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Electrodynamic Casimir effect in a medium-filled wedge. 11
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We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly
cylindrical, perfectly reflecting arc embedded in another magnetodielectric medium, under the condition that
the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is
obtained and it is found that in the limit where the reflectivity of the wedge boundaries tends to unity the finite
part of the Casimir energy of a perfectly conducting wedge-shaped sheet closed by a circular cylinder is
regained. The energy of the latter geometry possesses divergences due to the presence of sharp corners. We
argue how this is a pathology of the assumption of ideal conductor boundaries and that no analogous term

enters in the present geometry.
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I. INTRODUCTION

The Casimir effect [1] may be understood as an effect of
the fluctuations of the quantum vacuum. Casimir’s original
geometry involved two infinite and parallel ideal metal
planes which were found to attract each other with a negative
pressure scaling quartically with the inverse interplate sepa-
ration. In a seminal paper, Lifshitz generalized Casimir’s
original calculation to imperfectly reflecting plates [2]. Since
its feeble beginnings research on the Casimir effect has
grown from being of peripheral interest to a few theorists to
a bustling field of research both experimental and theoretical
with publications numbering in the hundreds each year. Re-
cent reviews include [3-6].

Progress on Casimir force calculations for other geom-
etries has been slower in coming. Spherical and cylindrical
geometries have naturally been objects of focus, the latter of
direct interest to the effort reported herein. Only in 1981 was
the Casimir energy of an infinitely long perfectly conducting
cylindrical shell calculated [7] and the more physical but also
significantly more involved case of a dielectric cylinder was
considered only in recent years [8—14]. We might also men-
tion recent work on the cylinder defined by a S-function
potential, a so-called semitransparent cylinder [15]; for weak
coupling, both the semitransparent cylinder and the dielectric
cylinder have vanishing Casimir energy.

Closely related to the cylindrical geometry is the infinite
wedge. The problem was first approached in the late 1970s
[16,17] as part of the still ongoing debate about how to in-
terpret various divergences in quantum field theory with
sharp boundaries. Since, various embodiments of the wedge
have been treated by Brevik and co-workers [18-20] and
others [21,22]. A review may be found in [23]. A wedge
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intercut by a cylindrical shell was considered by Nesterenko
and co-workers, first for a semicylinder [24], then for arbi-
trary opening angle [25], and the corresponding local stresses
were studied by Saharian [26-28]. The group at Los Alamos
studied the interaction of an atom with a wedge [29,30] pre-
viously investigated by Barton [31] and others [32,33], the
geometry realized in an experiment by Sukenik ef al. some
years ago [34]. A recent calculation of the Casimir energy of
a magnetodielectric cylinder intercut by a perfectly reflecting
wedge filled with magnetodielectric material was recently
reported by the current authors [35]. Common to all of these
theoretical efforts is the assumption that the wedge be
bounded by perfectly conducting walls.

While until recently relatively few treatments of the
vacuum energy of the wedge existed, the problem of calcu-
lating the diffraction of electromagnetic fields by a dielectric
wedge within classical eletromagnetics is an old one and
several powerful methods have been developed within this
field. The Green’s function of the potential (Poisson) equa-
tion in the vicinity of a perfectly conducting wedge was
found more than a century ago by Macdonald [36] and ex-
tended to the wave equation with a plane wave source by
Sommerfeld [37]. Generalizing Sommerfeld’s method, the
first theoretical solution to the scattering problem involving a
wedge of finite conductivity was found by Malyuzhinets in
his Ph.D. work [38] (see [39] for a review; cf. also [40]).

A different method was proposed by Kontorovich and
Lebedev in 1938 [41] and used by Oberhettinger to solve the
Green’s function problem some time later [42]. The method
has been given attention in recent analytical and numerical
studies of the diffraction problem [43-46].

In the present effort we study the Casimir energy in a
magnetodielectric wedge of opening angle « inside and out-
side a perfectly conducting cylindrical shell of radius a—see
Fig. 1. The interior and exterior of the wedge are both filled
with magnetodielectric material under the restriction of
isorefractivity (or diaphanousness), that is, the index of re-
fraction n?(w)= €(w)u(w) is the same everywhere for a given
frequency. This condition is adopted because without it the
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FIG. 1. The wedge geometry considered.

problem is no longer separable and not readily solvable.
Moreover, we suspect that nondiaphanous media will lead to
divergences, at least in the absence of dispersion.

As a natural extension of the considerations in [35] we
derive an expression for the free energy of such a system by
use of the argument principle [47]. (By free energy, we mean
that bulk terms not referring to the circular arc boundary are
subtracted.) The necessary dispersion relation provided by
the electromagnetic boundary conditions at the wedge sides
is derived in two different ways: by a standard route of ex-
pansion of the solutions in Bessel function partial waves and
by use of the Kontorovich-Lebedev (KL) transform. (Still a
third method, based on the Green’s function formulation, is
sketched in the Appendix.) The corresponding boundary con-
dition equation at the cylindrical shell is well known. These
together allow us to sum the energy of the eigenmodes of the
geometry satisfying eigenvalue equations for the frequency
and azimuthal wave number v by means of the argument
principle.

There are important differences between the diaphanous
geometry considered herein and the standard geometry of a
perfectly conducting wedge. Assuming diaphanous electro-
magnetic boundary conditions, the interior and exterior
wedge sectors are coupled and remain so also in the limit
where the reflectivity of the wedge boundaries tends to unity
(for example, by letting e— o0, u— 0 so that their product is
constant). Assuming the wedge be perfectly conducting from
the outset, however, the interior of the wedge is severed
cleanly from its exterior at all frequencies, a significantly
different situation.

The Casimir energy of the perfectly conducting wedge
and magnetodielectric arc considered in [35] was found to
possess an unremovable divergent term associated with the
corners where the arc meets the wedge. This is a typical
artifact of quantum field theory with nonflat boundary con-
ditions (e.g., [21,24,25]). We will argue in Sec. III B that
there is no such term present in the geometry considered
herein and that the direct generalization of the finite part of
the energy of the system considered in [35] to the present
system is in fact the full regularized Casimir energy. The
reason for this rests upon two unphysical effects of perfectly
conducting boundary conditions at the wedge sides (the van-
ishing of the tangential components of the electric field
there). Namely, such boundary conditions exclude the exis-
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tence of an azimuthally constant TM mode and divide space
cleanly into an interior and an exterior sector with no cou-
pling allowed between modes in the two sectors. Moreover,
for a wedge consisting of perfectly conducting thin sheets
dividing space into two complementary wedges, the ideal
conductor boundary conditions will count the azimuthally
constant TE mode twice whereas with more realistic bound-
ary conditions such as considered here, such a mode must be
common to the both sectors, 0= 0<2. In these two re-
spects the perfectly conducting wedge differs from the di-
aphanous one and put together these redefinitions provided
by the diaphanous wedge exactly remove the divergent extra
energy term found in [35] and previously in [25].

We show numerically that except for the singular term,
the energy of a perfectly conducting wedge closed by a mag-
netodielectric cylinder whose reflectivity tends to unity is
regained in the limit where we let the wedge boundaries
become perfectly reflecting.

II. BOUNDARY CONDITIONS AND DISPERSION
RELATIONS

We begin by considering in general the form of an expres-
sion of the energy of a diaphanous wedge inside and outside
a cylindrical shell such as depicted in Fig. 1. We assume the
cylindrical shell to be perfectly reflecting. Let the interior
sector —a/2 < < a/2 have permittivity and permeability €,
and w; relative to vacuum and the corresponding values for
the exterior sector m=|6>a/2 be € and u, so that
€(0) ()= &(w) uy(w) =n*(w). The cusp of the wedge is
chosen to lie along the z axis, which is also the center of the
cylindrical shell, and the interfaces are found at 6= * a/2
and at p=a (p is the distance to the z axis).

We will calculate the Casimir energy by “summing” over
the eigenmodes of the geometry using the so-called argument
principle, now a standard method in the Casimir literature.
The eigenmodes of a given geometry are given by the solu-
tions of the homogeneous Helmholtz equation,

(V2 - nzdfz)u(r,t) =0,

which also satisfy the system’s boundary conditions. Here u
symbolizes a chosen field component of either the electric or
magnetic field. We will choose E, and H, as the two inde-
pendent field components from which the rest of the compo-
nents can be derived by means of Maxwell’s equations.

The translational symmetry with respect to z and time
makes it natural to introduce the Fourier transform,

(2.1)

“do . (7 dk. .
Ez(l',t)=f ;Te_”‘”f Z;e’kzzEz(p;w,kz),

where p=(p,#) and p=yx?>+y>. The Helmholtz equation
now simplifies to the scalar Bessel equation,

(V2 +K)E(pik, ) =0, (2.2)
where
V2= Re i, i, (2.3)
p" P

and k2 = epuw’— k?.
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We will define the quantity « as

k= Vk - epw’ =ik, (2.4)

where the root of « is to be taken in the fourth complex
quadrant. When in the end we take frequencies to lie on the
positive imaginary axis, k becomes real and positive, some-
thing we bear in mind in the subsequent calculations.

A general solution to Eq. (2.2) is of the form

E =[AH (k. p)+B,J (k. p)lae™ +be ™), (2.5)

where A, B,, a, b, and v are arbitrary. If, as in our case, v is
allowed to take noninteger values, we must restrict it to v
=0 because except at integers J,(z) and J_,(z) are linearly
independent.

Solutions of the electromagnetic field in a wedge geom-
etry are expressed as a sum over cylindrical partial waves
whose kernels are Bessel and Hankel functions of argument
k,p. Thus it is clear that the boundary conditions on the
wedge surfaces can only be solved for each partial wave if
the speed of light is the same in both sectors since k; would
otherwise take different values in the two media for given k,
and o and the kernel functions would be linearly indepen-
dent functions of these. The diaphanous condition is thus
prerequisite for the explicit solution of boundary conditions
below. Without this condition the problem at hand is not
analytically solvable with the methods used herein. We ex-
pect that even if we could solve the nondiaphanous problem
we would encounter divergences that might or might not be
curable by the inclusion of dispersion.

The presence of the wedge primarily has the role of dic-
tating which values of v are allowed. If one were to consider
a cylinder (periodic boundary conditions), only integer val-
ues of v (both positive and negative) would be acceptable
and expressing the solution as a sum over these integer val-
ues would be appropriate. If one instead let the wedge be
perfectly reflecting (Dirichlet and Neumann boundaries at
*a/2, where a is arbitrary) v would be forced to take values
that are non-negative integer multiples of 7/ «. The diapha-
nous magnetodielectric boundaries present here also restrict
v to discrete values for given €’s and w’s, but explicitly de-
termining these values is no longer immediate because
modes existing in the exterior and interior sectors now
couple to each other. For a given frequency we therefore
make use of an appropriate dispersion function representing
these boundaries in order to sum over the appropriate values
of v by means of the argument principle, whereupon we may
sum over the eigenfrequencies of the modes inside and out-
side the cylindrical shell to obtain the energy.

The boundary condition dispersion relation pertaining to
the circular boundary is known (e.g., Eq. (4.12) in [35], with
£=1),

gk, 0) =1-x\3(x) =0, (2.6)

where x=ak,
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M) = 1,00K )], 2.7)
dx

and /,,K, are the modified Bessel functions of the first and
second kinds of order ». We can simply use this equation to
sum modes satisfying the boundary condition on both sides
because the wedge boundaries at =«/2 impose the same
discretization of v inside and outside the cylindrical shell (if
we were to have, e.g., a third medium in the sector |6
<a/2, p>a different from medium 1, this would no longer
be the case as we will see: the field solutions would take
different values of v inside and outside the cylindrical
boundary and the boundary conditions at the cylinder could
no longer be solved for each eigenvalue of v). We now turn
to a derivation of the dispersion relation pertaining to the
interfaces at 6= * a/2.

In the following we shall use the term TE to denote elec-
tromagnetic modes whose E field has no component in the z
direction and TM denotes those modes whose H field has no
z component. This is not “transverse electric” and “trans-
verse magnetic” with respect to the wedge boundaries at 6
=+ /2, but this does not matter since we will find that the
eigenequation of these boundaries is the same for all field
components by virtue of the diaphanous condition.

A. Kontorovich-Lebedev approach

We will first employ the technique of the KL transforma-
tion [41] and its inverse transform which may be written as

Ez(p)zif dvve”™? sin(mv)K ,(kp)€.(0;v), (2.8a)
0

@Z(e;v)=% f %e‘f””KV(Kp)EZ(p) (2.8b)
0

(dependence on k, and w is implicit). While less extensively
covered in the literature than most other integral transforms,
some tables of KL transforms exist [48,49]. Numerical meth-
ods for evaluating such transforms were recently developed
by Gautschi [50]. We will ignore the presence of the cylin-
drical shell in this section and only study how the presence
of the walls of the wedge discretizes the spectrum of allowed
values of the Bessel function order v.

With this, Eq. (2.2), after multiplying with p?, transforms
to

(05 + 1) E.(0; vk, w) = 0. (2.9)

Equation (2.9) is now in a form fully analogous to that en-
countered in a planar geometry (e.g., [51-53]). We follow
now roughly the scheme in [53] and determine the dispersion
relation [condition for eigensolutions of Eq. (2.2)] by means
of summation over multiple reflection paths. By noting that
the solutions to Eq. (2.9) have the form of propagating plane
waves traveling clockwise or anticlockwise along the now
formally straight 6 axis (v playing the role of a reciprocal
azimuthal angle) the analogy to a plane parallel system is
obvious.

We write the solution of Eq. (2.9) in the interior sector,
|6 < a/2, in the form
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€. =ete"+ee™?, (2.10)

where e are undetermined integration coefficients which are
field amplitudes at =0 to be determined from boundary
conditions at 6= * /2.

Likewise the solutions in the exterior sector (the “comple-
mentary wedge”) =6|> a/2 may be written

€, =M™ 4 gm0, (2.11)

where the undetermined amplitudes ¢~ are “measured” at
=1r. The choice to measure the amplitudes in sectors 1 and 2
at 0=0 and 7, respectively, is arbitrary but makes for maxi-
mally symmetric boundary equations.

The homogeneous Helmholtz equation thus solves the
scattered part of &, given some source field QE Let us as-
sume there is a source field in the form of an 1nﬁn1tely thin
phased line source parallel to the z axis at some position 6,
in the interior sector. The direct field (which only propagates
away from the source) may be written in the form

=0(0- Op)ege™ +O(0y— O)ege™?,  (2.12)

where @(x) is the unit step function and the field amplitudes
are “measured” at #=0. We do not need to know the con-
stants e(f explicitly and take these to be known constants.
The multiple reflection problem (or equivalently, boundary
condition problem) is now a system of four equations for the
four amplitudes e™,e~ as functions of eot.

We define the reflection coefficients at the boundaries 6
==+ /2 as the ratio of reflected vs incoming field amplitude,
r=C€, n/ &,y as seen by a wave coming from and reflected
back into sector 1 (a wave going the opposite way experi-
ences a coefficient —r). With the assumption €;u,=¢€u, the
reflection coefficients of the s and p modes differ only by a
sign,

&€

r, = :—}"S:
€+ €

K
Mot

We will simply use r in the following, representing either of
the modes. We also define the transmission coefficient, the
ratio of the transmitted to the incoming amplitude, going
from sector i to sector j, tijs where i,j=1,2 denotes the sec-
tors in Fig. 1,

(2.13)

2€; 2
L=t = B 2& =tijp= —ML (2.14)
Mi €+ € Mt

Since these coefficients are invariant under KL transforma-
tion, they are the sought-after single interface reflection and
transmission coefficients also in the KL regime. Note that
with the diaphanous condition, reflection coefficients are in-
dependent of v, something which would not be true in gen-
eral. If » depended on v this would give rise to corrections to
the energy expression derived in Sec. IIT A. (See also the
Appendix, where such v dependence does occur.)

We formulate the electromagnetic boundary conditions in
terms of reflection and transmission. In the KL domain the
system looks and behaves analogously to the planar system
(see [53] for details on this case), but with one important
difference, namely, that a 6 directed partial wave which is
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transmitted at a wedge boundary does not disappear from the
system but is partly transmitted back into sector 1 again cir-
cularly. Thus we obtain four equations for the four ampli-
tudes, e*, e”, €*, and €”, coupling to each other through paths
reflected or transmitted at one interface,

et =rege’"* + re e’ + ty8te™™ (2.15a)
e~ =reje" + rete" + 1,8 e (2.15b)
&t =1eie"m + tpete ™ — re e (2.15¢)
& = 110658 + tpe7e" T — rete™? ™ (2.15d)

Eigenvalues of v for the wedge correspond to solutions of
these boundary conditions, which exist when the secular

equation of the set of linear equations for e* and &~ is ful-
filled. The characteristic matrix is
1 —re’"  — 1" 0
p-| ~ rei’f“ 1 0 - '1‘2161'”7
—t1pe""T 0 1 re"2m-a)
0 —tlzei"” re!"2ma) 1
(2.16)
and the dispersion relation sought after is
D(v,w) =detD=0. (2.17)

The matrix form [Eq. (2.16)] is rather instructive. Note that
D is a block matrix of the form

D, Gy
o[ )
G, D
where D; describes multiple scattering within sector i and Gy;
describes coupling between the sectors by transmission from

sector i to j. Since the G matrices commute with the D
matrices, det D can be written as

detDZdet(DlDQ—G21G|2). (218)
We may use the energy conservation relation,
t12t21+r2:1, (219)

together with Eq. (2.18) to find the simple expression
D(v,w)=(1-¢
= —4¢*™{sin*(var) — r? sin’[v(7m— a)]}.

(2.20)

277iV)2 _ r2[eiv(2w—a) _ eiva]Z

It is noteworthy that this dispersion relation only has an im-
plicit dependence on w through the quantity r*(w). As an
example we plot the solutions to Eq. (2.17) as a function of
v and r in Fig. 2 for «=0.75 rad.

Note at this point that whenever r is real, all zeros of
D(v,w) in Eq. (2.20) are real. In the following we shall think
of r as well as the eigenvalues of v as real quantities. For real
frequencies w reflection coefficients will in general be com-
plex, while after a standard rotation of frequencies onto the
imaginary frequency axis these coefficients are always real
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r(w)

FIG. 2. (Color online) The solutions of dispersion relation (2.20)
as a function of r and v for «=0.75. The eigenvalues of v for a
given r are marked; the energy is calculated by summing over these
values and then integrating over all w.

as dictated by causality. Although zeros are complex the ar-
gument principle may still be used; the discussion of con-
nected subtleties may be found in, e.g., [7,54,55].

It is easy to see that this dispersion relation generalizes
that for a cylinder (of infinite radius) and a perfectly conduct-
ing wedge. In the latter limit, =1, the determinant det D has
zeros where v=mr/« and at v=mr/ (27— ), where m is an
integer. This becomes obvious when noting that

r—1

D(v,w) — —4e*™ sin va sin v2m—a).  (2.21)

This reproduces, in other words, the case where the wedge is
made up of thin perfectly conducting sheets. For the per-
fectly conducting wedge it is customary to restrict v to val-
ues that are integer multiples of 77/ a from the beginning.
Likewise when the two materials become equal,

r=0

D(v,w)— —4e*™" sin®> vr = Dy(v), (2.22)

which has double zeros where v=m, a positive integer, cor-
responding to a clockwise and an anticlockwise mode or, if
the reader prefers, the sum over v=+m and —m. This is just
the cylinder case [7-14]. We see from Fig. 2 that except for
v=0 which remains degenerate, the double zeroes split into
two separate simple zeros for finite r. For special opening
angles which are rational multiples of 7 there will be other
zeroes which remain degenerate as well.

One sees directly that if we were to solve Eq. (2.2) for H,
instead of E, the dispersion relation would be identical to Eq.
(2.17) since the only difference would be the sign of the
reflection coefficient (we would employ r, rather than r,),
which only enters squared. One should note that the distinc-
tion between r; and r, here does not correspond to the dis-
tinction between TE and TM modes of the entire cavity, but
this is of no consequence in the following because dispersion
relation (2.17) is the same for all field components.

B. Derivation by standard expansion

We will now sketch how result (2.20) may be derived by
a more standard method similar to that made use of in [35].
The solutions of Eq. (2.5) that correspond to outgoing waves
at p— oo may be expanded following the scheme in [35] in
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an obvious generalization of those found in [56]. Due to
criteria of outgoing-wave boundary conditions at p— % and
nonsingularity at the orlgln the solution must consist purely
of Hankel functions H )(k | p) far from the origin and only of
terms containing J,(k p) near p=0. Following the scheme in
[35] we choose Hil)(klp) for p=a and J,(k, p) for p=<a
both in the interior sector —a/2<#<<a/2 and outside and
couple the solutions across these straight boundaries. It will
not matter which Bessel function we choose for the present
purposes: the resulting solution expansions are identical but
for the replacement of one Bessel function with another.

In a straightforward generalization of the expansion used
in [35] we write down the following general solutions in
sector 1 of Fig. 1 for p>a:

- ik , Vi
E, = f dv [—ZHi“ a - 5=
0 ki kip

lk ’ 14
+i{—ZH(Vl) a, - ’j‘ H(l)bl}sm ve} imv2
ki kip

H(Vl)l_)l}cos vl

(2.23a)

o] k” _
Ee,l:_f dv{[%Hg)C_h ll]:le(l b ]cos v
L

vk, Y7L / . .
+l|: - Z ngl)al + /‘/:l H(Vl) ZZI:|SIH Vo}elﬂv/Z,
1

(2.23b)

=J dvH 1)[al cos v0+ia; sin vfle'™?,

(2.23¢)

ik ’r—
+—=H bl}cos vl
ki

* vwe
Hr,l = f dV{|: IH(I)
0 kLP

vwe ik / )
+ i{ 3 1H5}1)51 + —ZH(VI) lgl}sin vﬁ}e””’/z,
k k
P 1

* iwe , vk
Hg’lzf dV{|: IHS}I) C_ll— 2ZH5}1)Z_71j|COS vl
0 ki kip
iwe , vk — .
+ i{—lejl) a; - 2—ZH(V])b,]sin vﬁ}e’m/z,
ky kip

(2.23¢)

(2.23d)

Hz,l =J dVHS/l)[El cos V0+il_71 sin Ve]eiﬂwﬂ,
0

(2.23f)

where we have omitted the arguments of H(Vl)(k 1 p) and its

derivative, of @,(v),b,(v), etc., the latter being undetermined
coefficient functions of v.
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We write the solution in sector 2 in exactly the same form
but with the simple replacements 60— 60—, €, — €,, and u,
— u, and the same for the coefficient functions. With the
isorefractive assumption k, is the same in both media for
given w and k,, so the boundary conditions at the interfaces
can be solved under the integral signs. In general there are
eight unknown functions and eight equations, yet one finds
that the s and p modes decouple into linear equation sets of
4 X4 in the form

D-a=0, (2.24)
where D equals
cos’ 0 —cos v(&—7) 0
0 sin’y* 0 —sin v(% - 77)
- € sin%’ 0 €, sin v(g - 77) 0
0 - € cosy 0 & cos (% - )

and a is a vector, either (@,,a,,a,,a,) or (by,by,b,,b,).

As before the eigenmodes of the system solve the equa-
tion det D=0. With some manipulation we find that the de-
terminant can be written simply as

det D = }‘(62 - €)% sin® v(m—a) - i(ez + €)% sin’ vr.
(2.25)

Under the assumption that €,+ €; # 0 the equation det D=0is
equivalent to Eq. (2.17) with Eq. (2.20).

II1. CASIMIR ENERGY

In order to find the Casimir energy we shall employ the
argument principle, introduced to the field of Casimir energy
by van Kampen et al. [47] who rederived Lifshitz’s result in
a simple way. For a very readable review of the technique,
see [57].

A similar system to that shown in Fig. 1 was considered in
[35] where the plane sides of the wedge were instead made
up of perfectly reflecting interfaces and the circular boundary
was diaphanous. We will start from the result in [35] and
generalize this step by step to approach the desired energy
expression for the current situation. Except for the formally
singular energy term associated with the sharp corners where
the arc meets the wedge walls found in that paper (we shall
regard this term separately below), the Casimir energy per
unit length of that system in the limit of perfectly reflecting
circular arc was [Eq. (4.11) in [35]]

-1 (7 dk, < o d
= =S 0 doe L g (k.w). (3.1
W=l 27%() fﬁA % qo™ smlko @), (3.1)

with g ,(k,, w) given in Eq. (2.6) and we define the shorthand

T
p=—. (3.2)
a

The prime on the summation mark means that the m=0 term
is taken with half-weight. The integration contour A is cho-
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sen to follow the imaginary axis and is closed to the right by
a large semicircle thus encircling the positive real axis. The
roots of Eq. (2.6) are in general complex; the applicability of
the argument principle for such situations was discussed in

[7,54,55,58]. The energy &€ has been normalized so as to be
zero when the circular arc is moved to infinity.

Each frequency satisfying g,,,(k.,w)=0 gives a pole
which adds the zero temperature energy 5 of that mode
through Cauchy’s integral theorem. In the end there are sums
over the eigenvalues of v, mp, the eigenvalues found when
the sides of the wedge are assumed to be perfectly conduct-
ing. Employing such an assumption from the start com-
pletely decouples the interior sector |6] < a/2 from the exte-
rior. If we were to interpret the perfectly reflecting wedge as
the limit of an isorefractive wedge such as that described by
the dispersion relation Eq. (2.20) as |r|— 1, however (for
example, by letting €, — % and u, — 0 so that their product is
constant), the interior and exterior sectors remain coupled
and we obtain an additional m sum, namely, that over v
=mp' of the complementary wedge, where

/ ™ p

p (3.3)

:27T—a:2p—1.

To obtain direct correspondence we therefore modify Eq.
(3.1) by also including the energy of the modes of the
complementary wedge, fulfilling v=mp’. Since we will soon
generalize this result to the case where the wedge is diapha-
nous, it is reasonable to subtract the energy corresponding to
the absence of the boundaries at = /2 by subtracting off the
energy obtained if v fulfilled periodic boundary conditions
(i.e., a circular cylinder). The result is

S I d  SupSmp
Ea—— | =27 dww—ln—p2 L (3.4)
Ami)_, 27—y Ja dw o

The periodic function g,,(k., w) is squared since both positive
and negative integer orders contribute equally in the periodic
case and the symmetry under m — —m makes for a factor of 2
except for m=0. The latter exception is automatically ac-
counted for by the prime on the sum.

Note that employing g,(k., w) with the argument principle
automatically takes care of the sum over the two polariza-
tions since, by virtue of the diaphanous condition, g, is a
product of boundary conditions for TE and TM modes (see,
e.g., Appendix B in [35]).

Let us now perform the generalization of Eq. (3.4) to the
present case. The sum over v=mp and mp' may be general-
ized to a sum over the solutions of Eq. (2.17) using the
argument principle once more to count the zeros of Eq.
(2.20), and the subtraction of the periodic modes in the ab-
sence of the boundary is performed by subtracting the solu-
tions of Dy(v)=0 with D, from Eq. (2.22) (note that the
zeros of D, are double, automatically giving the factor 2
manually introduced in Eq. (3.4) by taking the square of g,,).
We obtain
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~ 1 * dk,
E= - — @ dow
2Q2mi) ) 27 ],
d d D(v,w)
X ® dv| —In g, (ko) |—In .
A dw dv  Dy(v)

The contour of the v integral is the same as that for the w
integral.

Neither of the contour integrals obtains contributions
from the semicircular contour arcs so we are left with inte-
grals over imaginary order and frequency. Performing substi-
tutions w=i{ and v=i7n we obtain

_ 1 o0 o]
= dk.| d
£ 16n3if_w ZLO &

Told | 4 Dlinil)
X f_mdn[dgln gin(kz,zg)}dnln Dolin)

(3.5)

(3.6)

This is the general form of the Casimir energy of the system
presented herein.

To be very explicit about the regularizations performed,
Eq. (3.6) is the energy of the geometry of Fig. 1, minus the
energy when the cylinder is pushed to infinity (the double
wedge alone) and minus the renormalized energy of the cyl-
inder relative to uniform space,

E=(Eo-E)-E, (3.7)
where &, is the /-renormalized energy of a cylindrical shell
(relative to uniform space) considered in [10] and ©, < sym-
bolize the double wedge with and without the cylindrical
shell. It is thus clear that the energy should vanish when
either the cylindrical boundary tends to infinity (Eg— &
and £ —0) or when the wedge becomes completely trans-
parent (Eg—E-—&.).

The corresponding free energy at finite temperature 7 is
found by simply substituting the integral over ¢ in Eq. (3.6)
with the well known Matsubara sum over the frequencies
§=27kT, where k € Z,

r? sinh 9(7 — a)[ @ sinh (27— a) — (27— a)sinh na] [~
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f dLfi) — 2aT 2 fL). (3.8)

—0o0 k=—

We will not consider finite temperature numerically in the
present effort.

A. Nondispersive approximation

In order to proceed to producing numerical results we
make the simplifying assumption that r be approximately
constant with respect to { over the important range of { val-
ues: dr/d{=0. This a version of the constant reflection co-
efficient model which was previously found to be useful for
the planar geometry [59]. While it is true that for any real
material, reflectivity must tend to zero at infinite frequency,
the nondispersive approximation is a useful one and allows a
simpler expression to be derived. We will find below that the
resulting Casimir energy expression is finite even when r
=1 for all frequencies except when a=0 or 2m. There is
therefore no need to assume high-frequency transparency for
the sake of finiteness in this case.

With this assumption we can easily perform a partial in-
tegration in {. We note that, when r is independent of » as in
the diaphanous case (see the Appendix for a situation where
this is not so),

d {1 D } a sinh (27— @) — (27— a)sinh pa
Sl I Pl
d7] DO

sinh? g — r? sinh? (7 - @)
2 .
r* sinh p(7m—- «
sinh np

which is now approximated as independent of { and k. It is
then opportune to perform a change in integration into the
polar coordinates,

X=n{=«kcos 6;

so that X2+ Y2=«? and

Y=k,=ksin 6, (3.10)

f dsz dif(akx) = %f dxxf(x), (3.11)
— — 0

where x=ak as before. We obtain after integrating by parts

- i ”
E= d
8mna* f e 7

Despite appearances this expression is in fact real. This is
because the dispersion function in the first integral is an odd
function of # while the real and imaginary parts of the loga-
rithm are even and odd, respectively (provided the appropri-
ate branch of the logarithm is taken), hence the imaginary

part of & vanishes under symmetrical integration. It is
straightforward to write down the correction terms contain-

sinh ga{sinh? 5 — 12 sinh? (7 - a)] 0

dxx In[1 -\, (x)]. (3.12)

ing 3—2 or 3—: should the reader wish to do so. Such is neces-
sary if one were to study the role of dispersion on the energy;
we shall not consider this herein—but see the Appendix for
drldv#0.

The energy expression (3.12) has the reasonable proper-
ties of being zero at o= and symmetrical under the substi-
tution a«27—a. We will study Eq. (3.12) numerically in
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Sec. IV. We argue in Sec. III B that Eq. (3.6) is the full
Casimir energy of this system (after subtracting that of the
cylinder alone). Thus the zero energy at =7 demonstrates a
particular generalization of the theorem of Ambjgrn and
Wolfram ([60], stated in Eq. (2.49) in [3]): the energy of a
semicircular compact diaphanous cylinder is half that of a
full cylinder (there is an equal contribution from the exterior
“half-cylinder” so the difference is zero).

For large 7 the term proportional to « in the big fraction
in Eq. (3.12) behaves for m—a>0 as

d D 2ar?
_ln— ~

"D, " B (3.13)

with a similar behavior for the term proportional to 27—«
and so is exponentially convergent. With perfect reflectivity
Eq. (3.12) is finite except when a equals O or 27 when |r|
=1.

B. No additional corner term

In the geometry considered in [35], which differed from
the present one primarily by the assumption that the wedge
be perfectly conducting, the Casimir energy was found to
possess a divergent term which could be associated with the
corners where the arc meets the wedge sides. When the arc
was instead made diaphanous it was shown that this term
could be rendered finite by virtue of high-frequency transpar-
ency as displayed by any real material boundary.

The energy (3.6) is the direct generalization of the finite
part of the energy of the system considered in [35]. We will
argue that when the wedge is also diaphanous, this is indeed
the full energy of the system, regularized by the subtraction
of the energy of the cylinder alone (which in turn is regular-
ized by subtracting the energy of uniform space).

Let us recapitulate how the divergent term in [35] came
about. The zeta function regularized energy expression (Eq.
(4.13) in [35]) adds the m=0 modes of both polarizations
with half-weight. There should be no m=0 TM mode, how-
ever, because the perfectly conducting wedge forces any azi-
muthally constant electric field to have zero amplitude every-
where, thus the half-weight zero TM mode should be
subtracted. Moreover, since for arbitrary opening angles only
positive values of m are allowed, the zero TE mode should
be counted with full rather than half-weight, and thus the
correction term equals one half the m=0 energy of the TE
mode minus one half that of the TM mode.

In contrast we are here not considering perfectly conduct-
ing wedge boundaries so the TM m=0 mode should be in-
cluded. The question becomes whether the »=0 TE and TM
modes have been counted with only half the weight they
should. In a system such as ours the interior and exterior
sectors are coupled and all allowed modes are modes satis-
fying boundary conditions of the whole double wedge. Thus
there can be only one azimuthally constant mode for all 6
(not one for each sector as one obtains for a perfectly con-
ducting wedge sheet) hence the zero mode should be counted
once. This is exactly what is done in Eq. (3.6) because the
dispersion function [Eq. (2.20)] has a double zero at v=0
canceling the factor 1/2. Hence no additional correction term
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is necessary and the use of dispersion relations with the ar-
gument principle automatically gives the full result.

In our numerical considerations reported in Sec. IV we
find correspondence with the finite part of the energy re-
ported in [35] when applied to two complementary wedges
separated by a perfectly conducting sheet. Note how this
correspondence is somewhat peculiar: in the energy expres-
sion of that reference the zero mode was counted with half-
weight where it should have been accounted for fully, but in
adding the energy of the complementary wedge as in Eq.
(4.9) each of the complementary wedges contribute a half of
the m=0 mode energy, amounting to the full energy when we
insist that this mode be common to the whole system.

It is thus made clear how the divergent term found in
[24,25,35] can be seen as a pathology of the ideal conductor
boundary conditions at #= %+ /2 which (a) completely re-
moves the azimuthally constant TM mode and (b) cleanly
severs the connection between the interior and exterior of the
wedge. Whether a similar term would appear—perhaps with
a finite value—for a nondiaphanous wedge remains an open
question since the diaphanous condition employed herein is
also a special case.

IV. NUMERICAL INVESTIGATION

It is useful to introduce the shorthand notation,

g IJU[%DPU
= — —Iln— s
47na’ ), 7 dn D, "

where Y is the imaginary part of the integral over the loga-
rithm in Eq. (3.12),

(4.1)

© 2 2
—x~ Im\;, (x
Y(n) = J dxx arctan—{mﬂ
0

1 -2 Re{\], (1)} “2)

where we take the argument of the logarithm to lie in
[_721 s g]

Near x=0 this integrand [Eq. (4.2)] behaves like
x sin(In x), oscillating increasingly fast. Techniques of rotat-
ing the integration path are restricted by the scarcity of meth-
ods for evaluating Bessel functions of general complex order
and will anyway come at the cost of making %yln D/Dy os-
cillatory. For numerical purposes it is more useful to perform
the substitution x=e¢”,

— e Im{\;, ()}
1—e® Re{)\izn(e-")}.

Y(7n) = J dye® arctan (4.3)

For moderate values of 7 this integrand is numerically man-
ageable [there are O(47) significant oscillations to integrate
over], the remaining challenge being the evaluation of \;,(x).
Rather than consider the complex function 7;,(x) it is nu-
merically useful to consider the real function
Liy(%) = 5[11(x) + Lip()]. 4.4)
When 7 is real, L;,(x)=Re I;,(x). We find, using the Wronsk-
ian relation
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FIG. 3. (a) Different methods of calculation used in different
areas of the x, 77 plane (see text). (b) The function Y(7).

WIK,,1,](x)=1/x (4.5)

and relations between the two modified Bessel functions, that
A, can be written as

2i sinh n

Niy(x) = )1_c + 2K}, (X)L, (x) = K/ (0K, (x).

(4.6)

For obtaining the right limit of the integrand near =0 one
may notice that Y () for small 7 is

4KOK1(1 - 2.x10K1)

Y(7) ~ - dxx? @
(m) nfo (= 2eloK,)? (7)
plus higher orders. Numerically one finds
Y(7) ~ 0.874 427+ O(7). 4.7)

A complete algorithm for evaluating K and L for imaginary
order and real argument was developed by Gil et al. [61,62].
Since we are only calculating products of Bessel functions
and the methods for calculating one is much like that for
another, the code performance could be increased signifi-
cantly by reprogramming (we used programming language
CH#).

Different calculation methods are appropriate in different
areas of the x, 7 plane as shown in Fig. 3(a). For K and K’
we use Maclaurin-type series expansion in region I in the
figure [bounded by 7>0.044(x—3.1)!+x—-3.1] and in re-
gions II and III [bounded by 7< 380(;3;030)0'572] a method of
continued fractions is used [63] (the continued fraction
method in [64] may be used for imaginary orders also). No
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continued fraction method is available for L, but series ex-
pansions turn out to be more robust than for K,K’; for x
<60 (region II) Maclaurin series expansion is used, and
asymptotic series expansion is used above this (region III).
In the remaining area (region IV) Airy function-type
asymptotic expansions were used [61,65,66]. In addition a
fast method for evaluating complex gamma functions was
necessary—we used that of Spouge [67]. The resulting algo-
rithm was able to calculate \;,(x) with at least eight signifi-
cant digits on x,7e[0,100], more than sufficient for our
purposes.

Because the calculation of A is rather elaborate we do not
do the double integral [Eq. (4.1)] directly but calculate a
number of discrete values of Y(7) and use spline interpola-
tion to represent Y in the integration over 7, which then
converges rapidly. The function Y(7) is zero at =0 and
increases smoothly thence to approach a positive constant,
obtained already at modest values of 7, as plotted in Fig.
3(b). The factor [In D/D,]" behaves as e27% for large 7
(assuming a<7r) assuring rapid convergence when « is not
close to zero or 2.

In the limit ¥ — 1 we should obtain correspondence with
[35] where the energy of a perfectly reflecting wedge closed
by a diaphanous arc was considered. In this strong coupling
case (the arc becoming perfectly reflecting) the energy of the
sector inside the wedge only (modulo a singular term) was
written on the form

e(p), (4.8)

97 8ana®
where the dimensionless function e(p) is given in Eq. (4.22)
in [35] and p=m7/ « as before. In the present case the modes
in the interior and exterior sectors never decouple even in the
limit r— 1 and Eq. (3.12) thus calculates the energy of the
whole system, regularized by subtracting the energy of free
space, that is, by subtracting the result when the arc is moved
to infinity [this is already implicitly subtracted by use of Eq.
(2.6)] and the wedge boundaries become transparent. The
energy to compare with is therefore on the form given in [35]
where the energy of the complementary wedge is added and
that of a cylinder is subtracted. We can therefore write Eq.

(3.4) in the form Ey=2,4(p)/8mna* where
id id

eia(p)=e(p) +e(p’) —2e(1) (4.9)
and p’ was defined in Eq. (3.3).
For our system the corresponding function is
2 (7 D |’
E(p)=——f dn[ln—} Y(in;r). (4.10)
TS DO

We plot &(p) as a function of p and as a function of « in Fig.
4. When r—1 full agreement with ej4(p) of Eq. (4.9) is
obtained.

V. CONCLUSIONS

We have analyzed the Casimir energy of a magnetodielec-
tric cylinder whose cross section is a wedge closed by a
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FIG. 4. Above: the function &(p) calculated for different r. Be-
low: same quantity, now plotted as a function of opening angle «.

circular arc under the restriction that the cylinder be diapha-
nous, i.e., that the speed of light be spatially uniform. We
obtain an expression for the Casimir energy per unit length
of the cylinder, regularized by subtraction of the energy of
the wedge alone and the cylinder alone. The energy is then
zero when the opening angle of the wedge, «, equals m, it is
symmetrical under the substitution a«27—c«, and it re-
mains finite as « tends to zero or 27 except when the abso-
lute reflection coefficients of the wedge boundaries are equal
to unity.

A numerical investigation confirms that this generalizes a
previously known result for a perfectly conducting wedge
closed by a diaphanous magnetodielectric arc in the limit
where the arc becomes perfectly reflecting, except for a sin-
gular term present in that geometry which we argue does not
present itself in the present configuration. This implies that
the singular term found and discussed in [35] is an artifact of
the use of ideal conductor boundary conditions and does not
enter for a diaphanous wedge.

We mention finally that the diaphanous condition eu
=const is an important simplifying element in the analysis. If
this condition were given up, the problem would be very
difficult to solve. As mentioned also in [35], the effect is the
same as that encountered in the Casimir theory of a solid
ball: the condition of diaphanousness causes the divergent
terms to vanish [68]. Analogously, when calculating the Ca-
simir energy for a piecewise uniform string, the same effect
turns up. If the velocity of sound (in this case sound replaces
light) is the same (=c) in the different pieces of the string,
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then the theory works smoothly [69]. If this condition is
relaxed, the problem becomes in practice intractable.
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APPENDIX: SEMITRANSPARENT WEDGE

In this appendix we sketch another way of deriving the
azimuthal dependence, based on an analogous scalar model,
in which the wedge is described by a J-function potential,

V() =\, 80— a/2) + NS0+ a/2). (A1)

This has the diaphanous property of preserving the speed of
light both within and outside the wedge. We can solve this
cylindrical problem in terms of the two-dimensional Green’s
function G, which satisfies

[1& P, 1P Vo
—— P + K

G(p,0:p'.0'
bap"ap 2ot }(p p'.0')

=Il—)§(p—p’)5(0—0’). (A2)

This separates into two equations, one for the angular eigen-
function ©,(6),

36 (A3)

leaving us with the radial reduced Green’s function equation,

1 e
[——ipi+K+ ]gy(pp)——ﬁ(p p'). (A4)
pdp dp P’ P

The latter, for a Dirichlet arc at p=a, has the familiar solu-
tion,

|:— ﬁ + V(a):|®v(0) = Vz@v(e)’

gulp:p") = 1(kp)K (Kp=) = T (xp)](Kp") 7 ((Ka))
P’P, <a, (A5a)
g.p.p") =1,(kp)K (kp=) — K (kp)K (kp') ((Ka))
p’p, >a. (ASb)

The azimuthal eigenvalue v is determined by Eq. (A3). For
the wedge S-function potential [Eq. (A1)] it is easy to deter-
mine v by writing the solutions to Eq. (A3) as linear combi-
nations of e’ with different coefficients in the sectors
|6 <a/2 and m=|6|> a/2. Continuity of the function and
discontinuity of its derivative are imposed at the wedge
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boundaries. The four simultaneous linear homogeneous
equations have a solution only if the secular equation is sat-
isfied,

- —)sin TV

0= D(v) = sin? V(a’—ﬂ')—(l
1\

v v .
—| —+ — /sin 27w
NN
Because we recognize that the reflection coefficient for a
single S-function interface is r,=(1+2iv/\;)”", so

(A6)

o 477 o 2v 2w
Rerir, =1-——, Imrir, ="+_—,

(A7)
ANy SR

we see that this dispersion relation coincides with that in Eq.
(2.20) when the reflection coefficient is purely real. Note that
the v=0 root of Eq. (A6) is spurious and must be excluded;
there are no »=0 modes for the semitransparent wedge.
Now the full Green’s function can be constructed as

do . dk
G(x,x')=fﬁe"“’(" fzﬂ_ ik(z=2')

1
X ;TE 0,(0)05(0)g,(p.p"),  (A8)

from which the Casimir energy per length can be computed
from

g__

J 2 f dppg.(p:p), (A9)

where we have recognized that because the eigenvalue equa-
tion for v is a Sturm-Liuoville problem, the integration over
the @ eigenfunctions is 27. As above, we can enforce the
eigenvalue condition by the argument principle, so we have
the expression after again converting to polar coordinates as
in Eq. (3.10),
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il e ol o)
&= 8#1] dkk f_wdv<d7]1nD(ln) Odppgm(p,p)-
(A10)

Further, we must subtract off the free radial Green’s function
without the arc at r=a, which then implies

* d
f dppgi(p,p) — 2ndn ——In[/;,(ka)K;,(ka)],

(A11)

as well as remove the term present without the wedge poten-
tial,

Ay D(v)
417 sin® 7y’

D(v) — D(v) = (A12)

leaving us with an expression for the Casimir energy analo-
gous to Eq. (3.12). This can be further simplified by noting

that iln 5(1’7]) is odd, which then yields the expression

E= J dxxJ dn(—lnD(m))arctanK Kiy®)
Liy(x)’
(A13)
where
K, (x)=- > s [ W0 =1,(],  (Alda)

L= i—w[lﬂ(x) +1,(0], (A14b)
2 sin

where both L;,(x) and K;,(x) are real for real » and x, and

sinh np
in(X) =~ [Liy(x) = iKip (x)]. (A15)
Details of the calculation of the Casimir energy for a semi-
transparent wedge will appear elsewhere.
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