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Galton boards are models of deterministic diffusion in a uniform external field, akin to driven periodic
Lorentz gases, here considered in the absence of dissipation mechanism. Assuming a cylindrical geometry with
axis along the direction of the external field, the two-dimensional board becomes a model for one-dimensional
mass transport along the direction of the external field. This is a purely diffusive process which admits fractal
nonequilibrium stationary states under flux boundary conditions. Analytical results are obtained for the statis-
tics of multibaker maps modeling such a nonuniform diffusion process. A correspondence is established
between the local phase-space statistics and their macroscopic counterparts. The fractality of the invariant state
is shown to be responsible for the positiveness of the entropy production rate.
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I. INTRODUCTION

Studying the statistical properties of simple mechanical
models with strongly chaotic dynamics helps understanding
the connection between deterministic motion at the micro-
scopic scale and transport processes which occur at the mac-
roscopic scales. This is of particular importance with regards
to the irreversibility of thermodynamics and specifically the
dynamical origins of the positiveness of entropy production
�1�.

Such a mechanical device was originally introduced by
Galton �2� in the form of an apparatus which provides a
mechanical illustration of the Gaussian spreading of indepen-
dent random events. The Galton board, also known as quin-
cunx or bean machine �3�, consists of an upright board with
a periodic array of pegs upon which a charge of small shots
is released. The particles are let to collide on the way down-
ward, thus displaying a seemingly erratic motion through the
successive rows of pegs, until they reach the bottom of the
board, where they are stopped.

Provided the actual dynamics are sufficiently chaotic and
dissipative, one can idealize individual paths as Bernoulli
trials, whereby every collision event results into the pellets
hopping down to the right or left of the pegs with equal
probabilities. The number of steps in the trials is then speci-
fied by the number of the rows of pegs in the board. Under
such conditions, the heaps of shots that form at the bottom of
the board are expected to be distributed according to a bino-
mial distribution and thus approximate a normal distribution.

Though Galton’s board was intended precisely as a me-
chanical illustration of this idealized model, the dynamics of
the board are necessarily more intricate, in particular, with
regards to inelasticity of the collisions between pegs and pel-
lets and the friction exerted by the board’s surface on the
pellets. However if the collisions between the pellets and
pegs were perfectly elastic and the board frictionless, the
energy of every individual pellet would be conserved along
its path. As a consequence, the kinetic energy would increase
linearly with the distance separating the pellet position from

the top of the board, where one can assume it was released
with a specified velocity, which, for the sake of specializing
the motion to a fixed energy shell, we assume to be equal in
magnitude for all pellets. Such a conservative Galton board
is also referred to as idealized.

The remarkable property of conservative Galton boards is
that a pellet’s motion is recurrent, which is contrary to what
had until recently seemed to be a widespread consensus. In
other words, however far a pellet goes in the direction of the
external field and consequently however large its kinetic en-
ergy becomes, it will come back to the top of the board with
probability one. This property was proved by Chernov and
Dolgopyat �4,5�, who also showed, in accordance to previous
heuristic arguments and numerical studies �6,7�, that the
presence of the external field affects the scaling law of posi-
tions and velocities so that a pellet’s speed scales according
to v�t�� t1/3 and its coordinate x�t�� t2/3. As described in �6�,
the heuristic argument posits that the parabolic motion of
tracer particles in the external field induces an anisotropy
between the scattering events, which can be described in
terms of an effective bias that is inversely proportional to v2.
The logical consequence is that the speed grows in time as
t1/3. Chernov and Dolgopyat further found exact limit distri-
butions for the rescaled velocity t−1/3v�t� and position
t−2/3x�t�.

Galton boards and related models have attracted much
attention in the statistical physics community. In particular,
Lorentz gases, which describe the motion of independent
classical point particles in an array of fixed scattering disks,
have been the subject of intensive investigations as models
of diffusive transport of light tracer particles among heavier
ones �8–12�. Lorentz gases have enjoyed a privileged status
in the development of nonequilibrium statistical mechanics,
which stems from the simplicity of its dynamics. By neglect-
ing the recoil of heavy particles upon collision with the light
tracer particles, one obtains a low-dimensional model that is
amenable to a proper thermodynamical treatment while it
retains important characteristics of genuine many-particle
systems. This model has been studied with mathematical
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rigor and, in particular, the existence of a well-defined diffu-
sion coefficient has been proved rigorously under certain
conditions �13�. Furthermore, in the last decades and in the
context of molecular dynamics simulations of nonequilib-
rium systems �14,15�, several versions of the Lorentz gas
model have been considered, including the Gaussian thermo-
stated Lorentz gas in the presence of a uniform external field
�16�, for which the Einstein relation between the coefficients
of electrical conductivity and diffusion has been proved �17�.

The reason for the initial success of the Lorentz gas was
its use by Lorentz �8�, elaborating on Drude’s theory of elec-
trical and thermal conduction �18,19�, for the sake of deriv-
ing the Wiedemann-Franz law, which predicts the tempera-
ture dependence of the ratio between heat and electrical
conductivities in metals. In this framework, the computation
of the electrical conductivity assumes that the external field
is weak enough that the tracer particle velocity magnitude is
constant. Thus the diffusion coefficient is homogeneous and
essentially given by the product of the particle’s mean free
path and �thermal� velocity.

In a conservative diffusive system acted upon by an ex-
ternal field, the situation is different in that the external field
causes the acceleration of particles and induces a velocity-
dependent diffusion coefficient. Nevertheless such a system
bears strong analogies with the field-free diffusive case.

It is our purpose to investigate this analogy by comparing
the statistical properties of Galton boards to that of periodic
Lorentz gases. The latter were studied in a first paper �20�,
where we discussed the fractality of the nonequilibrium sta-
tionary states of open Lorentz gases under flux boundary
conditions, i.e., a slab of finite extension with its two bound-
aries in contact with particle reservoirs with differing injec-
tion rates. Under such boundary conditions, the Lorentz gas
sustains a steady current of mass which induces a constant
rate of entropy production.

In �20�, we established the connection between this pro-
duction of entropy and the fractality of the stationary states
of open Lorentz gases. In this follow-up paper, we extend
these results to Galton boards and related models. In particu-
lar, we develop a discrete random-walk model that mimics
the collision dynamics of Galton boards and associate to it a
multibaker map with energy, similar to models introduced in
�21,22�. The specificity of our model is that the transition
rates vary with the sites’ indices, reflecting the property of
the conservative Galton board that deflection of tracers by
the external field is more likely to occur when their kinetic
energies are small in comparison to their potential energies.
We derive the analytic expression of the nonequilibrium sta-
tionary states of this multibaker map and show that its cu-
mulative measures are characterized by nowhere differen-
tiable continuous functions similar to the Takagi function of
the nonequilibrium stationary state of the usual multibaker
map �23�. This allows us to compute the entropy associated
to such nonequilibrium stationary states and thus obtain an
analytic derivation of the rate of entropy production, which,
within our formalism, finds its origin in the fractality of the
nonequilibrium stationary state, in agreement with the results
presented in �20� for the field-free case.

The paper is organized as follows. Galton boards are pre-
sented in Sec. II. The connection to the phenomenology of

diffusion in an external field, described in Sec. II A, is estab-
lished for both closed and open systems, whose statistical
properties are considered in Sec. II B. These properties are
then studied numerically, first under equilibrium setting in
Sec. II C, and then under nonequilibrium setting in Sec. II D,
where we demonstrate the fractality of the invariant measure.
In Sec. III, we introduce the forced multibaker map, which
mimics the collision dynamics of the Galton board and ana-
lyze its statistics in Sec. III A. The entropy production rate of
the nonequilibrium stationary state is computed in Sec. III B.
We end with conclusions in Sec. IV. In Appendix A we dis-
cuss the occurrence of elliptic islands in the Galton board’s
dynamics, i.e., the stabilization of periodic orbits, and pro-
vide conditions under which we can assume the system to be
fully hyperbolic. Appendixes B and C provide detailed deri-
vations of the nonequilibrium stationary state of the forced
multibaker map and coarse-grained entropies.

II. GALTON BOARD

The Galton board is similar to a periodic Lorentz gas in a
uniform field. We consider a two-dimensional cylinder of
length L=Nl and height �3l, with disks Dn, 0�n�2N, of
radii �, �3 /4�� / l�1 /2, placed on a hexagonal lattice
structure. The centers of the disks take positions

�xn,yn� = ��nl/2,0� , n odd

�nl/2, � �3l/2� , n even,
� �1�

where we identify the disks y= ��3l /2.
Notice here that, contrary to the convention used in Ref.

�20�, n takes only positive values. As will be made clear in
the sequel, this choice reflects the impossibility for trajecto-
ries to travel beyond the barrier defined by the zero kinetic-
energy line, perpendicular to the axis of the cylinder.

Following conventions similar to �20�, the cylindrical re-
gion around disk Dn is defined as

In = 	�x,y�
�n − 1/2�l/2 � x � �n + 1/2�l/2� . �2�

Thus the interior of the cylinder, where particles propagate
freely is made up of the union �n=−N

N In \Dn.
The associated phase space, defined on a constant energy

shell, is C=�n=−N
N Cn, where Cn=S1 � �In \Dn� and the unit

circle S1 represents all possible velocity directions. Particles
are reflected with elastic collision rules on the border �C,
except at the external borders, corresponding to x=0,L,
where they get absorbed. Points in phase space are denoted
by �= �x ,y ,vx ,vy� and trajectories by �t�, where �t is the
flow associated to the dynamics of the Galton board.

The collision map, which operates on �C, is the natural
reduction of the flow �t to a discretized-time process. Given
that the energy E is fixed, the collision map operates on a
two-dimensional surface, which, when the collision takes
place on disk n, is conveniently parametrized by the Birkhoff
coordinates ��n ,	n�, where �n specifies a generalized angle
variable along the border of disk n, to be determined in Sec.
II C, and 	n is the sinus of the angle that the particle velocity
makes with respect to the outgoing normal to the disk after
the collision.
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The external field is uniform and directed along the posi-
tive x direction so that particles accelerate as they move
along the axis of the channel, in the direction of the external
field. There is no dissipative mechanism and energy is con-
served along the Galton board trajectories.

In this system, as opposed to typical billiards, the energy,
denoted E, can be both kinetic and potential. As the particle
moves along the direction of the channel axis, it loses poten-
tial energy and gains kinetic energy, according to the energy
conservation E= �vx

2+vy
2� /2−
x, where 
 denotes the ampli-

tude of the external field. Conversely, the particle loses ki-
netic energy and gains potential energy as it moves in the
direction opposite to the external field.

Assuming E�0, the boundaries of the system are placed
at x=0 and x=L, reflecting the impossibility for a trajectory
to gain potential energy beyond the zero kinetic-energy level.
When E=0, trajectories turn around at x�0 when the x com-
ponent of the velocity annihilates, whereas when E�0, de-
pending on the choice of boundary conditions, particles can
be either reflected or absorbed when they reach x=0.

The trajectory between two successive elastic collisions
with the disks is now parabolic, according to x�t�=x�0�
+vx�0�t+
t2 /2, whereas the vertical motion is uniform y�t�
=y�0�+vy�0�t. The amplitude of the external field 
 can be
set to unity by an appropriate rescaling of the momenta and
time variable: v→v /�
 and t→ t�
. Correspondingly, the
energy has the units of length.

We can thus write the velocity amplitude as a function of
the x coordinate,

v�x� = �2�E + x� . �3�

In particular, the velocity amplitude at x=0 is v�0�=�2E. We
will assume that the energy takes half-integer values of the
cell widths l so that the kinetic energy takes half-integer
values at the horizontal positions of the disks along the chan-
nel, i.e., at xs which are half-integer multiples of l.

The system is shown in Fig. 1 with absorbing boundary
conditions at x=0 and L. Note that trajectories are seen to
bend along the field only so long as the velocity is small
enough that the action of the field is noticeable. Otherwise
the trajectory looks much like that of the Lorentz channel in
the absence of external field. The time scales are however
different.

A. Phenomenology

One often reads in the literature that the Galton boards or
equivalently the periodic Lorentz gases in a uniform external
field do not have a stationary state. This is however a con-
fusing statement since the existence of the stationary state
has nothing to do with the presence of the external field.
Rather, it is a matter of boundary conditions.

Just as with the usual Lorentz gas, when an external forc-
ing is turned on, a stationary state is reached so long as one
specifies the boundary conditions. The reason for much of
the confusion associated to this problem is, according to our
understanding, that one cannot consider periodic boundary
conditions along the direction of the field since they would
violate the conservation of energy. One can however con-
sider both reflecting and absorbing boundary conditions for
the extended system. The nature of the stationary state,
whether equilibrium or nonequilibrium, depends on the
choice of boundary conditions.

A phenomenological diffusion equation can be obtained
for the motion along the axis of the cylindrical channel,
which corresponds to the direction of the external field.

In the presence of an external field, the diffusion process
is a priori biased so that the Fokker-Planck equation of dif-
fusion reads

�tP�X,t� = �X�D�X��XP�X,t� + M�X�P�X,t�� . �4�

Here X denotes a macroscopic position, associated to the
projection along the axis direction of a given phase-space
region In of the Galton board, taken in the continuum limit.

According to Einstein’s argument, the diffusion coeffi-
cient D�X� is connected to the mobility coefficient M�X� by
the condition that Eq. �4� admits the equilibrium state Peq�X�
as a solution which annihilates the mean current:

D�X��XPeq�X� + M�X�Peq�X� = 0. �5�

At the microscopic level, letting � denote a phase point in 2d
dimensions with velocity amplitude v and position x with
respect to the direction of the external field, the equilibrium
state is the microcanonical state, i.e.,


eq��� � ��E −
v2

2
+ x
 . �6�

Integrating this equilibrium phase-space density over cells Cn
and taking the continuum limit l→0 and n→� with the

0 l ... ... L� l L
� 3 l

2

0

3 l

2

� 3 l

2

0

3 l

2

FIG. 1. Cylindrical Galton board with a nonvanishing external field and the energy E=0. A trajectory is released at zero velocity at x
=0 and falls along the external field until it collides a first time with a disk. It then wanders around, coming back close to x=0 once, after
which it moves further along the channel until it reaches the border at x=L. To compute the successive collision events, the numerical
integration scheme uses an exact quartic equation solver based on the Galois formula �24�.
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macroscopic position variable X=nl /2 fixed, we obtain the
macroscopic equilibrium density Peq�X�,

Peq�X�dX = lim

n → �
l→0

�
Cn

d�
eq��� ,

� lim

n → �
l→0

�
Cn

d���E −
v2

2
+ x
 ,

� lim
l→0

l� dvvd−1��E −
v2

2
+ X
 . �7�

Identifying the length increments dX= l, and carrying out the
velocity integration, we arrive to the expression of the equi-
librium density

Peq�X� = N�2�E + X���d−2�/2, �8�

where N is a normalization factor. Inserting this expression
into Eq. �5�, we obtain the relation between the mobility and
diffusion coefficients,

M�X� = −
d − 2

2

D�X�
E + X

. �9�

The diffusion coefficient, on the other hand, is proportional
to the magnitude of the position-dependent velocity, V�X�
=�2�E+X�. This is a transposition of the corresponding re-
sult for the usual field-free periodic Lorentz gas, where the
tracer’s velocity has constant magnitude. In the Galton
board, given an energy E identical for all the tracer particles,
the velocities V�0�=�2E at X=0 are identical for all par-
ticles, growing with X�0, due to the uniform force of unit
amplitude acting along that direction. We can therefore write

D�X� = D0�1 +
X

E
. �10�

Notice the normalization so chosen that the diffusion coeffi-
cient at X=0 reduces to D0. Equation �10� can be thought of
as a transposition of the argument by Machta and Zwanzig
�25� who provided an analytical expression of the diffusion
coefficient for the periodic Lorentz gas based upon a
random-walk approximation. This approximation indeed car-
ries over to the Galton board. Provided energy is conserved,
the velocity of a tracer particle increases as it moves along
the direction of the external field. Thus, provided the peri-
odic cells have sizes small enough that velocities remain ap-
proximately constant within each cell, the Machta-Zwanzig
argument tells us that the diffusion coefficient is simply mul-
tiplied by a factor which accounts for the position-dependent
velocity, hence expression �10�.

Plugging Eq. �10� into Eq. �9�, we obtain the expression
of the mobility

M�X� = −
d − 2

2

D0

E�1 +
X

E

. �11�

Remarkably, the mobility coefficient vanishes for a two-
dimensional billiard. In this case, the Fokker-Planck Eq. �4�
therefore simplifies to

�tP�X,t� = �X�D�X��XP�X,t�� . �12�

An equivalent equation was derived by Chernov and Dol-
gopyat in �4�. This is a diffusive equation without a drift and
describes the recurrent motion of the two-dimensional Gal-
ton board trajectory at the macroscopic scale. In contrast, we
notice that the Fokker-Planck Eq. �4� associated to a three-
dimensional version of the conservative Galton board has a
nonvanishing mobility coefficient �Eq. �11�� and therefore
retains a drift term.

In the sequel we will assume E�0 so as to avoid the
singularities that come with zero velocity trajectories.

We notice, on the one hand, that reflection at the bound-
aries �RBC� induces an equilibrium state of Eq. �12� with
constant density,

P�X� = 1, �RBC� . �13�

Flux boundary conditions �FBC�, on the other hand, viz.

P�0� � P−

P�L� � P+,
�14�

admit the stationary state

P�X� = P− + �P+ − P−�
�E + X − �E
�E + L − �E

. �15�

Given rates P−�P+, the current associated to the non-
equilibrium stationary state is constant and, according to
Fick’s law, equal to

J = − D�X��XP�X� ,

=−
D0

2E

P+ − P−

�1 + L/E − 1
. �16�

The corresponding local rate of entropy production is given
according to the usual formula by the product of the mass
current �Eq. �16�� and the associated thermodynamic force
�26�,

diS�X�
dt

= D�X�
��XP�X��2

P�X�
. �17�

B. Discretized process

The deterministic models we consider are to be analyzed
in terms of return maps, which involves a discretization of
both time and length scales. We consider this problem in
some detail as it will be useful for the sake of defining a
discrete process associated to the Galton board.

Let the discretized time and length scales be determined
according to t=k� and X=nl. Collision rates are proportional
to the velocity, which brings in a factor �1+nl /E after we
time discretize Eq. �12�,
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1

�
�1 +

nl

E
�P�nl,k� + �� − P�nl,k���

=
1

l2 	D�nl + l/2�P�nl + l,k�� + D�nl − l/2�P�nl − l,k��

− �D�nl + l/2� + D�nl − l/2��P�nl,k��� . �18�

We let

�n�k� ��1 +
nl

E
P�nl,k�� �19�

be the collision frequency on the Poincaré surface at position
X=nl and introduce a diffusion coefficient associated to the
discrete process,

D�n� �
�

l2D�nl� . �20�

It is convenient to set E��2n0+1�l /2 for some positive in-
teger n0.

Equation �18� thus transposes to the evolution

�n�k + 1� =�1 −
D�n + 1/2�

�1 +
2n

2n0+1

−
D�n − 1/2�

�1 +
2n

2n0+1

��n�k�

+
D�n + 1/2�

�1 +
2�n+1�

2n0+1

�n+1�k� +
D�n − 1/2�

�1 +
2�n−1�

2n0+1

�n−1�k� .

�21�

Written under the form

�n�k + 1� = sn−1
+ �n−1�k� + sn

0�n�k� + sn+1
− �n+1�k� , �22�

Eq. �21� is seen to be the Frobenius-Perron equation of the
Markov process

n → �n − 1, sn
−

n , with probability sn
0

n + 1, sn
+.
� �23�

As opposed to a symmetric random walk, the probabilities
sn

−, sn
0, and sn

+ are asymmetric and depend on the site index,

sn
− =

D�n − 1/2�

�1 +
2n

2n0+1

,

sn
+ =

D�n + 1/2�
�1 + 2n

2n0+1

,

sn
0 = 1 − sn

− − sn
+. �24�

In these expressions, n is assumed to be a positive integer,
0�n�N. From Eq. �10�, the diffusion coefficient may be

written D�n�=D0�1+ 2n
2n0+1 , where D0=� / l2D0, from which

it follows that

sn
� = D0�1 �

1

2�n0 + n� + 1
. �25�

It is straightforward to check that the stationary state of
Eq. �22� is independent of D0 and can be written under the
form

�n � lim
k→�

�n�k� =�2�n0 + n� + 1

2n0 + 1
Pn, �26�

where Pn is the discretized stationary state of the Fokker-
Planck Eq. �12�,

Pn��n0 + n + 1 + �n0 + n� = Pn+1
�n0 + n + 1 + Pn−1

�n0 + n .

�27�

We note that the latter equation implies that �n0+n
�Pn− Pn−1��� is constant. We can therefore write

Pn = Pn−1 +
�

�n0 + n

=P0 + ��
i=0

n

�n0 + i�−1/2

=P0 + ��Hn+n0

1/2 − Hn0

1/2� , �28�

where Hn+n0

1/2 denotes the Harmonic number, Hn
1/2=� j=1

n j−1/2

�27�. Letting n=N in Eq. �28�, Nl=L, and writing the bound-
ary conditions P0� P− and PN� P+, we obtain the expres-
sion of �, �= �P+− P−� / �HN+n0

1/2 −Hn0

1/2�. Therefore Pn can be
expressed as

Pn = P− + �P+ − P−�
Hn+n0

1/2 − Hn0

1/2

HN+n0

1/2 − Hn0

1/2 . �29�

The connection to the continuous case and, in particular,
to Eq. �15� is now straightforward. Indeed, the ratio of dif-
ferences of Harmonic functions become integrals when l
→0

Hn+n0

1/2 − Hn0

1/2

HN+n0

1/2 − Hn0

1/2
=

l

�E+l/2
+

l

�E+3l/2
+ . . . +

l

�E+l/2+nl

l

�E+l/2
+

l

�E+3l/2
+ . . . +

l

�E+l/2+Nl

→
�E

E+Xdx/�x

�E
E+Ldx/�x

=
�E + X − �E

�E + L − �E
, �30�

where the limit assumes l→0 with E constant and thus n0
�1. In this case we have Pn→P�X=nl�.

C. Equilibrium Galton board

We now turn to the stationary states of Galton boards
whether equilibrium or nonequilibrium. Prior to doing so,
however, we note that, contrary to the periodic Lorentz gas
which has strong hyperbolic properties, Galton boards can
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have elliptic periodic orbits. The occurrence of such orbits is
discussed in Appendix A. Such elliptic islands will not be of
concern to us as they can easily be suppressed by taking the
energy E to be large enough. We will therefore assume in the
sequel that the system is fully hyperbolic.

It is perhaps not widely appreciated that one can obtain an
equilibrium state consistent with the presence of the external
field. The reason for this is actually quite simple. Liouville’s
theorem implies the conservation of the volume measure,

d� = dxdydvxdvy

=vdEdtd�d	 , �31�

where � and 	 are defined to be the angle along the disk and
sinus of the outgoing velocity angle measured with respect to
the normal to the disk.

We remark that because of the factor v that multiplies the
volume measure in Eq. �31�, the pair �� ,	� are not canonical
variables. Indeed the position along the cylinder axis varies
with the angle coordinate � so that the velocity v depends on
�. The appropriate generalized angle variable conjugated to
	 can be determined accordingly �28�.

Introducing the index n, referring to the nth disk, whose
center has position x= �n−1�l /2 along the cylinder axis, the
velocity at angle � along disk n is

vn��� = �2�E + �n − 1�l/2 + � cos ��

=��n0 + n�l + 2� cos � . �32�

The canonical coordinate conjugated to 	 is therefore �n,
such that d�n=vn���d�,

�n��� = 2�
�0

�vn���d�

�0
2�vn���d�

=�
E� �

2 ,2 2�
�n+n0�l+2� �

E�2 2�
�n+n0�l+2� �

, �33�

where E denotes the elliptic integral of the second kind,
E�� ,x�=�0

�/2�1−x sin2 �d�, and E�x�=E�� /2,x� is the com-
plete elliptic integral. As seen in Fig. 2, the difference be-
tween �n and � decreases rapidly as nl increases. Note that �
is assumed to scale with l so that �n does not actually depend
on l.

Let us consider a closed Galton board of length L=Nl
�2N+1 disks�, with reflecting boundaries at x=0 and x=L.
This is an equilibrium system. More precisely the invariant
density associated to each disk is uniform, as verified in Fig.
3. The distinctive feature however is that the time scale
changes with the disk index n, ��n��1 /vn. Thus particles
move faster with increasing n, but correspondingly they
make more collisions so that their distribution is uniform in
time.

From the average count of collision events of disk n, we
obtain the collision frequency, which, when multiplied by the
local time scale �this amounts to dividing it by the velocity
vn evaluated at the center of cell n� yields the average density
Pn�P�Xn= �n−1�l /2�. This quantity, shown in Fig. 4, is in-
deed found to be almost constant, thus confirming our rea-
soning.

D. Nonequilibrium Galton board

A nonequilibrium stationary state of the Galton board can
be achieved much in the same way as with the open Lorentz
gas studied in �20� by assuming that a flux of trajectories is
continuously flowing through the boundaries which are let in
contact with stochastic particle reservoirs at x=0 and x=L,


��,t�
x=0,L = ��E + x −
vx

2 + vy
2

2


�. �34�

In analogy to the field-free case �29�, we denote by �E the
three-dimensional phase-space coordinates on the constant
energy surface, �E= �x ,y ,��, and write the invariant solution
of the Liouville equation compatible with boundary condi-
tions �34�, for almost every phase point �E, as

�3 �2 �1 0 1 2 3

�0.4

�0.2

0.0

0.2

0.4

Φ

Ψ
n�
Φ�
�
Φ

FIG. 2. �Color online� Difference between the generalized angle
coordinate �n��� and �, here computed for �=0.44l, n0=0, and n
=1, . . . ,20. Larger differences occur at smaller n, where the effect
of the external field is most noticeable.

n � 10

�Π � Π
2
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2

Π
�1

� 1
2
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Ξ n � 15

�Π � Π
2

0 Π
2

Π
�1

� 1
2
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Ξ n � 20

�Π � Π
2

0 Π
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Π
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2

0
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Ξ

(b)(a) (c)

FIG. 3. Invariant density associated to a closed Galton board of size L=10l, with reflection at the boundaries x=0 and x=10l and energy
E= l /2. This is an equilibrium system as reflected by the uniformity of the phase portraits.
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��E� = 
− +

+ − 
−

�2�E + L� − �2E

��v��E� − �2E + �
0

−T��E�

dtv̇��t�E�� . �35�

We note that there are a priori infinitely many possible al-
ternatives to this equation, compatible with boundary condi-
tions �34�. However form �35� is the only one whose regular
part yields a contribution consistent with the macroscopic
limit �Eq. �15��. As described below, the validity of this com-
parison is checked numerically. It is also important to notice
that the zero-field limit of Eq. �35� is the invariant density of
the periodic Lorentz gas, as described in �20�.

Thus 
��E� is written in terms of the change in velocity
amplitude, given by v��E�=�2�E+x��E�� at the correspond-
ing horizontal position x��E�, with components vx��E�
=v��E�cos � and vy��E�=v��E�sin �. The time-derivative
v̇��E�= ẋ��E� /v��E�, and provided the change in velocity be-
tween successive collisions is small, we can write
�0

�v̇��t�E�dt��x����E�−x��E�� /v��E�. Hence, denoting by
�k the time separating the �k−1�th and kth collisions and by
tk=� j=1

k �k the time elapsed after k collisions, we have


��E� � 
− +

+ − 
−

�2�E + L� − �2E
�v��E� − �2E

+ �
k=1

K��E� x��−tk�E� − x��−tk−1�E�

v��−tk�E�
� . �36�

This approximation becomes exact when the number of cells
in the system is let to infinity, in which case K��E�, the
number of collisions for the trajectory to reach the bound-
aries becomes infinite. Therefore the invariant state is


��E� = 
− +

+ − 
−

�2�E + L� − �2E
�v��E� − �2E

+ �
k=1

�
x��−tk�E� − x��−tk−1�E�

v��−tk�E� � �37�

so that the fluctuating part of the invariant density becomes

singular. This is analogous to the field-free case discussed in
�20�.

We compute this quantity numerically from the statistics
of the Birkhoff map of the Galton board, using a cylindrical
Galton board similar to that shown in Fig. 1, with external
forcing of unit magnitude in the direction of the cylinder
axis, letting the particles have energy E=1 /2. The particles
are thus injected at x=0 with unit velocity at random angles
and subsequently absorbed upon their first passage to either
x=0 or x=L.

The computation of the collision frequency at disk n, av-
eraged over the phase-space coordinates yields the quantity
�n �Eq. �26��, which, after dividing by the modulus of the
velocity at that site, is converted to Pn, the stationary solu-
tion of the Fokker-Planck Eq. �12�. Here, we have

P�Xn� =
1

l
�

Cn

d�
��� ,

=P− + �P+ − P−�
��E + Xn� − �E
��E + L� − �E

. �38�

The results of this computation are presented in Fig. 5 and
compared to Eqs. �15� and �29�. The agreement with both
discrete and continuous solutions is excellent.

The histograms displayed in Fig. 6 show the fluctuating
part of the invariant phase-space density computed in terms
of the Birkhoff coordinates ��n ,	� �Eq. �33��. The fractality
of these graphs is much like that of the graphs of the open
Lorentz gas, see �20�. The differences are indeed too tenuous
to tell. As with the closed Galton board though, the distinc-
tive feature is that the collision rates increase with the cell
index with the amplitude of the velocity.

To further analyze the fractality of the stationary state of
the nonequilibrium Galton board and its relation to the phe-
nomenological entropy production �Eq. �17��, we introduce
in the next section an analytically tractable model, which
generalizes the multibaker map associated to a field-free
symmetric diffusion process, so as to account for the accel-
eration of tracer particles under the action of the external
forcing.

�

�
� �
� � �
� � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � �
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0.990

0.995

1.000

1.005

1.010

Xn�
�n � 1� L

2 N

�
�X

n�

FIG. 4. �Color online� Equilibrium stationary density of the
closed Galton board obtained for a channel of length L=1, with
2N+1 disks, N=25. The solid line is the constant equilibrium den-
sity P�X�=1.

� �
�
�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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0.0

0.2
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0.6

0.8
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Xn�
�n � 1� L

2 N � 1

�
�X
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FIG. 5. �Color online� Nonequilibrium stationary density of the
Galton board obtained for a channel of length L=1, with 51 disks
�N=25�. Two solid lines are shown which are barely distinguish-
able, corresponding to Eq. �15� �red� and Eq. �29� �green� with E
= l /2 and thus n0=0.
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III. FORCED MULTIBAKER MAP

A time-reversible volume-preserving deterministic pro-
cess can be associated to Eq. �22� in the form of a multibaker

map with energy defined on the phase space �n , �0, ln�
� �0, ln��n�Z, where each unit cell has area ln

2�anl2, an
= ��1+ �2n� / �2n0+1��, and the dynamics is defined accord-
ing to

B:�n,x,y� ���
n − 1,

ln−1

ln

x

sn
− ,

ln−1

ln
sn−1

+ y
 , 0 � x � lnsn
−

�n,
x − sn

−ln

sn
0 ,sn

+ln + sn
0y
 , lnsn

− � x � ln�1 − sn
+�

�n + 1,
ln+1

ln

x − sn
−ln − sn

0ln

sn
+ ,

ln+1

ln
�sn+1

+ ln + sn+1
0 ln + sn+1

− y�
 , ln�1 − sn
+� � x � ln.

� �39�

This map has two important properties. First, the areas of the
unit cells are chosen to vary with the amplitude of the veloc-

ity, which ensures that the Jacobian of B,
an−1sn−1

+

ansn
− , or

an+1sn+1
−

ansn
+ is

unity. Second, B is time-reversal symmetric under the opera-
tor S : �n ,x ,y�→ �n , ln−y , ln−x�, i.e., S �B=B−1 �S, as is easily
checked �Fig. 7�.

Multibaker maps with energy have been considered ear-
lier �21,22�. Here, in contrast to these references, we intro-

duce n-dependent rates sn
� and sn

0 �Eq. �25��. We will assume
D0=1 /2 in the sequel so that, provided n0+n�1 /2, we can
write

sn
� =

1

2
�

1

4

1

2�n0 + n� + 1
−

1

16

1

�2�n0 + n� + 1�2 + ¯ .

�40�

Thus sn
0=1−sn

+−sn
− is approximated by
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(d) (f)(e)

FIG. 6. Nonequilibrium phase-space densities of the open Galton channel with a geometry similar to that shown in Fig. 1, with absorbing
boundaries at x=0 and x=1, and stochastic injection of particles at x=0 only. The plots are histograms of the phase space attached to a given
disk, computed over grids of 500�500 cells, and counting the average collision rates of many trajectories on that disk. Trajectories are
computed one after the other, from their injections, here at the left boundary only, to their subsequent absorption upon their first passage to
either of the left and right boundaries. The corresponding disk labels n=25, . . . ,50 are indicated in the respective figures. Disk 50 is the one
before last. Black areas correspond to absorption at the nearby boundary. The color white is associated to injection from the left boundary.
Thus hues of gray correspond to phase-space regions with mixtures of phase-space points which are mapped backward to the left and right
borders. The corresponding overall densities are shown in Fig. 5.
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sn
0 =

1

8

1

�2�n0 + n� + 1�2 + ¯ , �41�

which is vanishingly small. Therefore, when n+n0 is large,
the dynamics of B reduces to that of the usual multibaker
map, at the exception of the energy dependence which fixes
the local time scales.

A. Statistical ensembles

An initial density of points �= �n ,x ,y�, 
�� ,0�, evolves
under repeated iterations of B according to the action of the
Frobenius-Perron operator, which, since B preserves phase-
space volumes, is simply given by 
�� ,k+1�=
�B−1� ,k�.
In order to characterize the stationary density, 
���
=limk→� 
�� ,k�, we consider the cumulative function
�n�x ,y ,k�=�0

xdx��0
ydy�
�n ,x� ,y� ,k�. Notice that 
 here re-

fers to the statistics of the return map and therefore differs
from the density 
 associated to the Galton board �Eq. �37��
by a factor proportional to the local time scale.

As shown in Appendix B, the nonequilibrium steady state
of the map �Eq. �39�� associated to flux boundary conditions
can be written under the form, 0�x ,y�1,

�n�xln,yln� = xy�n + �xFn�y� , �42�

where Fn are generalized Takagi functions �see Eq. �B5��
�30�, which, away from the boundaries where we have
F0�y�=0 and FN+1�y�=0, are nowhere differentiable continu-
ous functions, and � is a prefactor independent of n,

� →
l

2�E

P+ − P−

�E + L − �E
, �43�

where the limit holds when l→0 in the continuum limit.
Notice that the prefactor is proportional to l. Thus � is a
small parameter in that limit.

B. Entropy and entropy production

We proceed along the lines of �31,32� to obtain expres-
sions of the entropies and entropy production rates associ-
ated to coarse grained sets such as defined in Eq. �B16�. As
described in �20�, the idea is that, owing to the singularity of
the invariant density, the entropy should be defined with re-
spect to a grid of phase space or partition, G= 	d� j�, into
small volume elements d� j, and a time-dependent state
�n�d� j , t�. The entropy associated to cell Cn, coarse grained
with respect to that grid, is defined according to

SG
t �Cn� = − �

j

�n�d� j,t��ln
�n�d� j,t�

d� j
− 1� . �44�

This entropy changes in a time interval � according to

��St�Cn� = SG
t �Cn� − SG

t−��Cn�

=S	d�j�
t �Cn� − S	��d�j�

t ���Cn� , �45�

where, in the second line, the collection of partition elements
	d� j� was mapped to 	��d� j�, which forms a partition ��G
whose elements are typically stretched along the unstable
foliations and folded along the stable foliations.

Following �33� and in a way analogous to the phenom-
enological approach to entropy production �34�, the rate of
entropy production at Cn measured with respect to the parti-
tion G is obtained from the entropy change �Eq. �45�� as

�i
�SG

t �Cn� = S	d�j�
t �Cn� − S	��d�j�

t �Cn� . �46�

This formula is equally valid in the nonequilibrium station-
ary state.

As described in Appendix C, the k-entropy decreases lin-
early with the resolution parameter k,

Sk�Cn� � − �n�ln �n − 1� −
�2

2�n
k . �47�

Substituting this expression into Eq. �46�, the k-entropy pro-
duction rate is here

�i
�Sk�Cn� =

1

�
�Sk�Cn� − Sk+1�Cn��

=
�2

2��n
. �48�

Using Eqs. �10�, �26�, and �43�, it is readily checked that this
expression yields the phenomenological entropy production

rate �Eq. �17�� �i
�Sk�Cn� →

�,l→0

diS�X=nl� /dt.

IV. CONCLUSIONS

In this paper, we have considered the influence of an ex-
ternal field on a class of time-reversible deterministic
volume-preserving models of diffusive systems known as
Galton boards or, equivalently, forced periodic two-
dimensional Lorentz gases.

Though the particles are accelerated as they move along
the direction of the external field, the motion is recurrent in

0 1 2 3 4 5

FIG. 7. �Color online� Forced multibaker map �Eq. �39��. The
cells have areas anl2, with coordinates �x ,y�, and labeled by a posi-
tive integer n �n0=0 here�. The map divides each cell into three
vertical rectangles. The left rectangle is mapped to the bottom hori-
zontal rectangle in the left neighboring cell. Likewise the right rect-
angle is mapped to the top horizontal rectangle in the right neigh-
boring cell. The middle vertical rectangle is mapped to the middle
horizontal rectangle in the same cell but are so tiny they are barely
visible already for n=1.
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the absence of a dissipative mechanism, which is to say that
tracer particles keep coming back to the region of near zero
velocity. In other words, particles do not drift in the direction
of the external field. Rather, forced periodic Lorentz gases
remain purely diffusive in two dimensions, albeit with a
velocity-dependent diffusion coefficient. Consequently, the
scaling laws relating time and displacement are different
from that of a homogeneously diffusive system. The macro-
scopic description through a Fokker-Planck equation is how-
ever unchanged since the mobility coefficient vanishes iden-
tically in dimension 2.

It will be interesting to investigate the behavior of three-
dimensional periodic Lorentz gases in a uniform external
field. As our analysis showed, the mobility does not vanish in
dimension three so that the Fokker-Planck equation retains a
drift term. Being inversely proportional to the tracers’ veloc-
ity amplitudes, this drift decreases with increasing kinetic
energy. A crossover is thus expected between biased and dif-
fusive motions.

As far as their statistical properties are concerned, Galton
boards are essentially identical to the field-free periodic two-
dimensional Lorentz gases. A closed system with reflecting
boundaries relaxes to an equilibrium state with a uniform
invariant measure. This is to say that tracers spend equal
amounts of time in all parts of the system. Open systems
with absorbing boundaries yield nonequilibrium states.
Given constant rates of tracer injection at the borders, the
system reaches a nonequilibrium stationary state which is
characterized by a fractal invariant measure.

The fractality of the invariant measure associated to the
nonequilibrium state of such a system was established ana-
lytically for a multibaker map describing the motion of ran-
dom walkers accelerated by a uniform external field. The
computation of the coarse-grained entropies associated to ar-
bitrarily refined partitions yields expressions which depart
from their local equilibrium expressions by a term which
decreases linearly with the logarithm of the number of
elements in the partition. This term is responsible for the
positiveness of the entropy production rate with a value con-
sistent with the phenomenological expression of thermody-
namics.
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APPENDIX A: ELLIPTIC ISLANDS

In this appendix, we discuss the possible lack of ergodic-
ity of the Galton board. This situation occurs when the sys-
tem admits periodic orbits whose kinetic energy remains

FIG. 8. �Color online� The external field induces a bifurcation
such that the simple periodic orbit bouncing off two neighboring
disks at normal angles is replaced by two such orbits. In this situ-
ation where E=0, which corresponds to a vanishing kinetic energy
on the left border, one of these two periodic orbits is stable �to the
left� and the other one unstable �to the right�. The stability of the
periodic orbit is quickly lost as E is increased.
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FIG. 9. Elliptic islands around the stable periodic orbit shown in Fig. 8: �a� disk on the upper left corner; �b� central disk. The phase-space
coordinates used here �not the appropriate Birkhoff coordinates� are �, the angle around the corresponding disk, and 	 the sinus of the
velocity angle measures with respect to the normal to the disk.
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small, in which case the external field is able to stabilize
them. Figure 8 shows such an example. In this case, elliptic
islands coexist with chaotic trajectories, as seen in Fig. 9.

We notice that a mixed phase space is typically expected
in Hamiltonian chaotic systems—as is the case, e.g., with the
sine-circle map. This is an undesirable feature for our own
sake. However the elliptic islands disappear if the energy
value E is large enough. We observe from our numerical
computations that E= l /2 is already large enough.

APPENDIX B: NONEQUILIBRIUM STATIONARY STATE
OF THE FORCED MULTIBAKER MAP

The identification of the nonequilibrium stationary state
of the force multibaker map �Eq. �39�� proceeds along the
lines of Refs. �23,32,35�. Under the assumption that the x
dependence of the initial density is trivial, we can write
�n�x ,y ,k�=x / ln�n�ln ,y ,k�. Letting 0�y�1, it is then easy
to verify that �n�ln ,yln ,k� obeys the functional equation

�n�ln,yln,k + 1� =�
sn+1

− �n+1�ln+1,
y

sn
+ ln+1,k
 , 0 � y � sn

+

sn+1
− �n+1�ln+1,ln+1,k� + sn

0�n�ln,
y − sn

+

sn
0 ln,k
 , sn

+ � y � 1 − sn
−

sn+1
− �n+1�ln+1,ln+1,k� + sn

0�n�ln,ln,k� + sn−1
+ �n−1�ln−1,

y − sn
+ − sn

0

sn
− ln−1,k
 , �1 − sn

−� � y � 1.
� �B1�

In particular, letting y= ln, we recover

�n�ln,ln,k + 1� = sn+1
− �n+1�ln+1,ln+1,k� + sn

0�n�ln,ln,k�

+ sn−1
+ �n−1�ln−1,ln−1,k� , �B2�

which is identical to Eq. �22� with �n�k���n�ln , ln ,k�. Let
�n denote the steady state of this equation, �n
=limk→� �n�ln , ln ,k�.

The steady state of Eq. �B1� can be written under the
form, 0�x ,y�1,

�n�xln,yln� � lim
k→�

�n�xln,yln,k�

=xy�n + 2x�sn+1
− �n+1 − sn

+�n�Fn�y�

�xy�n + �xFn�y� , �B3�

where we introduced the generalized Takagi functions Fn,
with a prefactor, �=2�sn+1

− �n+1−sn
+�n�, which, as in Eqs.

�27�–�29� is easily seen to be independent of n:

2�sn+1
− �n+1 − sn

+�n� =�2�n0 + n + 1�
2n0 + 1

�Pn+1 − Pn� ,

=� 2

2n0 + 1

P+ − P−

HN+n0

1/2 − Hn0

1/2 . �B4�

In the limit l→0, we recover Eq. �43�.
Substituting Eq. �B3� into Eq. �B1�, the generalized

Takagi function F is found to satisfy a functional equation of
the de Rham type �36�

Fn�y� =�
y

2sn
+ + sn+1

− Fn+1� y

sn
+
 , 0 � y � sn

+

1

2
+ sn

0Fn� y − sn
+

sn
0 
 , sn

+ � y � 1 − sn
−

1 − y

2sn
− + sn−1

+ Fn−1� y − sn
+ − sn

0

sn
− 
 , 1 − sn

− � y � 1.
�

�B5�

The boundary conditions are such that the density is uniform
at n=0,N+1, implying F0�y�=FN+1�y�=0. Notice that this
function reduces to the Takagi function in the limit n ,N
→�, n�N. Indeed s�

− ,s�
+ =1 /2, s�

0 =0. Therefore Eq. �B3� is
similar to the corresponding expression obtained for the
multibaker map, see �20�.

1. Generalized Takagi functions

For the sake of plotting Fn�y�, it is convenient to consider
the graph of Fn�y� vs y as parametrized by a real variable,
0�x�1, defined so that

yn�x� = �sn
+yn+1�3x� , 0 � x � 1/3

sn
+ + sn

0yn�3x − 1� , 1/3 � x � 2/3
sn

+ + sn
0 + sn

−yn−1�3x − 2� , 2/3 � x � 1
�

�B6�

and
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Fn�x� =�
yn�x�
2sn

+ + sn+1
− Fn+1�3x� , 0 � x � 1/3

1

2
+ sn

0Fn�3x − 1� , 1/3 � y � 2/3

1 − yn�x�
2sn

− + sn−1
+ Fn−1�3x − 2� , 2/3 � y � 1.

�
�B7�

The boundary conditions are taken so that yn�x�=y1�x�, n
�1, and yn�x�=yN�x�, n�N. As above, Fn�x�=0, n�1, or
n�N.

Starting from the end points y�n ,0�=0, y�n ,1�=1, and
Fn�0�=Fn�1�=0, 1�n�N, we successively compute yn�xk�
and Fn�xk�, 1�n�N at points xk=� j=1

k 3−j� j, where, for ev-
ery k�1, there are 3k different sequences 	�1 , . . . ,�k�, � j
� 	0,1 ,2�, 1� j�k.

The graphs of Fn�xk� vs yn�xk� are displayed in Fig. 10 for
a chain of N=100 sites and k=8 and compared to the corre-
sponding graphs of the incomplete Takagi functions �23�,
which can be obtained from Eq. �B7� by setting sn

+=sn
−

�1 /2 and sn
0=0,

y�x� =�
1

2
y�3x� , 0 � x � 1/3

1

2
, 1/3 � x � 2/3

1

2
+

1

2
y�3x − 2� , 2/3 � x � 1

� �B8�

and

Tn�x� =�
y�x� +

1

2
Tn+1�3x� , 0 � x � 1/3

1

2
, 1/3 � y � 2/3

1 − y�x� +
1

2
Tn−1�3x − 2� , 2/3 � y � 1.

�
�B9�

In passing, we note that, on the one hand, Eq. �B8� is a
functional equation whose solution is the Cantor function.
On the other hand, the triadic representation of the incom-
plete Takagi functions �Eq. �B9�� is many to one. Their
graphs, Tn�x� vs y�x�, are nevertheless identical to those ob-
tained using the usual representation of the incomplete
Takagi functions.

2. Symbolic dynamics

By substituting the triadic expansion of x in Eqs. �B6� and
�B7�, x�	�0 , . . . ,�k��=� j=0

k � j3
−�j+1�, � j � 	0,1 ,2�, we

obtain the following symbolic representations of points y in
cell n:

yn�	�0, . . . ,�k�� = �sn
+yn+1�	�1, . . . ,�k�� , �0 = 0

sn
+ + sn

0yn�	�1, . . . ,�k�� , �0 = 1

sn
+ + sn

0 + sn
−yn−1�	�1, . . . ,�k�� , �0 = 2.

�
�B10�

Starting from

yn�	�0�� = �0, �0 = 0

sn
+, �0 = 1

sn
+ + sn

0, �0 = 2,
� �B11�

we can write
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FIG. 10. �Color online� Comparison between the graphs of
Fn�xk� vs yn�xk� �red and slightly shifted to the right� and the cor-
responding incomplete Takagi functions Tn�xk� �blue�. Each curve is
computed at 310+1 different points x, uniformly spread between 0
and 1. Only 210+1 correspond to different points in the graphs of
Tn.
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yn�	�0, . . . ,�k�� = yn�	�0�� + sn
1−�0yn+1−�0

�	�1, . . . ,�k��

=yn�	�0�� + sn
1−�0yn+1−�0

�	�1�� + sn
1−�0sn+1−�0

1−�1 yn+2−�0−�1
�	�2, . . . ,�k��

]

=�
i=0

k ��
j=0

i−1

sn+j−�0−. . .−�j−1

1−�j �yn+i−�0−. . .−�i−1
�	�i�� . �B12�

Substituting this symbolic dynamics into the expression of Fn �Eq. �B5�� we write

Fn�	�0, . . . ,�k�� =�
1

2
yn+1�	�1, . . . ,�k�� + sn+1

− Fn+1�	�1, . . . ,�k�� , �0 = 0

1/2 + sn
0Fn�	�1, . . . ,�k�� , �0 = 1

1

2
�1 − yn−1�	�1, . . . ,�k��� + sn−1

+ Fn−1�	�1, . . . ,�k�� , �0 = 2.� �B13�

Let �yn��0 , . . . ,�k� denote the height of a horizontal cylin-
der set of the unit square coded by the sequence 	�0 , . . . ,�k�.
We have

�yn��0, . . . ,�k� � yn�	�0, . . . ,�k + 1�� − yn�	�0, . . . ,�k�� ,

�B14�

where the notation yn�	�0 , . . . ,�k+1�� is literal whenever
�k�2. Otherwise yn�	�0 , . . . ,�k−1 ,2+1���yn�	�0 , . . . ,�k−1
+1,0��, and we set yn�	2, . . . ,2 ,2+1���1. We have the fol-
lowing identities

�yn�0,�1, . . . ,�k� = sn
+�yn+1��1, . . . ,�k�

�yn�1,�1, . . . ,�k� = sn
0�yn��1, . . . ,�k�

�yn�2,�1, . . . ,�k� = sn
−�yn−1��1, . . . ,�k� .

�B15�

Therefore

�yn��0, . . . ,�k� = �
i=0

k

sn+i−�0−. . .−�i−1

1−�i , �B16�

which is nothing but the probability associated to the trajec-
tory starting at position n and coded by the sequence
	�0 , . . . ,�k�.

Likewise, the measure of the cylinder set �yn��0 , . . . ,�k�
is

��n��0, . . . ,�k� � �n	yn���0, . . . ,�k−1 + 1���

− �n	yn���0, . . . ,�k−1���

=�n�yn��0, . . . ,�k� + ��Fn��0, . . . ,�k� ,

�B17�

and we have the following set of identities for �Fn:

�Fn�0,�1, . . . ,�k� =
1

2
�yn+1��1, . . . ,�k� + sn+1

− �Fn+1��1, . . . ,�k�

�Fn�1,�1, . . . ,�k� = sn
0�Fn��1, . . . ,�k�

�Fn�2,�1, . . . ,�k� = −
1

2
�yn−1��1, . . . ,�k� + sn−1

+ �Fn−1��1, . . . ,�k� .

�B18�

That is,

�Fn��0, . . . ,�k� =
1

2
�1 − �0��yn+1−�0

��1, . . . ,�k� + sn+1−�0

�0−1 �Fn+1−�0
��1, . . . ,�k� . �B19�

Notice that it is possible to solve this system recursively, starting from
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�Fn��0� = �1/2, �0 = 0

0, �0 = 1

− 1/2, �0 = 2.
� �B20�

We thus have a complete characterization of the nonequilib-
rium stationary state of B �Eq. �39�� associated to flux bound-
ary conditions.

APPENDIX C: k-ENTROPY

Given a phase-space partition into the 3k cylinder sets
coded by the sequences �� k�	�0 , . . . ,�k−1�, �i� 	0,1 ,2�, as
described in Appendix B, the k-entropy of the stationary state
Eq. �42� relative to the volume measure of cell n is defined
by

Sk�Cn� = − �
�� k

��n��� k��ln
��n��� k�
�yn��� k�

− 1� . �C1�

By summing over the first digit, it follows immediately
from Eqs. �B1� and �B16� that the k-entropy verifies a recur-
sion relation,

Sk�Cn� = − sn+1
− 
n+1 ln

sn+1
−

sn
+ − sn−1

+ 
n−1 ln
sn−1

+

sn
− + sn+1

− Sk−1�Cn+1�

+ sn
0Sk−1�Cn� + sn−1

+ Sk−1�Cn−1� , �C2�

with the k=0-entropy given by

S0�Cn� = − �n ln �n �C3�

and boundary conditions

Sk�C0� = − 
− ln 
−

Sk�CN+1� = − 
+ ln 
+.
�C4�

The k-entropy can be computed based on the above recursion
relation. However, in order to obtain the dependence of the
entropy on the resolution parameter k, it is more useful to
consider the expansion of Eq. �C1� in powers of 
n. Let us
denote by �� k the sequence 	�0 , . . . ,�k−1�

Sk�Cn� = − �n�
�� k

�yn��� k��1 +
�

�n

�Fn��� k�
�yn��� k�

�
��ln �n�1 +

�

�n

�Fn��� k�
l�yn��� k�

� − 1�
=− �n�ln �n − 1� − ��ln �n − 1��

�� k

�Fn��� k�

−
�2

2�n
�
�� k

��Fn��� k��2

�yn��� k�
+ O���3. �C5�

The second term on the right-hand side �rhs� of this equation
vanishes since

�
�� k

�Fn��� k� = 0. �C6�

As of the third term on the rhs of Eq. �C5�, proportional to
�2, we have, using Eqs. �B15� and �B18�,

�n
2�k� � �

�� k

��Fn��� k��2

�yn��� k�

=
1

4sn
+ +

1

4sn
− +

�sn+1
− �2

sn
+ �n+1

2 �k − 1� + sn
0�n

2�k − 1�

+
�sn−1

+ �2

sn
− �n−1

2 �k − 1�

=
1

4sn
+ +

1

4sn
− + �

�=0

2
�sn+1−�

�−1 �2

sn
1−� �n+1−�

2 �k − 1� �C7�

=�
i=0

k−1

�
�1,. . .,�i−1

��
j=1

i �sn+j−�1−¯−�j

�j−1 �2

sn+j−1−�1−¯−�j−1

1−�j �
�� 1

4sn+i−�1−¯−�i

+ +
1

4sn+i−�1−¯−�i

− 
 . �C8�

Substituting the expressions of the probability transitions
from Eqs. �40� and �41�, Eq. �C8� is found to be

�n
2�k� = �

�� k

��Fn��� k��2

�yn��� k�

=k +
12k2 − 9k

32�n + n0�2 + O�n + n0�−4. �C9�

The first term on the rhs of this expression, which is the only
term that survives in the continuum limit where n+n0�1, is
responsible for the linear decay of the k-entropy �Eq. �47��.
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