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We considered a stochastic version of the Bak-Sneppen model �SBSM� of ecological evolution where the
number M of sites mutated in a mutation event is restricted to only two. Here the mutation zone consists of
only one site and this site is randomly selected from the neighboring sites at every mutation event in an
annealed fashion. The critical behavior of the SBSM is found to be the same as the BS model in dimensions
d=1 and 2. However on the scale-free graphs the critical fitness value is nonzero even in the thermodynamic
limit but the critical behavior is mean-field like. Finally �M� has been made even smaller than two by
probabilistically updating the mutation zone, which also shows the original BS model behavior. We conjecture
that a SBSM on any arbitrary graph with any small branching factor greater than unity will lead to a self-
organized critical state.
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In a seminal paper Bak and Sneppen �BS� introduced a
self-organized critical �SOC� �1� model for the ecological
evolution of interacting species, known as the Bak-Sneppen
�BS� �2� model. In this model an entire species is represented
by a single fitness variable. Using the spirit of Darwinian
principle the minimally fit species is mutated. This however
disturbs the stability of the ecological system. There are
some other species, which are dependent on the minimally fit
species for example as a part of the food web. These species
are also mutated. The ecological evolution takes place in a
series of such events.

The phenomenon of SOC is the spontaneous emergence
of fluctuations of all length and time scales in a slowly
driven system. This concept was first introduced to describe
the formation of a sandpile of a fixed shape �1�. Later the
idea of SOC has been applied to a large number of different
physical systems �3�. A number of models have been intro-
duced to describe SOC in different systems. In the Bak,
Tang, and Wiesenfeld �BTW� model �1� the dynamics is de-
scribed in terms of spreading of sand grains on a sandpile.
Toppling of an unstable sand column distributes sand grains
to all neighboring sites. This model is also known as the
Abelian sandpile model since the stationary state is indepen-
dent of the sequence of grain additions �4�. In a stochastic
version of the sandpile model grains are distributed to ran-
domly selected neighboring sites �5�. In the SOC models
fluctuations are described in terms of avalanches of activities
and their size distributions assume power-law decaying func-
tions for large system sizes. The BS model is regarded as a
simple but nontrivial SOC system.

The BS model is described as follows. The ecosystem
consists of N species located at the sites i=1, N of an one
dimensional lattice. A fitness variable f i is associated with
every site. Initially uniformly distributed random numbers
within the range �0, 1� are assigned for the fitness values.
The dynamical evolution of the ecosystem takes place in a
series of mutation events. Each event consists of two steps:

�i� the “active” site io is searched out, which has the minimal
fitness fo. This site is mutated i.e., the value of fo is replaced
by a new random number. �ii� All sites of a fixed mutation
zone in the local neighborhood are mutated as well. E.g., in
d=1 the fitness values at two neighboring sites of io are also
refreshed. These two steps complete a single mutation event.
After that the active site is located at some other site where
the next mutation event takes place and so on. The sequential
time is measured by the number of mutation events. The
system eventually reaches a steady state in which the asso-
ciated statistical distributions assume their time independent
stationary forms. The recurrent culling of the globally mini-
mal fitness values leads to a step like form of the probability
distribution P�f� so that in the limit of N→�: P�f�=0 for
f � fc and P�f�=C a constant otherwise, where fc is a critical
fitness threshold �6�.

In the steady state the fluctuations are described in terms
of avalanches. A critical avalanche is a sequence of succes-
sive mutation events with fo� fc. The lifetime s of the ava-
lanche is the total number of events in the avalanche. The
distribution of the avalanche lifetimes has a power-law tail in
the limit of N→�: D�s�	s−�. The BS model has been stud-
ied on hypercubic lattices, e.g., the values of fc and � are
found to be 0.66702�8� and 1.073�3� �7� and 0.328855�4� and
1.245�10� �8,9� in d=1 and 2, respectively. The upper critical
dimension has been argued to be 4 �10� and 8 �11� where �
assumes its mean-field value of 3/2.

It has been observed that increasing the size of the muta-
tion zone modifies the critical fitness fc but not the critical
behavior �12�. It has also been shown that the BS model with
isotropic and the anisotropic mutation zones have different
critical behaviors �13�. Variants of the BS model with expo-
nentially and power-law distributed random numbers have
been studied �14,15�. BS model has also been studied on
different heterogeneous graphs as well, e.g., on random
graphs �16� and on an adoptive networks �17�. However, the
critical fitness threshold is zero for BS model on infinitely
large scale-free graphs �18�. In a scale-free graph the degree
distribution P�k� decays as a power law �with degree k being
the number of edges meeting a vertex� as: P�k�	k−� and the
cutoff kmax	Nx, N being the size of the graph. The Barabási-*manna@bose.res.in
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Albert �BA� network �19� is a well-known scale-free graph
with �=3 and x=1 /2 �20�. For the BS model on BA net-
work, the value of fc�N� decreases to zero in N→� limit as
1 / log�N� �18,21–23�.

First, let us consider two limiting cases. Suppose the mu-
tation zone has size zero so that only the active site is up-
dated in every mutation event. Then the chance that the next
fo will be less than the present fo arises due to refreshing this
site only. Consequently fo increases almost monotonically
leading to fc=1. The other limiting case is the N-clique
graph where each vertex is connected to all other N−1 ver-
tices in the graph �24�. The mutation zone consists of N−1
nodes and therefore in a mutation event fitness values of all
N vertices are refreshed, as a result both fo, fc→0 as N
→�. Therefore when the size of the mutation zone is in
between 0 and N−1, there is a competition between the
mechanisms of these two limiting processes and conse-
quently fc assumes a nontrivial value between �0, 1�.

Since a random graph has Possionian degree distribution,
which decays very fast the threshold fitness fc has a fixed
value �16�. On the other hand in scale-free networks when-
ever a mutation event initiates at a hub vertex its large num-
ber 	Nx of neighbors are refreshed. Qualitatively this is a
similar mechanism as the N-clique graph, but since x�1, the
fc�N�→0 inverse logarithmically. Therefore if the size of the
mutation zone is reduced, the number of refreshed sites is
less; consequently the chance of creating new fo smaller than
the present minimal is less. As a result fc goes up.

The dynamics in the Bak-Sneppen model is well known
to be described by a branching process �8,25�. A branching
process �26� is defined by a population where each individual
in one generation produces randomly a number of offsprings
in the next generation. The average number of offsprings is
called the basic reproduction rate. Here in BS model we call
the sites with fitness values f � fc as the critical sites. Every
mutation event produces randomly a number of critical sites.
If the total number of sites refreshed in a mutation event is
M, which is the number of sites in the mutation zone plus
one for the active site, then the average number of critical
sites produced in a mutation event is rb=Mfc, which we call
as the branching factor. It may be noted that all critical sites
produced in a mutation event may not be fresh critical sites.
An existing critical site may be refreshed again to a critical
site with a different fitness value. It is known that a nontrivial
branching process needs a value of the basic reproduction
rate greater than unity. For BS model a similar condition may
be that the branching factor should be greater than one. This
implies that if one reduces the size of the mutation zone to
only one site, it may still be possible to achieve a self-
organized critical state only if rb=2fc�1. In the following
we will present numerical evidence, which indicates that in-
deed this is likely to be true. In a particular anisotropic case
the fixed one member mutation zone has already been stud-
ied in one dimension �12�.

In this paper we study a stochastic Bak-Sneppen model
�SBSM� with the simplest possible mutation zone. In addi-
tion to the usual procedure of randomly refreshing the fitness
values the stochasticity is introduced in randomly selecting
the sites of the mutation zone as well. The size �the number
of sites� of the mutation zone is kept fixed at the minimal

value, i.e., unity and for different mutation events different
mutation zones are randomly selected only from the nearest
neighbors of the active site.

We follow the Grassberger algorithm for our study �7�.
Searching for the minimal fitness using a brute-force algo-
rithm needs to test the fitness values of all sites requiring
CPU	N. Grassberger used a hierarchical organization of the
data in block structure where CPU	 log�N�. Sites of an one
dimensional lattice of N=2n sites are divided into N /2 block
pairs such as �1,2�, �3,4�,… �N−1,N�. For each block, the
smaller fitness value of two sites is stored in a site of another
lattice of N /2 sites in a higher level and a pointer is assigned
to this site. This procedure is repeated for the next higher
level as well. Finally only one site in the �n+1�th level con-
tains the global minimal fitness value �Fig. 1�. To locate the
minimal fitness site one moves opposite to the pointer direc-
tions starting from the top level. During the mutation of ev-
ery site at the lowest level one needs to update the fitness
values and the pointer directions up to the top level.

Indeed we observe that the simple SBSM preserves all
characteristics of the original BS model. In d=1, the step
form of P�f� has been observed in all system sizes from N
=27 to 214, increased by a factor of 2. The jump in P�f� at
fc�N� is rather smooth for the small N but becomes more and
more sharper on increasing N �Fig. 2�a��. The f value at the
intersection of two successive P�f� curves gradually shifts to
higher values with N. The value of fc��� is estimated as
follows. In N→� limit the normalization of P�f� gives
C���=1 / �1− fc����. The average fitness per site is then
�f����=
0

1fP�f�df = �C��� /2��1− fc
2����= �1+ fc���� /2,

which gives fc���=2�f����−1. The whole fitness profile is
sampled at the interval of every N mutation events and fc�N�
values are extrapolated with N−� with �=0.79�0.01 to ob-
tain fc���=0.7894�10� �Fig. 2�b��. The most suitable value
of � is decided by trying different trial values of it and then
selecting that particular value for which the fitting error is
minimum. On a similar extrapolation of �f�N�� s we get
�f����=0.8947�10� implying that the branching factor rb
=1.5788�1.

The lifetime distribution exponent � is estimated using the

FIG. 1. Hierarchical organization of the data structure to search
for the global minimum �7�. An 1d array of 16 sites has 16 random
numbers. Successive pairs of sites form blocks in level 1. The
smaller number of every block is forwarded to level 2 and a pointer
is attached. Similar block pairs are also formed in level 2 and point-
ers are attached toward level 3 and so on. One moves opposite to
the pointer directions starting from the top level to reach the mini-
mal site at the lowest level.
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method of finite-size scaling analysis. Large number of mu-
tation events are studied: �4	1010 for N=27 to �110
	1010 for N=214. In Fig. 3�a� the binned probability P�s ,N�
distribution data for N=210, 212, and 214 are only plotted. A
direct measurement of the slopes of these three curves gives

0.94, 1.02 and 1.05 for the estimates of � for the three system
sizes, respectively. A finite-size scaling analysis has been
done using the following scaling form:

P�s,N� 
 N−�G�s/N�� , �1�

where the scaling function G�x�	x−� in the limit of x→0
and G�x� approaches zero very fast for x
1. The exponents
� and � fully characterize the scaling of P�s ,N� in this case.
An immediate way to check the validity of this equation is to
attempt a data collapse by plotting P�s ,N�N� vs s /N� with
trial values of the scaling exponents. The values for obtain-
ing the best data collapse are found to be �1=2.60 and �1
=2.43; here we have used the subscripts to denote the dimen-
sion of the system �Fig. 3�b��. The lifetime exponent for 1d
SBSM is therefore �1=�1 /�1�1.07�2�. This exponent is
very close to the value of �1 in the BS model �7�.

Next, we have studied the SBSM on a two-dimensional
square lattice of size L	L so that total number of sites N
=L2. The fitness distribution profiles have been shown in Fig.
4�a� for different system sizes. The critical fitness value fc
has been obtained as 0.628�1� on extrapolating the fc�L� val-
ues of L=27, 28, 29, and 210 with L−1.29 and rb=1.256�1.
Another finite-size scaling has been done in a similar way to
obtain the scaling function exponents for the lifetime distri-
bution as shown in Fig. 4�b�. The values obtained for the best
data collapse are �2=3.75 and �2=3.0 yielding the value of
�2=1.25�2�. This exponent is also very close to the value of
� obtained for two-dimensional BS model �8,9�.

The SBSM is also studied on the scale-free BA network.
In this growing graph every new vertex comes up with m
edges and gets connections to m distinct vertices of the ex-
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FIG. 2. �Color online� �a� The distribution P�f ,N� of fitness
values are shown for 1d SBSM for system sizes N=210 �black�, 212

�red�, and 214 �blue�. The jump in the distribution becomes gradu-
ally sharper with increasing the system sizes. �b� The threshold
fitness values for different system sizes are plotted with N−0.79 and
extrapolated to obtain the fc���=0.7894�10�. The solid line is a
least square fit of the data and the thick line indicates the extent of
the error.
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FIG. 3. �Color online� The avalanche lifetime distributions
P�s ,N� for the 1d SBSM. In �a� we show the plots for the system
sizes N=210 �black�, 212 �red�, and 214 �blue� �from left to right�. �b�
A finite-size scaling of this data shows an excellent data collapse for
�1=2.60 and �1=2.43 giving the value of the avalanche lifetime
exponent to be �1�1.07. The left end of each curve shifts to the left
on increasing system size.
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FIG. 4. �Color online� Data for the 2d square lattice of size L.
�a� The fitness distributions P�f ,L� vs f for the system sizes L=25

�black�, 26 �red�, 27 �green�, and 210 �blue�. The jump in the distri-
bution becomes gradually sharper with increasing the system sizes.
�b� The finite-size scaling of the avalanche size distribution for L
=28 �black�, 29 �red� and 210 �blue� giving �2=3.75, �2=3.00, and
�2=1.25. The left end of each curve shifts to the left on increasing
system size.
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isting graph. Initially the growth starts from a �m+1� clique.
The actual growth process is executed by the improved al-
gorithm �27�. In this method a new vertex selects one of the
existing edges with uniform probability and gets a connec-
tion to one of its end vertices with probability 1/2 to generate
the BA graph. For every vertex this process is repeated m
times for attaching m links keeping track that all m vertices
must be distinct. We have used m=2 in our studies.

For the SBSM on a BA graph, the mutation zone is a
single randomly selected vertex out of all the k neighboring
vertices. As expected this system also gradually evolves to a
steady state. The stationary fitness distribution P�f� shows up
the characteristic jump at a certain value of fc. For the small
graphs P�f� grows continuously across the critical fitness
value from a low value to a high value. All quantities mea-
sured are averaged over different independent realizations of
BA graphs. Both the fitness function and avalanche size dis-
tribution differ little from one graph to the other so that when
the number of configurations are increased the fluctuations in
the averaged plot gradually reduced. The dynamics is fol-
lowed till �12	1010 mutation events including 2500 �N
=27� to 152 �N=213� uncorrelated BA graphs. The arrival of
the steady state is ensured by keeping track of the average
fitness value �f� per vertex, which initially grows but even-
tually becomes steady. The stationary-state data is collected
skipping the first 25 million mutation events as the relaxation
time. For the fitness distribution, the fitness data is collected
from all vertices of the network at the interval of every N
mutation events. In Fig. 5�a� the fitness distribution P�f� has
been plotted for the system sizes N=27, 210, and 213. The
average fitness values �f�N�� are measured to obtain the criti-
cal fitness thresholds for different N values. These on ex-
trapolation with N−4/3 gives fc=0.5751�10�. Therefore for

SBSM on BA graph the branching factor rb=1.1502�1.
For BA graph we have done a finite-size scaling of the

fitness distribution data to exhibit explicitly that the value of
the fitness threshold fc��� is indeed nonzero even in the ther-
modynamic limit. To make a data collapse we need to stretch
different curves of Fig. 5�a� to different amounts along the f
axis. For that we need to keep one point fixed on every
curve. We selected this point, which has P�f ,N�=C�N� /2.
The corresponding value of f is denoted by f1/2�N� and is
calculated by an interpolation. The f axes are then shifted by
f1/2�N� amounts for all three plots and have been rescaled by
N0.52 to obtain a nice data collapse, which is shown in Fig.
5�b�.

The avalanche size distributions have been studied for the
same values of fc�N� obtained above. The raw distribution
data has been shown in Fig. 6�a� for the three graph sizes
N=210, 211, and 212. A similar finite-size scaling analysis
yields �BA=1.62 and �BA=1.10 giving the value of the life-
time exponent �BA�1.47�3� �Fig. 6�b��. This value is close
to the mean-field value of 1.5 obtained by �18�.

The branching factor can be reduced even further. During
every mutation event we first decide with a probability p
=1 /2 if we update the single site in the mutation zone or not.
If it is favored only then one of the nearest neighbors is
selected randomly and updated as in SBSM, otherwise the
active site is only updated and therefore �M�=1.5. In d=1,
we get an enhanced value of fc�0.883�5�, which means rb
= �M�fc�1.325�1. The critical exponents found to be very
consistent with SBSM at d=1. Figure 7�a� shows the fitness
distribution plot whereas Fig. 7�b� exhibits the finite-size
scaling analysis of the avalanche size distributions. Our ex-
pectation is that on further reduction of the branching factor
by reducing p, the fc will go up but the critical behavior
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FIG. 5. �Color online� The distributions P�f ,N� of the fitness
values in the steady state of SBSM on the Barabási-Albert scale-
free graph. �a� Distribution plots for the graph sizes N=27 �blue�,
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would remain intact. To check it we simulated only one sys-
tem size of N=211 for �M�=1.75, 1.25, 1.125, and 1.0625
and obtained fc�211� values 0.828, 0.935, 0.966, and 0.982,
respectively, corresponding to branching factors 1.449,
1.168, 1.087, and 1.044, respectively, all values larger than

unity. Direct measurement of � exponents from D�s� vs s
plots gives 1.07, 1.05, 1.04, and 1.01, respectively. Therefore
it seems likely that for any branching factor greater than
unity, the SBSM would exhibit a nontrivial SOC state.

Lastly we studied the SBSM on the N-clique graph. Our
single member mutation zone is a special case of the random
BS model studied in �28�. For all finite-size systems the
fc�N� values are larger than 1/2 but approach to it as N in-
creases. The results in the asymptotic limit are consistent
with �28�, i.e., fc=0.5, �NC=1.5, and �NC=1.0 giving �NC
=1.5, a complete mean-field behavior. Here rb=1 holds good
only in the asymptotic limit, for all finite system sizes rb
�1.

To summarize, the ecological evolution process described
in the Bak-Sneppen SOC model has been widely regarded as
a branching process. Here each mutation event generates ran-
domly on the average rb offsprings with fitness values under
the threshold. Similar to the basic reproduction rate in the
theory of branching process we propose that a nontrivial
branching process, and thus a nontrivial SOC state in BS
model is achieved only when the branching factor rb�1. To
justify this idea we have considered a stochastic version of
the BS model where other than minimal fitness site, only one
neighboring site is updated. This model is numerically stud-
ied on 1d and 2d regular lattices, Barabási-Albert scale-free
networks and N-clique graphs and in all these cases rb�1
and nontrivial SOC states are observed. In addition we have
seen that in 1d where on the average 1.5 neighbors are up-
dated in a mutation event, one still has a SOC state. These
evidences led us to conjecture that in a stochastic BS model
studied on any arbitrary graph where the average branching
factor is greater than unity would lead to a nontrivial SOC
state.
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FIG. 7. �Color online� Data for the case when the average num-
ber of sites updated in a mutation event �M�=1.5 in 1d for the
system sizes N=27 �black�, 29 �red�, and 211 �blue�. �a� The fitness
distributions P�f ,N� vs f . The jump in the distribution becomes
gradually sharper with increasing the system sizes. �b� The finite-
size scaling of the avalanche size distribution for the same system
sizes giving �=2.46, �=2.28, and ��1.08. The left end of each
curve shifts to the left on increasing system size.
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