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Birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the
oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the
Lotka-Volterra model of predator-prey interaction. Fluctuation effects due to discreteness of the populations
destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We
show that the corresponding extinction time scales as a certain power-law of the population sizes. This
behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the
latter case the extinction time scales exponentially with size.
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I. INTRODUCTION

Understanding stochastic population dynamics is an im-
portant pursuit in the biological sciences �1–4�. Mathemati-
cal modeling of such dynamics allows for better understand-
ing of biodiversity and species extinction. Such modeling
becomes especially important because often the relevant time
scales make direct measurements difficult. One of the most
basic relationships that can be used to study such dynamics
is the predator-prey relation. In such a system, one species
reproduces by killing the other. An individual of the prey
species replicates at a constant rate. Individual predators die
at a constant rate and replicate only at the expense of the
prey. Although the most obvious application of such a system
is two organisms, the predator-prey relation can also be used
to study other systems.

The original work by Lotka �5� and Volterra �6� showed
that such a system results in oscillations of both populations.
Stochastic simulations can be used to better understand such
a system. In a system without spatial degrees of freedom, the
Lotka-Volterra interaction invariably results in an extinction
event in which either the predator species or prey species
goes extinct.

This departure from the original results can be understood
as a result of stochasticity associated with the discreteness of
the populations. Such behavior has been observed in, for
example, the cyclic Lotka-Volterra system �7�. Understand-
ing this departure from mean-field dynamics provides a chal-
lenging problem in nonequilibrium statistical mechanics.

The unique feature of the Lotka-Volterra model is the
presence of an “accidental” first integral of the mean-field
equations of motion. As a result, all mean-field trajectories
evolve on closed orbits. These type of dynamics are margin-
ally stable, since fluctuations in any direction are neither
damped nor amplified. Such fluctuations originate from in-
trinsic demographic stochasticity along with the discreteness
of the populations; they lead to a slow diffusion between the
mean-field orbits. Even large deviations from mean-field ex-
pectations, such as extinction, may be viewed as the accu-
mulation of many small step fluctuations in the radial direc-
tion. This should be contrasted with reaction systems that
have a stable fixed point or limiting cycle. In those systems,
the large deviations proceed only along very special instan-

ton paths in the phase space �8,9�. Due to this difference, the
extinction time in marginally stable systems exhibit power
law dependence on the two populations sizes, instead of be-
ing exponentially long as in the case of �meta�stable models.

This work gives a formulation of the problem using the
Fokker-Planck equation. Using time scale separation be-
tween fast angular and slow radial motion, the inherently
two-dimensional problem is reduced to a one-dimensional
�1D� one. The latter is the problem of diffusion with a spe-
cific radius dependent drift. We then solve the first passage
problem for this effective 1D problem and characterize the
extinction probability in the long and short time limits. We
rely on extensive comparison of the analytic results with the
stochastic simulations. We achieve a quantitative agreement
between the two, which is in all cases is better than 5% and
may reach an accuracy of 0.5%.

Our main result may be formulated as follows: for generic
parameters and initial conditions the typical number of
cycles, C, the system undergoes before going extinct scales
as

C � Ns
3/2Nd

−1/2,

where Nd�Ns are the sizes of the dominant and subdominant
populations respectively. This result implies a number of sur-
prising consequences, which were all confirmed in simula-
tions. For example, it predicts that a further increase of an
already dominant population only accelerates the total ex-
tinction. It also shows that some very different systems be-
have virtually indistinguishably vis-a-vis extinction, if their
C numbers are the same. For the symmetric scenario Nd
=Ns=N, we find C�N in agreement with Ref. �7�. The rela-
tionship between the number of cycles and the period is ap-
proximately linear, where the scaling is proportional to the
“typical” period of a cycle. This period can be easily calcu-
lated for a given set of reaction rates and indeed provides a
natural time scale for the problem.

The outline of this paper is as follows: in Sec. II we
present the mean-field dynamics of the Lotka-Volterra sys-
tem. Sec. III presents some of the results of extensive Monte
Carlo simulations. An analytic approach to understanding the
problem is presented in Sec. IV. Finally, the results are dis-
cussed in Sec. V.

PHYSICAL REVIEW E 80, 021129 �2009�

1539-3755/2009/80�2�/021129�10� ©2009 The American Physical Society021129-1

http://dx.doi.org/10.1103/PhysRevE.80.021129


II. MEAN-FIELD THEORY

In a basic predator-prey system, there are two popula-
tions. The predator species has a death rate, �, and the prey
has a birth rate, �. In addition, there is a cross reaction where
a predator consumes a member of the prey population in
order to reproduce. This occurs at rate �. The reaction
scheme can be summarized as follows:

F→
�

0; R→
�

2R; F + R→
�

2F , �1�

where F signifies a predator �“fox”� and R signifies a prey
individual �“rabbit”�.

In the mean-field approximation one neglects the discrete-
ness of the populations and models the system with deter-
ministic rate equations. If q1 and q2 are taken to be continu-
ous variables representing the predator and prey populations,
the dynamics of these two variables are given by the follow-
ing equations

q̇1 = − �q1 + �q1q2,

q̇2 = �q2 − �q1q2. �2�

The rate of change in the predator population contains a
death term proportional to the predator population and a birth
term proportional to the size of both populations. Likewise,
the rate of change in the prey population has a birth rate
proportional to the prey population and a death term propor-
tional to both. Some features of these dynamics are immedi-
ately evident. There are three fixed points. These correspond
to �q1 ,q2�= �0,0� , �0,��, and �� /� ,� /��. The first point cor-
responds to the trivial case of extinction of both species. The
second fixed point is the result of predator extinction and the
prey population growing exponentially. The third is the co-
existence fixed point, where the stable populations of the
predator and prey are N1=� /� and N2=� /�.

For a given initial condition, the populations evolve along
a closed orbit in predator-prey space. The orbits are closed
due to the existence of an “accidental” integral of motion in
the mean-field equations of motion �2�

G = �q1 − � − � ln�q1�/�� + �q2 − � − � ln�q2�/�� . �3�

The definition of G is chosen such that G=0 corresponds to
the coexistence fixed point, while G→� corresponds to
large amplitude cycles closely approaching the two axes.
Figure 1 shows orbits for various values of the integral of
motion, G, for the case N1=N2=100. The presence of the
integral of motion makes all cycles marginally stable. In-
deed, a small fluctuation may shift the system from one orbit
to a neighboring one. Since the new orbit is also a stable
solution of the mean-field equations of motion, there is nei-
ther a restoring force, trying to compensate for the fluctua-
tion, nor amplification of the fluctuation.

At small G, the mean-field orbits are ellipses. The fre-
quency of these elliptical orbits approaches a constant value,
1 /���, as G approaches zero. This provides a natural time
scale for the problem. By rescaling time to be measured in
these units, it is possible to reduce the number of parameters
in the problem from the original three reaction rates to two
parameters, which are convenient to choose as

N =
���

�
= �N1N2; � =��

�
=�N2

N1
. �4�

Here, N represents an effective system size, while � repre-
sents the asymmetry between the predator and prey popula-
tions. Throughout this paper we shall be interested in the
limit of large system size N	1. By the reasons explained
below the asymmetry parameter � will be restricted to the
interval N−1/2
�
N1/2.

III. STOCHASTIC SIMULATIONS

The mean-field approximation fails to accurately portray
the actual evolution of the reaction system, Eq. �1�. As pre-
viously mentioned, the mean-field solution does not take into
account the stochasticity associated with individual birth-
death events or the discreteness of the populations. Results
from Monte Carlo simulations of this reaction scheme dem-
onstrate the failure of the mean-field.

Stochastic simulations were done as follows. The initial
populations were taken to be at the coexistence fixed point.
Time was discretized into small steps of size �t. The time
step, �t, was chosen so that the probability of having any
change in population size during �t was small, i.e., �t
�1 /N���. For each time step, the number of prey births
and predator deaths was calculated randomly from a bino-
mial distribution with success rates ��t and ��t, respec-
tively. The number of consumption reaction events was cal-
culated from a binomial distribution based on ��t and the
number of predator/prey pairs. This was repeated until one of
the populations went extinct. Figure 2 shows an example of
such a simulation. As in the mean-field case, the system ro-
tates clockwise about the coexistence fixed point. As time
progresses, however, the system unwinds from the fixed
point, eventually hitting either the q1 or q2 axis. From there,
the system rapidly progresses toward one of the extinction
fixed points. For a typical simulation, the system rotates
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FIG. 1. Orbits of constant G= �0.01,0.1,0.4,1 ,1.7,2.7,4.2� in
units of ���. The evolution proceeds clockwise around the mean-
field fixed point of N1=N2=100.
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around the fixed point many times before going extinct.
Since such a simulation invariably ends in the extinction

of one or both species, it is interesting to analyze the chance
of the system being dead as a function of time. For a given
set of initial conditions, it is possible to determine this ex-
tinction probability by repeatedly running a stochastic trial.
Figure 3 shows the result of 100 000 stochastic simulations
using the conditions of the simulation presented in Fig. 2. As
could be expected, at short time scales there is very little
chance for the system to be extinct. As t grows the probabil-
ity of extinction approaches unity. At long time scales, the
convenient quantity for calculation is not the extinction prob-
ability, but the survival probability, this being the likelihood
of the system still being alive at a given time, t. The loga-
rithm of the survival probability appears to be linear in time,
Fig. 4. As a result, the survival probability is decaying expo-
nentially with a characteristic time 
l,

Psurv�t� = 1 − Pext�t� � e−t/
l. �5�

Figure 5 shows the dependence of 
l on N. One observes a
linear growth of the characteristic time 
l with increasing N
at N	1. This agrees with the results observed by Reichen-
bach, et al. �7� for the cyclic Lotka-Volterra system. This

linear dependence suggests the following representation for

l�N ,�� in the limit N	1:


l�N,�� =
N

E0���
, �6�

where the rescaled extinction rate, E0, depends only on the
asymmetry, �, but not on N. The fit of Fig. 5 gives an ob-
served value of E0�1�=2.05.

We focus now on the role of the asymmetry parameter �.
Figure 6 plots the extinction probabilities versus time for �
=2 and �=1 /2. The plots show virtually identical behavior.
In particular, the similarity in the long time decay suggests a
symmetry in E0 between � and 1 /�. Figure 7 shows a plot of
the observed E0 vs. the logarithm of � in stochastic simula-
tion, confirming that

E0��� = E0�1/�� . �7�

The minimum of E0 corresponds to �=1. Away from this
point one observes E0���=0.97�max�� ,1 /���2.

Unlike the long times, the short time behavior is not uni-
versal and depends on the choice of the initial conditions.
For the initial populations chosen close to the coexistence
fixed point �N1 ,N2� it is exceedingly unlikely for the system
to drift all the way to extinction in a short time interval.
Plotting the logarithm of the extinction probability vs inverse
time shows a linear dependence at small times. As a check of
our results, we have plotted the result from our stochastic
simulation, here labeled discrete time, along with the results
of an alternative method, the Gillespie algorithm �10�. No
significant difference was found between the two, although
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FIG. 2. Typical run of the stochastic simulation of the model �1�
for N=100 and �=1.
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FIG. 3. Extinction probability in time t from 105 simulation
trials �N=100, �=1�. Time is in units of 1 /���.
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FIG. 4. Logarithm of the survival probability at long times for
the data presented in Fig. 3.
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FIG. 5. Time constant 
l of exponential decay, Eq. �5�, versus N
for �=1.
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the Gillespie algorithm is much faster. This can be seen for
�=1 in Fig. 8. Extinction probability in small times is expo-
nentially small and appears to have a functional form of

Pext � e−
s/t. �8�

As in the long time limit, the time constant 
s�N ,�� scales
linearly with N for N	1. It is thus convenient to parameter-
ize 
s�N ,�� by an N-independent quantity X0��� as


s�N,�� = N
X0

2���
4

. �9�

This parameterization of 
s puts Eq. �8� in a form that is
reminiscent of a standard diffusion propagator. As was the
case for E0���, X0��� also shows symmetry between � and
1 /�, i.e., X0���=X0�1 /��. From the simulations one observes
X0�1�=2.09 at the maximum.

IV. ANALYTIC APPROACH

A. Master and Fokker-Planck Equations

The full behavior of the reaction model �1� can be ana-
lyzed by employing a probability distribution and studying
its dynamics. Define such a probability distribution P�m ,n ; t�
as the probability of the system having m predators and n
prey at time t, where m and n are both non-negative integers.
This yields the following master equation for the reaction
scheme of Eq. �1�

�tP�m,n;t� = ���m + 1�P�m + 1,n� − mP�m,n��

+ ���n − 1�P�m,n − 1� − nP�m,n��

+ ���m − 1��n + 1�P�m − 1,n + 1� − mnP�m,n�� .

�10�

This equation can be rewritten using integer shift operators,
defined as

Êk,l = ek�m+l�n, �11�

to give

�tP�m,n;t� = ��Ê1,0 − 1�mP�m,n;t� + ��Ê0,−1 − 1�nP�m,n;t�

+ ��Ê−1,1 − 1�mnP�m,n;t� . �12�

An important distinction of the models with marginally
stable cycles is that a large deviation �such as an extinction�
may proceed in a sequence of small steps. A small fluctuation
leads to a mean-field like evolution along a new stable orbit
until another small fluctuation shifts the orbits again, etc. As
a result, a path to extinction is a random diffusion in popu-
lation space. This should be contrasted with models with
stable limiting cycles or an attracting fixed point �11,12�,
where small fluctuations do not accumulate and extinction
proceeds only along a very specific �instanton� trajectory. On
the technical level this observation implies that the gradients
�m,n may be considered as small �1 /N �this is usually not
the case on the instanton trajectory �8,9,13–16�� and thus the
shift operators �11� may be expanded up to the second order.
This procedure leads to the Fokker-Planck �FP� equation,
which in the present context is justified by the Van-Kampen
expansion over the system size N �17�. Proceeding this way,
one finds

�tP = �	�q1
+

1

2
�q1

2 
q1P + �	− �q2
+

1

2
�q2

2 
q2P

+ �	�q2
+

1

2
�q2

2 − �q1
+

1

2
�q1

2 − �q1
�q2

q1q2P . �13�

This equation along with Eq. �2� suggest a change in variable
such that the new variables Qi� ln qi. This is accomplished
through the following transformation:

q1 =
�

�
e��/�Q1 q2 =

�

�
e��/�Q2 �14�

These variables present some advantage over the initial ones.
Extinction events now occur at Q1=−� or Q2=−� instead of
at q1=0 or q2=0. The coexistence fixed point has been
moved to the origin. As part of this transformation, time is
rescaled into the problem’s natural units, 1 /���. The FP
equation no longer depends on the three reaction rates; it
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FIG. 6. Extinction probabilities for �=2 and �=1 /2; N=100.
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FIG. 7. Plot of E0 vs ln �; N=100.
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depends only on N and �. In the new coordinates, the mean-
field integral of motion takes the form

G =
1

�
�e�Q1 − 1� − Q1 + ��eQ2/� − 1� − Q2. �15�

It provides a natural radial coordinate. The coexistence fixed
point is G=0, while extinction corresponds to G=�. Figure
9 shows mean-field orbits in the transformed coordinate sys-
tem. Larger orbits correspond to larger values of G. The most
essential advantage of the new variables is that the mean-
field Eqs. �2� acquire the Hamiltonian structure, where Q1
and Q2 form a canonical pair

Q̇1 = − 1 + eQ2/� = �Q2
G;

Q̇2 = 1 − e�Q1 = − �Q1
G . �16�

Since G�Q1 ,Q2� serves as the Hamiltonian, it is manifestly
conserved on the solutions of the mean-field equations of
motions.

The probability distribution is transformed in the new co-
ordinate system so as to include the Jacobian of the transfor-
mation

W�Q1,Q2;t� = q1q2P�q1,q2;t� , �17�

where q1 and q2 are substituted from Eq. �14�. In the new
coordinates, the Fokker-Plank Eq. �13� becomes

�tW = − �� · J� , �18�

where the divergence is defined as

�� = ��Q1
,�Q2

� . �19�

The probability current in Eq. �18� consists of two parts

J� = J�MF + J�D. �20�

The mean-field motion along the orbits of constant G is due
to J�MF, see Eq. �16�, while the radial diffusion between the
orbits is due to J�D. The mean-field current is given by

J1
MF = �− 1 + eQ2/��W = ��Q2

G�W; �21�

J2
MF = �1 − e�Q1�W = − ��Q1

G�W . �22�

The diffusive current is found from Eq. �13� as

J1
D = −

1

2N
��e−�Q1 + eQ2/�−�Q1��Q1

W − �Q2
W�; �23�

J2
D = −

1

2N
��e−Q2/� + e�Q1−Q2/���Q2

W − �Q1
W� . �24�

The diffusive current is suppressed by a factor of N relative
to the mean-field current. Provided the system is sufficiently
large, i.e., N	1, this means that the angular motion should
be much faster than the radial motion.

B. Reduction to One Dimension

As mentioned, the mean-field constant, G, provides a
natural radial coordinate. The corresponding angular coordi-
nate evolves far faster than the radial one. This time-scale
separation represents an opportunity to turn this two-
dimensional problem into a one-dimensional one. The
method used has been successfully employed in the analysis
of spin-torque switching �18�. Since Q1 and Q2 form a ca-
nonical pair on the mean-field level, it is possible to trans-
form them into action-angle variables �I ,�� where the action
is an integral of the mean-field motion, i.e., G=G�I�. It is
more convenient to use G itself, rather than the canonical
action, I, as the radial variable. One should be aware though
that the change in variables �Q1 ,Q2�→ �G ,�� involves a
Jacobian, discussed below.

We shall assume now that due to the fast angular motion
the probability distribution W�G ,� ; t� rapidly equilibrates in
the angular direction and at long time scales depends on the
radial variable only, i.e., W=W�G ; t�. Under this assumption
it is possible to eliminate the angular dependence from Eq.
�18� by integrating over the area of a mean-field orbit with a
fixed G

� �
G

�tW�G�dQ1dQ2 = −� �
G

�� · J�dQ1dQ2. �25�

We apply the divergence theorem to the right hand side and
change the coordinates of integration on the left hand side.
The unit vector, n̂, is normal to the line of constant G, and dl
is an infinitesimal length along the G orbit

� �
G

�tW�G�� �Q1

�G

�Q2

��
−

�Q2

�G

�Q1

��
�dGd� = − 


G

J� · n̂dl

�26�

The Jacobian can be reduced to �dt /d�� due to the Hamil-
tonian equations on Q1 and Q2, see Eq. �16�, leading to

� �
G

�tW�G�� dt

d�
�d�dG = − 


G

J� · n̂dl . �27�

Integration over � gives the period of the mean-field revolu-
tion around the orbit T�G�
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FIG. 9. Orbits of constant G in the new coordinates
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�
0

G

T�G��tW�G�dG = − 

G

J� · n̂dl . �28�

Finally, differentiation with respect to G yields the radial FP
equation

T�G��tW�G� =
�

�G	− 

G

J� · n̂dl
 . �29�

We now wish to understand the integral of the current in this
equation. The mean-field portion of the current, J�MF, is per-
pendicular to n̂. It therefore makes no contribution to this
integral

J�MF · n̂ = 0. �30�

This leaves integration over the diffusive current J�D, which is
first-order in derivatives and proportional to 1 /N. Since we
are assuming that W is independent of �, this implies that the
diffusive current should be proportional to �GW. The integral
along the orbit may then be written in the form

− 

G

J�D · n̂dl =
1

N
D�G�

�W

�G
, �31�

which is in essence the definition of the effective diffusion
parameter, D�G�. The resulting FP equation takes the form

T�G��tW�G� =
�

�G
	 1

N
D�G�

�W�G�
�G


 , �32�

where the two functions D�G� and T�G� may be evaluated
for any mean-field orbit G. They both are independent of N,
but do depend on �. We evaluate both these quantities in the
Appendix. At small G�1, the period is T=2� �which was
our initial motivation of choosing these units of time� and
D�G��G. Introducing variable R=�G, so �G= �1 /2R��R, one
reduces the right hand side of Eq. �32� to be �R−1�R�R�RW�,
which is the radial part of the standard 2d diffusion equation.
At large G the period grows linearly, T�G��G, while the
diffusivity D�G� grows exponentially. The latter fact is due
to the two sharp maxima in the current J�D which take place
around the two “arms” of the mean-field orbits, Fig. 9, along
the negative directions of the two axis. Both T�G� and D�G�
are symmetric with respect to �→1 /�, rendering the corre-
sponding symmetry to all the results obtained upon averag-
ing over the angular motion.

For very high G, the system will be entering regimes
where there are only a few predators or prey. Our assump-
tions no longer remain valid at this point. Specifically, the
diffusive current, J�D will become larger than the mean-field
current. At this point, fluctuations rapidly brings the system
to extinction, shortening extinction times. Since J�D is in-
versely proportional to the system size, N, this effect be-
comes weaker for systems with larger N. An analysis of this
effect on our results is presented in Sec. IV.

The boundary conditions for Eq. �32� are as follows: since
the system is incapable of moving from the extinct state to a
live one, there is an absorbing boundary condition as G

→�. Since G is a radial coordinate, the current must disap-
pear at G=0. This gives the following boundary conditions

lim
G→�

W�G� = 0;

G� �W�G�
�G

�
G=0

= 0, �33�

where we have employed D�G��G at G→0. At large G, the
diffusivity D�G� grows exponentially, see Appendix. This al-
lows the system to diffuse to G=� in finite time which sug-
gests that the spectrum of Eq. �32� with the boundary condi-
tions �33� is discrete, despite the equation being formulated
on the infinite interval G� �0,��. To see this fact, most
clearly it is useful to introduce one more change in variables.

C. Reduction to the finite interval

To motivate the new variable, let us perform a semiclas-
sical analysis of Eq. �32�. To this end we represent the prob-
ability distribution as

W�G;t� � e−NS�G;t� �34�

and assume for the moment that S�O�1� �this assumption is
indeed true at short time scales, but breaks down at t�N�.
Then to the leading order in N, Eq. �32� becomes

− T�G��tS�G;t� = D�G�	 �S�G;t�
�G


2

, �35�

which may be viewed as the Hamilton-Jacobi equation with
the Hamiltonian

H�G,PG� =
D�G�
T�G�

PG
2 . �36�

It is convenient to make a canonical transformation from
�G , PG�→ �X , PX� such that the Hamiltonian in the new co-
ordinates takes the form H�X , PX�= PX

2 . This is accomplished
by

X = �
0

G� T�G��
D�G��

dG�;

PX =�D�G�
T�G�

PG. �37�

Unlike G, the new radial variable X is bounded. Indeed, due
to the exponential growth of D�G� at large G the integral in
Eq. �37� converges. For the case �=1, X�G� is plotted in Fig.
10, exhibiting convergence to X0=2.39.

Although we motivated the change in variables G
→X�G� by the semiclassical analysis of Eq. �32�, one may
go back to the full FP Eq. �32� and perform the variable
change �37� exactly. The result is

�tW =
1

N

1
�D�X�T�X�

�

�X
	�D�X�T�X�

�W

�X

 . �38�

This equation is defined on the finite interval X� �0,X0�. The
boundary conditions �33� take the form

MATTHEW PARKER AND ALEX KAMENEV PHYSICAL REVIEW E 80, 021129 �2009�

021129-6



W�X0;t� = 0; X� �W�X;t�
�X

�
X=0

= 0, �39�

where we take into account that �D�X�T�X��X at X→0.
Equation �38� has framed the problem so that it no longer
depends on T and D separately, but rather only on �TD as
well as the constant X0. A plot of �T�X�D�X� is shown in Fig.
11.

D. Long time dependence of the extinction probability

The long time behavior of the system can be analyzed via
an eigenvalue problem on Eq. �38� with the boundary condi-
tions �39�. Since X0 is finite, its spectrum is discrete. We
shall look thus for a solution of the FP equation in the form

W�X;t� = �
n

anwn�X�e−Ent/N, �40�

where an are constants depending on initial conditions and
wn�X� and En are solutions of the following eigenvalue prob-
lem

Ĥwn�X� = Enwn�X� . �41�

Here, the operator Ĥ is defined as

Ĥ =
− 1

�D�X�T�X�
�

�X
	�D�X�T�X�

�

�X

 . �42�

The N dependence has been explicitly removed from the
eigenvalues. The only remaining dependence of En is on the

asymmetry �. The survival probability is given by Psurv�t�
=�0

X0dXW�X ; t�. At long time scales, the only contributing
eigenstate is the one with the smallest eigenvalue, E0, and
thus the survival probability decays with the characteristic
time scale 
l=N /E0���,

Psurv�t� � e−E0���t/N. �43�

This is what was observed in Fig. 4. From the fit of this
figure, the observed value from stochastic simulation is
E0�1�=2.05.

In order to compare it with our analytical approach we
discretize the interval �0,X0� and represent the linear opera-

tor Ĥ, Eq. �42�, as a matrix. We then diagonalize it numeri-
cally, using expressions for T and D from the Appendix. The
lowest eigenvalue, E0, converges quite rapidly with decreas-
ing discretization step of X; 100 rows is sufficient to calcu-
late E0 to within 1% of the convergent value. Figure 12
shows the convergence of E0 as the number of matrix rows is

increased. This procedure gives for the operator Ĥ a lowest
eigenvalue of E0�1�=1.95, which agree with the Monte Carlo
simulations within 5% accuracy. The discrepancy can be re-
duced even farther by taking into account the finite size ef-
fect. For finite values of N the assumptions used to reduce
the problem from two dimensions to one are no longer valid
when the population sizes approach unity. Since the effects
of stochastic noise become increasingly strong as the popu-
lations shrink, a system should rapidly go extinct when it
enters this regime. It is therefore not necessary to diffuse all
the way to G=�, but only to a value of G which corresponds
to about one remaining individual at a minimum of one of
the populations. At this point the fluctuations will drive the
system to extinction with probability close to one. Such a
cutoff Gext may be estimated, using Eq. �3�, as

Gext = ��−1�ln�N/�� − 1�; � � 1,

��ln�N�� − 1�; � 
 1.
� �44�

For our simulations with N=100 and �=1 this gives Gext
=3.62. Integrating Eq. �37� only up to Gext gives X0=2.08
�instead of X0=2.39 for the infinite interval�. Using this trun-

cated X0 as the cutoff for the matrix diagonalization of Ĥ
gives E0�1�=2.06, within 0.5% of stochastic simulations.
Since Gext depends on the system size N only logarithmi-
cally, it is computationally unfeasible to eliminate the finite
size effect in stochastic modeling.
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FIG. 10. X�G� for �=1. At G→� the function converges to
X0=2.39
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FIG. 11. Numerically calculated �T�X�D�X� for �=1. The func-
tion diverges at X=X0=2.39
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We turn now to the � dependence away from �=1. Let us
discuss the ��1 case, i.e., N2�N1 prey dominated system
�the predator dominated scenario may be analyzed in the
same way�. In this case it is almost certain that predators go
extinct first. This is because the diffusive current toward
predator extinction, Eq. �A7�, is exponentially bigger than
that toward prey extinction. Neglecting the latter, one ob-
serves from Eq. �A7� that D=D��G��e�G. This implies that
the integration interval contributing to X0, Eq. �37�, is effec-
tively limited to 0
G�1 /�
1. In this interval the period
T�G��const. Rescaling variables in Eq. �37� as �G→G, one
finds that X0����1 /� for ��1, Fig. 13. Correspondingly,
D�X�=D��X� and after rescaling �X→X in Eq. �42� one ob-
serves that En�����2. Finally, one finds for the characteristic
extinction time of an asymmetric model


l =
N

E0���
= 1.03N�max��,1/���−2. �45�

where the numerical factor is obtained through numerical

diagonalization of the Ĥ operator. Figure 14 plots the ob-
served values from Monte Carlo simulation fit with our ana-
lytic prediction. Since the approach relies on the separation
of time scales between the fast angular motion and the slow
radial one, it requires 
l�1. This leads to the restriction on
the asymmetry parameter: N−1/2
�
N1/2, stated in Sec. II.
Outside of this interval it takes about a period of one small
revolution for the system to go extinct.

E. Short time dependence of the extinction probability

In the short time limit, the semi-classical analysis pre-
sented in Sec. III should be accurate. Indeed, extinction in

time t�
s is an exponentially rare event which has probabil-
ity that is convenient to represent as W=e−NS. Here, the ac-
tion S�G ; t� is a solution of the Hamilton-Jacobi Eq. �35�
with the initial condition S�0;0�=0 and G→� at time t.
After the canonical transformation �G , PG�→ �X , PX�, the
Hamiltonian acquires the form H�X , PX�= PX

2 and the classi-

cal equation of motion is Ẋ=2PX. We need its solution reach-
ing X=X0 at time t. The corresponding action is

S�X0;t� =
X0

2

4t
, �46�

resulting in the following form for the short time scale be-
havior of the extinction probability

Pext � e−NX0
2/�4t�. �47�

This is exactly what was observed in stochastic simulations.
The fit from Fig. 8 gives X0=2.09 for �=1, while evaluating
X0 from Eq. �37� results in X0=2.39. Again, the majority of
the difference between these two values can be eliminated by
using the value X0 that is corrected for the finiteness of N, cf.
Equation �44�. This was calculated in the previous section to
be X0=2.08, in much better agreement with the simulations.
The � dependence of the short time scale 
s=NX0

2��� /4 fol-
lows from the dependence X0��� discussed in the previous
section. Thus, one finds that away from the symmetric point
�=1


s = 2.2N�max��,1/���−2. �48�

where the numerical constant is obtained through numerical
integration of Eq. �37�.

One may argue that at the very smallest time scales the
reduction of the initial Master Eq. �10� to the FP Eq. �13�
may not be justified. As a result at such small times either
Eq. �47�, or Eq. �48� may be violated. Although this is a
potentially valid concern, we were not able to go to suffi-
ciently short times �or sufficiently large N� to detect any
sizable deviations of Monte Carlo results from analytical
predictions, Eqs. �47� and �48�.

V. DISCUSSION

We have investigated extinction due to intrinsic stochas-
ticity in the Lotka-Volterra model �1�. To this end, we have
introduced two characteristic times: �i� the universal scale 
l,
which characterizes exponential decay of survival probabil-
ity at long times; �ii� the nonuniversal scale 
s specific to the
choice of initial condition close to the coexistence fixed
point, which characterizes rise of the extinction probability at
short times. Since both these scales depend on the system
parameters in exactly the same way and differ from each
other only by a factor close to two, 
s�2.2
l, we shall re-
strict ourselves to discussions of the time 
l, which is inde-
pendent of the choice of the initial conditions. All our results
are valid in the asymptotic limit of large system size N1,2
	1.

We consider first the asymmetric case. Recalling the defi-
nition of the parameters, Eq. �4�, and employing Eq. �45� one
finds
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full line—operator Ĥ diagonalization.
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l =
Ns

3/2

Nd
1/2 , �49�

where the size of the dominant population is Nd
=max�N1 ,N2�, the size of the subdominant one is Ns
=min�N1 ,N2�, and time is measured in the natural units,
which is the inverse frequency of the small cycles 1 /���.
This is a remarkable scaling relation, which predicts e.g., that
the extinction time is shortened with increasing size of the
dominant population. Counterintuitively, increasing abun-
dance of dominant “rabbits” accelerates the extinction of
subdominant “foxes.” To check this prediction, we per-
formed stochastic modeling of two prey-dominated models,
which according to the scaling of Eq. �49� ought to go ex-
tinct in the same relative time. The results are presented in
Fig. 15. Since our method involved assumption that the an-
gular motion is faster than the radial one, Eq. �49� may be
trusted as long as 
l�1, i.e., Nd�Ns�Nd

1/3. Outside of this
interval of the parameters the extinction time is about one �in
relative units�.

Returning to the absolute scale of time and recalling that
N1=� /�, while N2=� /�, one may rewrite the extinction
time, Eq. �49�, as


l = ��/����; � � � ,

�/����; � � � .
� . �50�

The first line here is the prey-dominated case, while the sec-
ond line the predator-dominated one. Again somewhat coun-
terintuitively, increasing “rabbit” birth-rate accelerates their
extinction in the fox-dominated word.

In the symmetric case Nd=Ns=N	1, we find


l = 0.51N →
0.51

�
, �51�

where the first result is in the relative time scale and the
second in the absolute one. The linear scaling of the nearly
symmetric model with the system size is in agreement with
the results of Ref. �7�, obtained for a closely related cyclic
model. The factor close to a half in comparison with the
asymmetric case, Eq. �49�, admits a simple interpretation. In
the asymmetric case the diffusive current toward the extinc-
tion of the dominant population is exponentially smaller than
that toward the extinction of subdominant species and may
be neglected. In the symmetric case the two currents are

exactly the same, making the extinction time twice shorter.
How close to the symmetric point does the system have to be
for Eq. �51� to hold? Using Eq. �A7� and taking characteris-
tic value of G from Eq. �44�, one may estimate the corre-
sponding interval of parameters as ��−1��1 / ln N, i.e., Nd
−Ns�Nd / ln Nd. This means that in the limit of large popu-
lations the symmetry condition is rather restrictive and a ge-
neric system most likely obeys the asymmetric scaling.

The natural extension of our study is inclusion of spatial
degrees of freedom. The spatial extension of the system is
capable of stabilizing the system and increasing the extinc-
tion time �19�. Even in a two-site system, extinction time can
be substantially longer than in the zero-dimensional case pre-
sented here �20�. Understanding of such a stabilization
mechanism is crucial for an accurate description of the phase
transition between the absorbing extinct phase and active
coexistence phase, exhibited by the model on a thermody-
namically large d-dimensional lattice �21�.
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APPENDIX: EVALUATION OF D(G) AND T(G)

In the limit G�min�� ,1 /��, an orbit of constant G is an
ellipse. Both parameters, D�G� and T�G�, may be found ex-
actly in this case

D�G� = 2�G�� + 1/��; T�G� = 2� . �A1�

Equation �32� takes the form

�tW =
� + 1/�

N

�

�G
	G

�W

�G

 . �A2�

Changing variables as G=R2 near the mean-field fixed point
gives the radial part of the two-dimensional diffusion equa-
tion with diffusion constant of ��+1 /�� /4N

�tW =
� + 1/�

4N

1

R

�

�R
�R

�W

�R
� . �A3�

The large G limit can also be estimated. The diffusive current
J�D · n̂ has two maxima corresponding to the minima in one of
the two species populations. These maxima are located at
Q2=0, Q1�−G−1 /� and Q1=0, Q2�−G−�. Expanding
near these two points the currents �23� and �24� and evaluat-
ing the integral in Eq. �31� one finds

D�G� =��

2
	e + �1 +

1

�2�1/2+�2
e�G

+��

2
�e + �1 + �2�1/2+1/�2

�eG/�. �A4�

The majority of the orbital period is spent in the third quad-

rant. In this quadrant, Q̇1�−1 and Q1 varies from �−G to 0.
This gives for the orbital period
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l�4.0, while
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T�G� = G . �A5�

For the purposes of numerical diagonalization of the Ĥ op-
erator we use the following interpolating function accurate in
both the large and small G limits

T�G� = 2� + G . �A6�

D�G� = 2�G�� + 1/�� +��

2
	e + �1 +

1

�2�1/2+�2
�e�G − �G

− 1� +��

2
�e + �1 + �2�1/2+1/�2

��eG/� − G/� − 1� .

�A7�

Figure 16 shows the numerically calculated values for D�G�
fit with this interpolated D�G�. Figure 17 shows the same for
T�G�.

�1� M. S. Bartlett, Stochastic Population Models in Ecology and
Epidemiology �Wiley, New York, 1961�.

�2� H. Andersson and T. Britton, Stochastic Epidemic Models and
Their Statistical Analysis �Springer, New York, 2002�.

�3� O. Diekmann and J. A. P. Heesterbeek, Mathematical Epide-
miology of Infectious Diseases: Model Building, Analysis, and
Interpretation �Wiley, Chichester, 2000�.

�4� D. J. Daley and J. Gani, Epidemic Modelling: An Introduction
�Cambridge University Press, Cambridge, 2001�.

�5� A. J. Lotka, Proc. Natl. Acad. Sci. U.S.A. 6, 410 �1920�.
�6� V. Volterra, Leçons sur la théorie mathématique de la lutte

pour la vie �Gauthier-Villars, Paris, 1931�.
�7� T. Reichenbach, M. Mobilia, and E. Frey, Phys. Rev. E 74,

051907 �2006�.
�8� M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J. Chem.

Phys. 100, 5735 �1994�.
�9� V. Elgart and A. Kamenev, Phys. Rev. E 70, 041106 �2004�.

�10� D. Gillespie, J. Phys. Chem. 81, 2340 �1977�.

�11� A. Kamenev and B. Meerson, Phys. Rev. E 77, 061107 �2008�.
�12� M. I. Dykman, I. B. Schwartz, and A. S. Landsman, Phys. Rev.

Lett. 101, 078101 �2008�.
�13� B. Gaveau, M. Moreau, and J. Toth, Lett. Math. Phys. 37, 285

�1996�.
�14� C. R. Doering, K. V. Sargsyan, and L. M. Sander, Multiscale

Model. Simul. 3, 283 �2005�.
�15� M. Assaf and B. Meerson, Phys. Rev. Lett. 97, 200602 �2006�.
�16� M. Assaf and B. Meerson, Phys. Rev. E 75, 031122 �2007�.
�17� N. G. van Kampen, Stochastic Processes in Physics and

Chemistry �North-Holland, Amsterdam, 2001�.
�18� D. M. Apalkov and P. B. Visscher, Phys. Rev. B 72,

180405�R� �2005�.
�19� R. Durrett, SIAM Rev. 41, 677 �1999�.
�20� R. Abta, M. Schiffer, and N. M. Shnerb, Phys. Rev. Lett. 98,

098104 �2007�.
�21� M. Mobilia, I. T. Georgiev, and U. Täuber, J. Stat. Phys. 128,

447 �2007�.

0.5 1 1.5 2 2.5 3
G

50

100

150

200

250

D

FIG. 16. Numerically calculated D�G� for �=1 fit with analyti-
cally predicted D�G�.

0.5 1 1.5 2 2.5 3
G

2

4

6

8

10
T

FIG. 17. Numerically calculated T�G� for �=1 fit with analyti-
cally predicted T�G�.

MATTHEW PARKER AND ALEX KAMENEV PHYSICAL REVIEW E 80, 021129 �2009�

021129-10


