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We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in
the limit of Th−Tc→0 where Th and Tc are the temperatures of the hot and cold heat reservoirs, respectively.
In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the
Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that
these Onsager coefficients satisfy the so-called tight-coupling condition and this fact explains why the effi-
ciency at the maximal power �max of this cycle can attain the Curzon-Ahlborn efficiency from the viewpoint
of the linear-response theory.
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I. INTRODUCTION

Improving efficiency of heat engines has been a long
challenge since the Industrial Revolution. Substantial
progress of our knowledge came from Carnot’s insight: he
conceived a mathematical model of an idealized heat engine,
now called the Carnot cycle, and showed that there is an
upper limit of the efficiency of all the existing heat engines
which can be attained only when the engines are working
infinitely slowly �quasistatic limit� to vanish the irreversibil-
ity.

In the fundamental physics, properties of heat engines
working at the maximal power have also been studied since
the study by Curzon and Ahlborn �1,2� �see also �3��. Al-
though the quasistatic Carnot cycle has the highest effi-
ciency, it outputs zero power because it takes infinite time to
output a finite amount of work. By contrast, Curzon and
Ahlborn considered a finite-time Carnot cycle which ex-
changes heat at a finite rate with the reservoirs according to
the linear time-independent Fourier law. Under the assump-
tion of endoreversibility that irreversible processes are oc-
curred only through these heat exchanges, they derived a
remarkable result: the efficiency at the maximal power �max
is given by

�max = 1 −�Tc

Th
� �CA, �1�

where Th and Tc are the temperatures of the hot and cold heat
reservoirs, respectively, and the above �CA is usually called
the Curzon-Ahlborn �CA� efficiency.

Previously we studied a finite-time Carnot cycle of a
weakly interacting gas which we can regard as a nearly ideal
gas to confirm the validity of the CA efficiency from a more
microscopic point of view �4,5�. We performed extensive
molecular dynamics �MD� computer simulations of the
finite-time Carnot cycle of the two-dimensional low dense
hard-disk gas and measured the efficiency and the power for
the first time. Our simulations revealed that our �max agrees
with �CA only in the limit of �T→0 where �T�Th−Tc, but
exceeds �CA at somewhat large �T. We also confirmed this
behavior of �max analytically using the elementary molecular
kinetic theory. Therefore the phenomenological prediction of
Eq. �1� seems to be valid only in the limit of the small tem-

perature difference for our finite-time Carnot cycle. Recently,
Van den Broeck �6� considered the heat engine described as
the Onsager relations

J1 = L11X1 + L12X2, �2�

J2 = L21X1 + L22X2, �3�

and showed that �CA is the upper limit of �max in this heat
engine �see also Sec. V�. The recent studies �7–11� on the
various theoretical heat engine models also support the re-
sults in �6�. These results seem to meet our previous result of
the finite-time Carnot cycle, though it is unclear why our
system realized the upper limit of �max in �T→0. Moreover
it is also unclear whether the finite-time Carnot cycle can be
understood in the framework of the Onsager relations be-
cause the explicit calculations of the Onsager coefficients Lij
for that cycle do not exist to our knowledge.

In this paper, we apply the framework of the Onsager
relations to our previous study of the finite-time Carnot cycle
and analytically calculate the Onsager coefficients for it. Al-
though there are a few analytic calculations of the Onsager
coefficients for the steady state of heat engines such as
Brownian motors �7,12�, we believe that the present study is
the first example of the calculation for the cyclic heat engine
model where the two heat reservoirs do not contact with the
working substance simultaneously. We will show that these
Onsager coefficients satisfy the so-called tight-coupling con-
dition and therefore we can give an explicit explanation why
�max of this cycle attains the CA efficiency in the limit of
�T→0, as observed in �4,5�, from the viewpoint of the
linear-response theory. We also perform the MD computer
simulations to check the validity of our analytic calculations
of the Onsager coefficients.

The organization of this paper is as follows. First we in-
troduce our finite-time Carnot cycle model in Sec. II and
describe the molecular kinetic theory in Sec. III. The main
result of this paper, the analytic calculations of the Onsager
coefficients for our model, accompanied by the results of the
MD simulations for checking the validity of our analytic
calculations, are shown in Sec. IV. In Sec. V, we introduce
the general framework of the heat engine used in �6� and
discuss the efficiency at the maximal power of our finite-time
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Carnot cycle using those Onsager coefficients according to
that framework. We summarize this study in Sec. VI.

II. MODEL

We first introduce a theoretical model for a finite-time
Carnot cycle of a two-dimensional weakly interacting gas
which we can regard as a nearly ideal gas �4,5�. To mimic the
weakly interacting nearly ideal gas, we confine a low dense
N hard-disk particles with diameter d and mass m into a
cylinder with rectangular geometry and let them collide with
each other �Fig. 1�a��. The head of the cylinder is a piston
and it moves back and forth at a constant speed u. The usual
quasistatic Carnot cycle �u→0� consists of four processes
�Fig. 1�b��: �A� isothermal expansion process �V1→V2� in
contact with the hot reservoir at the temperature Th, �B� adia-
batic expansion process �V2→V3�, �C� isothermal compres-
sion process �V3→V4� in contact with the cold reservoir at
Tc, �D� adiabatic compression process �V4→V1�, where Vk’s
�k=1, . . . ,4� are the volumes of the cylinder at which we
switch each of the four processes. Vk’s satisfy the relations
V3= �Th /Tc�V2 and V4= �Th /Tc�V1 in the case of the two-
dimensional ideal gas. Since we regard our system of hard-
disk particles as a nearly ideal gas, we apply these relations
to our system. In the case of a finite-time cycle, we also
switch each process at the same volume Vk as in the quasi-
static case.

Defining �x ,y� coordinates as in Fig. 1�a�, we let the pis-
ton move along the x axis at a finite constant speed u. Here,
we express the x length and the y length of the cylinder as l
and L, respectively and the volume of the cylinder as V=Ll.
Then, the x length lk at the switching volume Vk can be
defined as lk�Vk /L.

When a particle with the velocity v= �vx ,vy� collides with
the piston moving at the x velocity �u, its velocity changes
to v�= �−vx�2u ,vy�, assuming perfectly elastic collision.
Then the colliding particle gives the microscopic work
m��v�2− �v��2� /2=2m��uvx−u2� against the piston. In the
isothermal processes �A� and �C�, we set the thermalizing
wall with the length S at the position as in Fig. 1�a�. When a

particle with the velocity v= �vx ,vy� collides with the ther-
malizing wall, its velocity stochastically changes to the value
governed by the distribution function

f�v,Ti� =
1

�2�
� m

kBTi
	3/2

vy exp�−
mv2

2kBTi
	 �4�


−��vx�+� ,0�vy �+�, Ti �i=h in �A�, c in �C���, where
kB is the Boltzmann constant �13�. The microscopic heat
flowing from the thermalizing wall can be calculated by the
difference between the kinetic energies before and after the
collision. We sum up the above microscopic work and heat
during one cycle. When Qh denotes the heat flown from the
hot reservoir during �A� and Qc denotes the heat flown from
the cold reservoir during �C�, the total work W during one
cycle is expressed as W�Qh+Qc. Then the power P and the

efficiency � can be defined as P�Ẇ and ��W /Qh

� P / Q̇h. Here, the dot denotes the value divided by one
cycle period or the value per unit time throughout the paper.
In our system, one cycle period is 2�l3− l1� /u.

III. MOLECULAR KINETIC THEORY

In this section, we review the results of the molecular
kinetic theory of the finite-time Carnot cycle obtained in our
previous work. The details of the derivation of the equations
in this section are described in �4�.

If we assume that, even in a finite-time cycle, the gas
relaxes to a uniform equilibrium state with a well-defined
temperature T sufficiently fast and the particle velocity v is
governed by Maxwell-Boltzmann distribution at T, we can
easily derive the time-evolution equation of T using the el-
ementary molecular kinetic theory. Such an assumption of
the fast relaxation to a uniform equilibrium state at a well-
defined temperature T is valid when the energy equilibration
in the cylinder due to the interparticle collisions is much
faster than the speed of the energy transfers through the ther-
malizing wall and the piston. This situation is surely realized
when u is small and the interaction length S between the gas
and the reservoir is sufficiently small. If we assume that the
gas is sufficiently close to a two-dimensional ideal gas, the
internal energy of the gas can be approximated as NkBT.
Then, we can derive the time-evolution equation of the gas
temperature T for each of the four processes �A�–�D� as

�A�:NkB
dT

dt
= qh − we, �B�:NkB

dT

dt
= − we,

�C�:NkB
dT

dt
= qc − wc, �D�:NkB

dT

dt
= − wc, �5�

where qi=qi�t ,T� �i=h in �A�, c in �C�� is the heat flowing
into the system per unit time in the isothermal processes and
wj =wj�t ,T� �j=e in the expansion processes �A� and �B�, c
in the compression processes �C� and �D�� is the work
against the piston per unit time. By counting the number of
the particles colliding with the thermalizing wall and the
piston, we can derive the specific forms of qi and we as

(b)(a)

FIG. 1. �a� Schematic illustration of a two-dimensional finite-
time Carnot cycle model. Hard-disk particles as a weakly interact-
ing nearly ideal gas are confined into the cylinder. The piston moves
at a finite constant speed u and the thermalizing wall with the length
S is set on the left bottom of the cylinder during the isothermal
processes. �b� Temperature-volume �T-V� diagram of a quasistatic
Carnot cycle for a two-dimensional ideal gas.
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qi�t,T� =
3SNkB�Ti − T�

4�V�t�
�2�kBT

m
, �6�

we�t,T� =
2muNL

V�t� �A2T

4
− A�T

�
u +

u2

2

− 

0

u/A�T

dvx�A�Tvx − u�2e−vx
2

��
� , �7�

where A��2kB /m. wc is also obtained by changing u→−u
in Eq. �7�. We can numerically solve Eqs. �5� for the entire
cycle at various piston speeds. By using the final temperature
of each process as the initial temperature of the next process
repeatedly, we can obtain a steady cycle at a given u. In Fig.
2, we have shown the temperature-volume �T-V� diagram for
the steady cycle at u=10−4 �dotted line� and u=10−3 �dashed
line�, respectively. The solid line is the theoretical quasistatic
line of a two-dimensional ideal gas. From this figure, we can
see that as u becomes larger, the cycle deviates from the
theoretical quasistatic line and the temperatures during the
isothermal processes �A� and �C� relax to the steady tempera-
tures Th

st��Th� and Tc
st��Tc�, respectively. If it is considered

that the relaxation to the steady temperature is very fast, the
isothermal process may approximately be divided into the
relaxational part and the steady part in the case of a finite-
time cycle, where T�t� instantaneously changes from the ini-
tial temperature of the isothermal process to the steady tem-
perature in the relaxational part and T�t� keeps the steady
temperature in the steady part. These relaxational parts in the
isothermal processes �A� and �C� are surely missed in the
original model by Curzon and Ahlborn �1,4,14�. Moreover
we note that the heat flow per unit time qi as shown in Eq.
�6� is time dependent even during T=Ti

st through the volume
of the cylinder after the relaxational processes in �A� and
�C�. Therefore the assumption of the time-independent heat
flows in the original phenomenological model in �1� does not
seem to be applied to our model.

Although it may be impossible to find the exact solutions
of Eqs. �5�, we can find the analytic expressions of the steady
temperature Ti

st during the isothermal processes �A� and �C�

as the solutions of dT /dt=0 by expanding as Ti
st=Ti+ai

1u
+ai

2u2+O�u3�, assuming that u is small. These expansion co-
efficients ai

1 ,ai
2, etc. can be determined order by order. If we

assume that the relaxational process to Th
st is sufficiently fast,

the heat Qh
st flowing into the system during the steady part

T�t�=Th
st can be calculated up to O�u� as

Qh
st = 


0

�l2−l1�/u

qh�t,Th
st�dt = Qh

qs

− 2mNA�Th�� 1

�
+

L

3S
	u ln

V2

V1
, �8�

where the quasistatic heat for an ideal gas in the isothermal
process �A� is defined as Qh

qs=NkBTh ln�V2 /V1�. Qc
st during

T�t�=Tc
st can also be obtained by changing u→−u, Th→Tc,

and V2 /V1→V4 /V3 in Eq. �8�. If we neglect the contributions
of the heat transfers through the thermalizing wall during the
relaxational parts in �A� and �C�, the steady part of the work
during one cycle Wst�Qh

st+Qc
st becomes

Wst = NkB�Th − Tc�ln
V2

V1
− 2mNA��� 1

�
+

L

3S
	

� ��Th + �Tc�u ln
V2

V1
. �9�

If we assume that the adiabatic processes �B� and �D� even at
a finite u satisfy the quasistatic adiabatic relation TV=const
of a two-dimensional ideal gas, the additional heat transfers
Qh

add and Qc
add during the relaxational part in �A� and �C�,

respectively, can be estimated as

Qh
add = − NkB

4L��Th

3SA
�1 +�Th

Tc
	u �10�

up to O�u� and Qc
add can also be obtained by changing u→

−u and Th↔Tc in Eq. �10�. Therefore the total Qh, Qc, and W
become Qh=Qh

st+Qh
add, Qc=Qc

st+Qc
add, and W=Wst+Qh

add

+Qc
add, respectively.

IV. CALCULATION OF ONSAGER COEFFICIENTS

After the preliminaries in the previous sections, we can
now calculate the Onsager coefficients for our finite-time
Carnot cycle in the linear-response regime �T→0 as fol-
lows. The first step is an appropriate choice of the thermo-
dynamic forces and fluxes for this system. A typical way to
choose these thermodynamic forces and fluxes is to intro-
duce the rate of the total entropy production 	̇ during one
cycle,

	̇ � −
Q̇h

Th
−

Q̇c

Tc
. �11�

This is just the entropy increase of the two reservoirs during
one cycle divided by the cycle period 2�l3− l1� /u because the
entropy of the working substance does not change after one
cycle. Using the relation Qc=W−Qh and considering the
linear-response regime �T→0, it can be rewritten as

0.7

0.8

0.9

1

1.1

1 1.2 1.4 1.6 1.8 2 2.2

T

V

u=10-3

u=10-4

quasistatic

FIG. 2. Temperature-volume �T-V� diagram for the steady cycle
obtained by numerically solving Eqs. �5� for u=10−4 �dotted line�
and u=10−3 �dashed line�. The solid line is a theoretical quasistatic
Carnot cycle for a two-dimensional ideal gas. Since the dotted line
is very close to the solid line, the case of u=10−4 may be regarded
as the quasistatic cycle. The parameters used are N=100, Th=1,
Tc=0.7, S=0.05, m=1, kB=1, l1=1, l2=1.5, and L=1.
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	̇ =
u�− W�

2�l3 − l1�T
+

�T

T2 Q̇h, �12�

where T��Th+Tc� /2 and we have neglected �T3Q̇h and
uW�T terms, the reason of which we will clarify later. Ac-
cording to the linear-response theory, 	̇ can be expressed as
the sum of the product of the thermodynamic force and its
conjugate thermodynamic flux �15,16�,

	̇ = J1X1 + J2X2, �13�

where we define the thermodynamic forces as

X1 �
− W

2�l3 − l1�T
, X2 �

�T

T2 �14�

and their conjugate fluxes as

J1 � u, J2 � Q̇h. �15�

Moreover the linear-response theory assumes the Onsager
relations between the fluxes and forces �15,16�,

J1 = u = L11
− W

2�l3 − l1�T
+ L12

�T

T2 , �16�

J2 = Q̇h = L21
− W

2�l3 − l1�T
+ L22

�T

T2 , �17�

where Lij’s are the Onsager coefficients and the nondiagonal
elements should satisfy the symmetry relation L12=L21. From
these relations between the thermodynamic fluxes and
forces, we understand that 	̇=J1X1+J2X2 is the quantity of
the second order of the thermodynamic forces, which explain

why we neglected the higher order terms like �T3Q̇h and
uW�T in Eq. �12�. Moreover, although we considered the
contributions of the additional heat transfers Qh

add and Qc
add to

the total heat and the work in Sec. III, we can easily show
that their effects do not contribute to 	̇ in the limit of �T
→0. Therefore we can indeed neglect them in the linear-
response regime and use Qh=Qh

st and W=Wst in the calcula-
tions of the Onsager coefficients below.

We are now in a position to calculate the Onsager coeffi-
cients explicitly. First we determine L11 and L21 as follows.
To calculate L11, we consider the relation between u and X1
in the case of �T=0. Expanding Eq. �9� by �T and putting
�T=0, we can obtain the relation

W = − 4mNA��T� 1

�
+

L

3S
	ln

V2

V1
� u . �18�

Comparing Eq. �18� with Eq. �16�, L11 is determined as

L11 =
�l3 − l1�T1/2

2mN� 1

�
+

L

3S
	�2�kB

m
ln

V2

V1

. �19�

Likewise Q̇h with �T=0 can be evaluated up to the linear
order in W using Eqs. �8� and �18� as

Q̇h =
kBT3/2

4m� 1

�
+

L

3S
	�2�kB

m

− W

2�l3 − l1�T
. �20�

Comparing Eq. �20� with Eq. �17�, L21 is determined as

L21 =
kBT3/2

4m� 1

�
+

L

3S
	�2�kB

m

. �21�

Next we determine L12 and L22 as follows. To calculate L12,
we consider the relation between u and X2 in the case of
W=0. In this case, regardless of a finite temperature differ-
ence, useful work cannot be obtained because the engine
runs so fast that it cannot output positive work. Therefore,
this case is called the work-consuming state. The speed of
the piston at the work-consuming state can be obtained as a
solution of W=0 in Eq. �9�. Considering in the linear-
response regime �Th−�Tc��T / �2�T�, it becomes

u =
kBT3/2

4m� 1

�
+

L

3S
	�2�kB

m

�T

T2 . �22�

From Eqs. �16� and �22�, we can obtain

L12 =
kBT3/2

4m� 1

�
+

L

3S
	�2�kB

m

. �23�

From Eqs. �21� and �23�, we can confirm the symmetry re-
lation L12=L21 as expected. To determine the last coefficient

L22, we consider the heat flow Q̇h at the work-consuming
state using Eqs. �8� and �22�,

Q̇h =

NkB
2 ln

V2

V1

8m� 1

�
+

L

3S
	�2�B

m
�l3 − l1�

T5/2�T

T2 . �24�

From Eqs. �17� and �24�, the last coefficient L22 turns out to
be

L22 =

NkB
2 ln

V2

V1
T5/2

8m� 1

�
+

L

3S
	�2�B

m
�l3 − l1�

. �25�

Note that the positivity of the rate of the total entropy pro-
duction, 	̇=J1X1+J2X2
0, should restrict the values of the
Onsager coefficients to L11
0, L22
0, and L11L22−L12L21

0. We can confirm that Lij of our finite-time Carnot cycle
surely satisfy these relations. These analytic expressions of
the Onsager coefficients Lij are the main result of this paper.

To confirm the validity of the above analytic calculations
of the Onsager coefficients, especially T dependence of
them, we performed the event-driven MD computer simula-
tions �4,5,17� of our two-dimensional finite-time Carnot
cycle, following the procedure described in Sec. II.
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To calculate L12 and L22 at given T, we fix the temperature
difference �T to a sufficiently small value and find the piston
speed where the work becomes 0. Then we can determine
L12 and L22 numerically as

L12 =
J1

X2
=

uT2

�T
, �26�

L22 =
J2

X2
=

Q̇hT2

�T
�27�

from Eqs. �16� and �17�. Next, to calculate L11 and L21 at
given T, we set �T=0. Fixing u to a sufficiently small value
�2.5�10−5�3�10−4�, we can determine L11 and L21 nu-
merically as

L11 =
J1

X1
= −

2�l3 − l1�Tu

W
, �28�

L21 =
J2

X1
= −

2�l3 − l1�TQ̇h

W
�29�

from using Eqs. �16� and �17�. Figure 3 shows T dependence
of these Onsager coefficients determined by the MD simula-
tions as well as the analytic results. We can see fairly good
agreement between the MD data and the analytic lines in the
range we studied. These data clearly support the validity of
our analytic expressions of the Onsager coefficients which
has been obtained under some theoretical assumptions.

V. EFFICIENCY AT THE MAXIMAL POWER

To see how the Onsager coefficients derived in Sec. IV
indeed govern the behavior of the finite-time Carnot cycle,
we briefly introduce the general framework of the heat en-
gine obeying the Onsager relations �6�. The basic setup is as
follows. We consider a general steady or cyclic process in
which the work is extracted from the heat flow between the

small temperature difference. �see Fig. 4� The work W done
against the external force F is W=−Fx where x is the ther-
modynamically conjugate variable of F. We define a thermo-
dynamic force as X1=F /T and the corresponding thermody-
namic flux as J1= ẋ. We also choose X2=1 /Tc−1 /Th as

another thermodynamic force and J2= Q̇h as the correspond-
ing thermodynamic flux. If we consider the linear-response
regime �T→0, X2 can be written as X2��T /T2. Moreover
the linear-response theory assumes the Onsager relations be-
tween the thermodynamic forces and fluxes �15,16�,

J1 = L11X1 + L12X2, �30�

J2 = L21X1 + L22X2, �31�

where the nondiagonal elements of the Onsager coefficients

should satisfy L12=L21. Then, the power P=Ẇ and the effi-

ciency �= P / Q̇h of the engine can be expressed as

P = − J1X1T , �32�

� =
− J1X1T

J2
. �33�

Now the efficiency at the maximal power �max can be given
as follows: we first maximize the power at X1=
−L12X2 / �2L11� which is determined as the solution of
�P /�X1=0, then, �max becomes

�max =
�T

2T

q2

2 − q2 , �34�

where

q �
L12

�L11L22

�35�

is called the coupling strength parameter. Note that it takes
−1�q�+1 due to the positivity of 	̇. When q satisfies the
tight-coupling condition �q�=1, �max takes the maximal value
�T / �2T�, which is equal to the CA efficiency up to the low-
est order in �T.

In Refs. �4,5�, we studied �max of this finite-time Carnot
cycle extensively by performing the MD computer simula-
tions as a numerical experiment to verify the validity of the
CA efficiency. We found there that �max agrees with the CA
efficiency in the limit of �T→0. Our molecular kinetic

10-4

10-3

10-2
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100

10-1 100

O
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co
ef

fic
ie

nt

T

MD L11
MD L21
MD L12
MD L22

FIG. 3. T dependence of the Onsager coefficients. The dashed
line, the solid line, and the dotted line indicate the theoretical On-
sager coefficient L22 �Eq. �25��, L12 �Eq. �23�� 
=L21 �Eq. �21��� and
L11 �Eq. �19��, respectively. The parameters used in the MD simu-
lations are �T=4�10−3 and d=0.01. The other parameters are the
same as in Fig. 2. The MD data were obtained by averaging 100–
800 cycles after transient 5 cycles in the simulations.

FIG. 4. Schematic illustration of the heat engine governed by
the Onsager relations Eqs. �30� and �31�.
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theory also confirmed this property �4�: using Qi=Qi
st+Qi

add

in Sec. III, we can calculate the speed u=umax at which the
power P maximizes as

umax =
kB�Th − Tc�

��
�4mA� L

3S
+

1

�
	

� ��Th + �Tc�ln
V2

V1
+

8LkB

3SA�Th

� �Th − Tc��1 +�Th

Tc
	�−1

ln
V2

V1
, �36�

and can confirm that the efficiency � at u=umax shows

�max � ��umax� =
W�umax�

Qh
st�umax� + Qh

add�umax�
→

�T

2T
��T → 0� .

�37�

Now we can clarify the underlying physics of this behavior
of �max. In the limit of �T→0, our finite-time Carnot cycle
can be described by the Onsager relations as shown in Sec
IV. Then we can confirm that q=1 in our finite-time Carnot
cycle from Eqs. �19�, �23�, �25�, and �35�. This condition
gives a proof that our finite-time Carnot cycle shows the CA

efficiency in the limit of �T→0 as suggested in �4,5� from
the viewpoint of the linear-response theory.

VI. SUMMARY

In this paper, we have studied a finite-time Carnot cycle
of a two-dimensional weakly interacting nearly ideal gas
working in the linear-response regime and have explicitly
calculated the Onsager coefficients of this system for the first
time. Molecular dynamics computer simulations of this cycle
have supported the theoretical calculations in spite of some
assumptions in the analysis. We have revealed that the On-
sager coefficients of this system satisfy the tight-coupling
condition q=L12 /�L11L22=1 and therefore can understand
why our finite-time Carnot cycle attains the Curzon-Ahlborn
efficiency in the linear-response regime �T→0 as suggested
in Refs. �4,5�. It would be an interesting problem to construct
and study the collective behavior of the Carnot cycles
coupled with each other by using the property of the Onsager
coefficients derived in this paper �6,18–21�.
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