to affect the results, the numerical experiments pro-
posed in that work are equivalent to ours. However, the
range of parameters explored by the authors there is quite
different to that used here. Specifically, we have chosen N
large and Ar small in order to make sure that a comparison
with models based on the CTRW is feasible, while in [21]
they used Ar=1 and quite small values of N. Two main con-
clusions reached in that work were: (i) propagation failure
for t— o occurs as a consequence of a decelerating front—
which is the same result we find here—and (ii) a scaling v
~ "1 holds, with N=(a+1)/2. Since this last idea contra-
dicts our results above, we have decided to use our Monte
Carlo experiments to reproduce the results presented in Fig.
3 of Ref. [21]. Note that the scaling v ~~! is found there
for less than two decades, typically for times from 103 to 2
X 10*. This is not sufficient in general to ensure that a power
law holds, so we have extended these experiments up to ¢
=10°. The corresponding results are shown in Fig. 4, where
we plot N,7(z) as a function of time. Here, N,;(f) represents
the total number of A particles in the lattice N,p(7)
=E)1£_L/2N '4(x,2), which will be proportional to the front po-
sition, and so it should fulfill NAT~t". However, from our
results it is clear that these data do not fit asymptotically a
single power law, as reported in Table I. For example, for the
case a=0.6 we obtain an exponent A=0.785 in the time in-
terval 102<r<<2 X 10%, very similar to the value found in
[21], but A\=0.727 is found for 10°> <7< 10° and A=0.706 for
10*<t<10°. Only for larger values of « the fit seems to be
better, but it could be due to the fact that r=10° is still too
small to observe the real asymptotics for that case. So, our
results suggest that the scaling v ~ =%’ reported numeri-
cally in Ref. [21] is not robust.

VI. CONCLUSIONS

We have presented a reaction-random-walk model in or-
der to compare and confirm some results obtained by differ-
ent authors previously about the dynamics of reaction-
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FIG. 4. Plot of the total number of A particles N, versus time
for three different values of « (see legend). To reproduce the cases
studied in [21], the other parameters have values B=1, k=0.006,
N=10, and Ar=1.

subdiffusion fronts. Our work provides numerical evidence
that the dynamics of these fronts is very different depending
on the way that reaction is implemented (case I or II). This
shows that the scaling properties of reaction-subdiffusion
fronts are not universal, contrary to classical (Markovian)
reaction-diffusion fronts. In the classical case, no memory
effects are present, which always results in the same scaling
of wave-front solutions.

At the same time, our numerical experiments yield some
interesting results about the role of the tails of the waiting
time distributions considered in reaction-subdiffusion sys-
tems. In our case II, studied previously by Sokolov er al.
[17,14,21], the long tail of the distribution (1) is the respon-
sible for the propagation failure, as more particles get gradu-
ally trapped in the tail. This results in a frozen state in which
all particles remain waiting and so front propagation is not
possible. On the other side, for the case I we have found that
the Hamilton-Jacobi method is able to predict the constant
speed found numerically, provided one takes into account the
whole distribution of waiting times and not just the tail of the
distribution. This is because, contrary to the widespread be-
lief, the tail of the distribution is not necessarily the respon-
sible for the front dynamics.

Let us conclude by mentioning that in order to get a real-
istic implementation of reaction-subdiffusion processes for
the case of chemical reactions we do not think neither case I
nor case II are completely satisfactory. The model presented
here in Sec. Il represents just an attempt to unify and

TABLE I. Values of the exponent A obtained from a power-law
fit Nyp~ ™ from the data in Fig. 4 for different time intervals.

a 103<r<2X10* 10*<r<2X10° 5X10*<r<10°
0.6 (O) 0.785 0.727 0.706
0.7 (0) 0.855 0.824 0.812
0.8 (A) 0.888 0.897 0.894
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generalize these approaches. At practice, we think that the
reaction kinetics may probably affect somehow the waiting
times to the next jump of particles, but it is not expected in
general to make the internal clock of the particle be set to O
(as claimed in case II), except maybe for some catalytic
isomerization reactions and other simple cases. At the
end, all these ideas are based on simplified analytical models,
while greater efforts at the level of single-molecule

PHYSICAL REVIEW E 80, 021133 (2009)

experiments are needed before we can elucidate the real sta-
tistical properties of individual reaction events.
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