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We consider 36 planar nets identified by O’Keeffe and Hyde and calculate for each, using the theory of finite
Markovian processes, the overall mean walk length �n� �first passage time� of a reactant diffusing randomly on
a finite platelet before being trapped at a reaction center; the results are analyzed in terms of the total number
N of lattice sites, the number Nb of boundary sites, the average valence �̄, and the bond orientation function �.
We establish that crystalline platelets that are members of the same compatible class are characterized by very
comparable catalytic efficiencies. The results obtained are also linked to an analysis of the kinetics of docking
in postnucleation stages of protein self-assembly and to a recent conjecture on the symmetries of planar nets
and the hard disk freezing transition.
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I. INTRODUCTION

In a previous contribution �1� we investigated the reaction
efficiency of diffusion-controlled processes on finite, planar
arrays having chemical or physical receptors. Interest in this
problem is driven by several factors among which are the
following. First, few physical systems are characterized by
perfectly ordered infinite arrays free of imperfections; imper-
fections bifurcate the space into domains or regions of finite
spatial extent. Second, it has long been recognized that reac-
tions carried out in/on organized molecular assemblies can
be kinetically advantaged relative to reaction in homoge-
neous solution �2�. And, most importantly, techniques now
widely used in nanotechnology have been used to fabricate
compartmentalized systems of specific geometry and conse-
quent functionality. These factors warrant a detailed study of
the influence of finite-system geometries on the efficiency of
chemical and physical processes.

In �1�, the theory of finite Markovian processes was mo-
bilized to calculate the site-specific average walk length �n�
of a particle undergoing random displacements on small lat-
tices before localization �trapping�; see also the review �3�.
By analyzing the �numerically exact� results obtained on lat-
tices of finite extent having boundaries of arbitrary shape,
definite conclusions could be drawn on the separate influence
on the reaction efficiency of system size N, boundary �or
perimeter� sites Nb, and average valence �̄, as well as the
root-mean-square distance of the N lattice sites relative to the
center of the array. Comparison of the results obtained with
predictions based on analytical expressions derived by Mon-
troll and Weiss �4� in their classic studies on infinite periodic
lattices of uniform valence �viz., on the hexagonal ��=3�,
square-planar ��=4� and triangular ��=6� lattices� revealed a
more subtle dependence on the lattice parameters N and �

and a further pronounced dependence on the geometrical
shape of the domain, as we shall now review.

The finite triangular, square-planar, hexagonal, and Pen-
rose lattices considered in �1� were designed to assess the
extent to which the known analytical dependence of �n̄� on N
and � for infinite periodic lattices �3� was modulated when
finite lattices were considered. Three general conclusions
were drawn. First, for fixed N, the smaller the number Nb of
vertices defining the boundary of the finite lattice under con-
sideration, the smaller the value of �n̄� of the random walker
before trapping. Second, for fixed N and fixed Nb, the smaller
the value of the overall �average� root-mean-square distance
�r̄2�1/2 of the N lattice sites relative to the center of the array,
the smaller the value of �n̄�. Third, for fixed N, Nb, and
root-mean-square distance, �n̄� decreased with an increase in
the �overall� average valence �̄ of lattice sites comprising the
array.

The conclusions cited in the preceding paragraph were the
basis of a proposal put forward in �5� that the kinetics of
docking in the postnucleation stages of protein, and zeolite
self-assembly might be understood in terms of a “corre-
sponding states” approach. In particular, it was conjectured
there �but not proved� that a topological �diffeomorphic� dis-
tortion of a template surface, one that maintained constant
the values of N, Nb, and �̄, should preserve the qualitative
trends in the site-specific docking efficiency exhibited by the
precursor surface.

The study undertaken here is designed to explore quanti-
tatively this corresponding states idea by using templates that
describe known planar nets in crystal chemistry, viz., alloys
or inorganic solids whose network structure has been thor-
oughly characterized. The following section develops the ba-
sic idea using two examples illustrated in �6�. Section III
provides a compilation of results obtained using the theory of
Markovian processes to investigate 30 of the planar nets
identified by O’Keeffe and Hyde. The concluding section
�Sec. IV� summarizes our results using both the geometrical
metrics noted above and the bond orientation function �,
which is now standard in describing glassy materials, disor-
dered solids, and the hexatic phase in the Kosterlitz, Thou-
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less, Halperin, Nelson, and Young �KTHNY� theory �7–11�
of the hard disk phase transition. We close by relating the
results reported here to a recent study �12� which identified
tessellations that believed to be signatures of symmetries im-
portant in the hard disk transition.

II. COMPATIBLE NETS

The point of departure for the study presented in �6� was
the idea that crystal structures could be considered as stack-
ings of two-dimensional packings of atoms �“layers”�. Thus,
for example, tetragonal tungsten bronze �Fig. 1� when
viewed in this way has the layer structure illustrated in Fig.
2. In O’Keeffe and Hyde’s study this layer is labeled net 21;
for the reader’s convenience, in this example, as in all the
examples considered later in this work, we shall use the net
designation presented in �6�.

The nets considered in �6� were organized into two prin-
cipal compatibility classes: the first based on the square-
planar symmetry and the second based on the hexagonal sys-
tem. Their net classification system was specified using two
organizing relationships; for the square system,

N = A�p2 + q2� ,

and for the hexagonal system,

N = B�p2 + pq + q2� ,

where �p ,q� are integers and A or B are nonzero integers that
are the same for two compatible nets. The consequences of
this classification scheme were made explicit in their Table 2.
All but four of the first 27 nets considered in �6� fall into one
or the other of these classes.

The first �and simplest� example of a transformation be-
tween two lattices in the same compatibility class is illus-
trated in their Fig. 34 and displayed here in Fig. 3. The
rotation of square groups of atoms which take the square-
planar system, �44�, into the net, �32 ·4 ·3 ·4�, is shown ex-
plicitly; in the notation of �6�, these Schafli designations are
labeled nets 2 and 6, respectively.

As is evident, the vertices of the nets displayed in Figs. 3
have been differentiated. Described now is the convention

(a)

(b)

FIG. 1. �Color� �a� Tetragonal tungsten bronze K3W5O15 �side
view�. �b� Tetragonal tungsten bronze �top view�.

(a)

(b)

FIG. 2. �Color� �a� Projection highlighting the surface of
K3W5O15. �b� The planar net 21 �see text�.

(b)(a)

FIG. 3. �a� The precursor lattice �44�. �b� The planar net 6
�32 ·4 ·3 ·4�.
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used in coding the vertices in Fig. 3, which is the same
convention that will be followed for all the other nets illus-
trated in this study. In the theory of finite Markovian pro-
cesses, one places a “trap” �reaction center, active site� at a
particular site �vertex i� on the lattice and then computes the
average number �n�i of steps before the random walker is
localized �or “trapped”�. For the particular site i, �n�i is a
measure of reaction efficiency at that site �relative to all other
sites of the lattice�. To obtain a metric for the platelet as a
whole, one must compute �n�i for all N sites of the given
lattice and construct the overall average �n̄�.

The coding displayed in Figs. 3 then has the following
description. Computing the site-by-site ratio

R =
�n�i

�n̄�

if �n�i is within 10% of the average value �n̄�, this site is
represented by a filled gray circle; site values which are less
than 90% of the mean value are designated by filled black
circles and sites greater than 110% of the mean are given by
open circles. Qualitatively, then, filled black circles represent
sites of optimal catalytic activity and sites coded by open
circles represent sites of marginal or poor catalytic activity.

We have performed calculations to characterize the cata-
lytic activity for each of the platelets considered in this study.

Displayed in the Appendix are 27 planar nets �redrawn from
O’Keeffe and Hyde� with each site for each platelet coded
using the above convention. The obtained values for the ratio
R upon which these figures are based are presented in the
supplementary online material �13�.

As is already apparent from the coding in Fig. 3, and
consistent with one’s intuition, the optimal sites of catalytic
activity for a platelet are in the “interior” whereas less effec-
tive sites are on the “boundary.” This behavior is also seen in
Fig. 4 which displays a second lattice �5·42, 5 ·4 ·3 ·4, 5 ·43,
�5·4 ·3 ·4�2� derivable from �44�; the former is net 21 �see
Fig. 39a in �6� and Figs. 1 and 2 above� and the second is,
again, net 2.

We come now to the main point addressed in this paper.
For nets that are in the same compatibility class, and deriv-
able one from the other via elementary topological transfor-
mations, we examine how close are the calculated values of
�n̄� for compatible nets.

Examining Fig. 3, note that both nets are characterized by
N=20, Nb=16; the overall average valence �̄ for the finite
�44� net is 3.100 and for �32 ·4 ·3 ·4� the value is 3.700. The
value of �n̄� for the square net is 34.202, and for the second
net the value is 33.846, with a difference of �1%. As will be
discussed in Sec. IV, this ordering of the values of �n̄� is
consistent both with the predictions of the analytical
asymptotic expressions derived by Montroll and Weiss �4�

(a)

(b)

FIG. 4. �a� Square lattice �44� Precursor. �b� Net 21.
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for infinite periodic lattices and with the study of finite pla-
nar nets reported in �1�; in particular, with all other things
being equal, the larger the value of the valence, the smaller
the resulting �n̄�.

As a second example �Fig. 4�, the square lattice has N
=88, Nb=44, and �̄=3.455, and net 21 has N=88, Nb=48,
and �̄=3.364. For the former finite net, �n̄�=223.388, and for
the second one, �n̄�=236.604. As noted earlier, for finite
platelets, for a given N, the value of �n̄� is next governed by
the value of Nb; here, the smaller Nb for the square-planar net
leads to a somewhat smaller value of �n̄�. The difference
noted, however, remains small, �6%.

As these two examples demonstrate, nets of a given N
which are members of the same compatibility class have
“nearly” the same values of �n̄�, with the difference attribut-
able to �slightly� different values of Nb and �̄. This congru-
ence is the basis of the idea of corresponding states in chemi-
cal catalysis that we posited at the outset of this study.

As a further illustration of this congruence, one can con-
struct square-planar or hexagonal lattices which can be
placed in correspondence with certain nets in the O’Keeffe
and Hyde classification system. Specifically, one can design
companion pairs of lattices with the same N and Nb �similar
to the program that was carried out in �1�� and compare the
values calculated for �n̄�. This correspondence is not “per-
fect” because, in pinning the values �N ,Nb�, the geometry of
the companion square-planar/hexagonal platelets becomes
much more asymmetrical than the net being considered, and
one knows from the study presented in �1� that the root-

mean-square distribution of the N sites of the array relative
to a centrosymmetric site is an important predictor in influ-
encing the reaction efficiency. Having that said, the results of
these comparisons are displayed in Table I. Note that we can
also construct lattice comparisons for two of the four nets
identified in �6� that are not easily classified in either the
square or hexagonal systems �viz., nets 13 and 25�. A glance
at the results in this table shows that the quantitative differ-
ences between all companion pairs of lattices, taken together,
average to �10%.

III. COMPILATION OF RESULTS

Listed in Table II are results for 27 of the nets identified in
�6�. Reported here are the O’Keeffe and Hyde net number;
the Schafli designation for each; the values of N, Nb, and �̄
for the finite platelet considered; the packing fraction � for
the unit cell; and the overall average mean walk length �n̄�,
computed as described in Sec. II. As mentioned earlier, the
values of the site-specific �n�i and the overall �n̄� are numeri-
cally exact; see �3�. Not included here, but given explicitly in
�6�, are examples �alloys and inorganic solids� drawn from
the crystallographic literature of �almost� every net described
in their study.

In addition to the above geometric signatures, we list in
Table III the bond orientation parameter for most nets in the
square and the hexagonal systems. For a reference triangular
lattice, the parameter � is defined as

TABLE I. Comparison of companion pairs of finite nets.

Net N Nb �̄ �n� Square net �̄ �n�

6 36 20 4.00 69.921 6�6 3.33 71.280

19 49 24 3.43 110.412 7�7 3.43 104.150

21 64 36 3.38 158.808 4�16 3.38 209.318

Net N Nb �̄ �n� Hex net �̄ �n�
7 40 24 3.33 97.182 4�10 4.65 87.384

11 64 36 4.78 211.412 8�8 4.78 185.481

3 30 22 2.53 70.543 3�10 4.33 69.507

4 48 24 4.38 105.731 6�8 4.88 95.831

8 48 24 3.58 110.627 6�8 4.88 95.831

Net N Nb �̄ �n� Square net �̄ �n�
13 49 24 4.16 102.925 7�7 3.43 104.149

Net N Nb �̄ �n� Hex net �̄ �n�
7�7 4.90 97.775

Net N Nb �̄ �n� Square net �̄ �n�
25 40 24 3.30 88.866 4�10 3.25 96.346

Hex net �̄ �n�
4�10 4.65 87.384

KOZAK, BRZEZINSKI, AND GARZA-LÓPEZ PHYSICAL REVIEW E 80, 021116 �2009�

021116-4



� =
1

N
�
i=1

N
1

Nij
�

j

ei6�i. �1�

Here, N is the number of vertices �or “sites”� in the unit cell;
� is the angle between the bond connecting particles i and j

and an arbitrary, but fixed, reference axis; and the sum on j is
over the Nij nearest neighbors of i. For a square-planar ref-
erence lattice i, “6” in the above expression is replaced with
“4.” This parameter � is useful in characterizing the hexatic
phase in a d=2-dimensional system of hard disks, glassy

TABLE II. Platelet characteristics and mean walk length.

Net Schlafli N Nb �̄ � a �n�

Square system �A=1�
2 �44� 25 16 3.20 0.785398 45.071

6 �32 ·4 ·3 ·4� 36 20 4.00 0.841787 69.921

9 �4·82� 48 34 2.71 0.539012 144.169

19 �54 ·32 ·52, �3·5 ·4 ·5�2, 32 ·52� 49 24 3.43 0.785398 110.412

20 ��3·5 ·4 ·5�2, 3 ·5 ·3 ·5� 59 32 3.39 0.679012 143.985

21 �5·43, 5 ·4 ·3 ·4, 5 ·43, �5·4 ·3 ·4�2� 64 36 3.38 0.677469 158.808

Square system �A=2�
12 �33, �3·4 ·3 ·4�2� 65 31 4.28 0.841787 145.202

14� �3·6 ·3 ·6, �32.62�2� 33 31 3.39 0.680175 74.082

18 ��53�2, 54, 53, 54� 51 28 2.90 0.709083 123.396

26 ��4·72�2, �73�2, �4·72�, 73� 54 32 2.67 0.606655 158.808

Hexagonal system �B=1�
1 �36� 25 16 4.48 0.906900 44.668

7 �3·6 ·3 ·6� 40 24 3.33 0.680175 97.182

11 �4·6 ·12� 64 36 2.69 0.486067 211.412

16�a� ��32 ·4 ·3 ·4�2, �3·4 ·6 ·4�2� 62 28 3.84 0.781350 147.325

16�b� ��33 ·42�2, �3·4 ·6 ·4�2� 149.737

17 76 32 4.00 0.789447 179.806

17�b 80 32 4.40 0.845836 178.239

23 ��3·4 ·5 ·4�2, �3·5 ·4 ·5�2� 54 30 3.33 0.715037 131.926

27 �93, �3·92�2, 93, �3·92�2, 93, �3·92�2� 38 27 2.53 0.750040 115.713

Hexagonal system �B=2�
3 �63� 30 22 2.53 0.604600 70.543

4 �34 ·6� 48 24 4.38 0.777343 105.731

8 �3·4 ·6 ·4� 48 24 3.58 0.729009 110.626

10 �3·122� 48 38 2.71 0.390675 185.024

Hexagonal system �B=3�
22 ��53 ·3�2, 53, 53 ·3, 53� 35 28 2.86 0.5771 85.565

24 �3·5 ·3 ·5, �3.4.52�2� 52 27 3.42 0.744 522 121.009

Unassigned

5 �33 ·42� 52 25 4.38 0.841787 112.269

13 ��33 ·42�2, �32 ·4 ·3 ·4�2� 49 24 4.16 0.841787 102.925

15 Kagome tiling 60 30 3.30 0.665060 155.049

25 �3·4 ·5 ·4, �3·4 ·52�2� 40 24 3.40 0.751037 88.866

aPacking fraction calculated for the unit cell of the given net.
bNet 17� is described, but not illustrated, in �6�; it is net 17 with four additional vertices placed at the center
of each of the four hexagons. As noted in �6�, this net is of interest because it is the densest net with square
symmetry.
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materials, and disordered solids �see Binder and Kob �14��
and is especially useful here in providing an independent
metric for finite arrays of mixed valence.

Before reviewing the results in Table III, we comment
briefly on the calculation of �. For the unit cell of an infinite
periodic lattice, e.g., for the square-planar net 2 or the trian-
gular net 1, the calculation of � is straightforward; for the
square-planar system, net 2, �4 is 1 and �6 is 0, with the
results reversed for the triangular lattice net 1. Where the
calculation becomes more involved is in calculating � for
infinite periodic lattices having vertices of different valences
or for finite platelets. For example, the unit cell of the his-
torically important MacMahon net �net 18; see the Appen-
dix� has vertices �=3 and �=4.

The pentagons comprising net 18 have two right angles,
two angles of 114.295°, and one angle of 131.410°. Since the
MacMahon pentagons are not in registry, either with a
square-planar or triangular reference lattice, one expects �and
finds� that the � values will be different from “1” or “0,”
regardless of the choice of reference lattice. Moreover, when
one considers a MacMahon platelet, some of the perimeter
sites have valence, �=2. Accordingly, values of � must be
calculated for each of the N vertices of the net and the over-
all average constructed. The results reported in Table III are
the average �4 and �6 values calculated for �almost� all the
unit cells �of nets 1–27� specified in �6� and for the finite
platelets displayed in the Appendix.

As a final point, in calculating �, it is crucial to get the
vertices and, especially, the angles “right,” both for the unit
cell and the companion platelet. The starting point �and acid
test� here is to make sure that the packing fraction � for the
unit cell is computed correctly. We have verified the packing
fractions reported in �6� for all but one net, net 22; this is the
only net for which we have not reported � values �15�.

IV. DISCUSSION

Presented in this study is an investigation of the proposal
that finite chemical nets in the same O’Keeffe and Hyde
compatibility class are characterized by very similar catalytic
efficiencies. Evidence supporting this proposal was docu-
mented in Sec. II, viz., net 2 and net 6, net 2 and net 21, and
the results presented in Table I. Moreover, differences in �n̄�
between or among companion platelets could be understood
and ordered by comparing specific signatures of each finite
lattice �1�: the total number N of lattice sites, the number Nb
of boundary sites, the symmetry of the lattice �as quantified
by the overall �average� root-mean-square distance of the N
sites of the platelet relative to the centrosymmetric site�, and
the overall �average� valence �or connectivity� of the lattice.
By way of comparison, in his study of d=2-dimensional ran-
dom walks on infinite periodic lattices, Montroll proved

�n� =
N

N − 1
	A1N ln N + A2N + A3 + A4/N
 , �2�

where the coefficients 	A1 ,A2 ,A3 ,A4
 for hexagonal ��=3�,
square-planar ��=4�, and triangular ��=6� lattices are given,
respectively, by

	A1,A2,A3
 = 	3�3/4�,+ 0.066 206 698,− 0.254 227 9


�� = 3� , �3�

	A1,A2,A3,A4
 = 	1/�,+ 0.195 056 166,− 0.116 964 81,

− 0.051 456 50
 �� = 4� , �4�

	A1,A2,A3
 = 	�3/2�,+ 0.235 214 021,− 0.251 407 596


�� = 6� . �5�

As is seen from these expressions, for this class of lattices
�n̄� depends solely on N and �the uniform� valence �.

In all cases studied here, the optimal locations for a cata-
lytic site are in the interior of a finite platelet �see Tables

TABLE III. Valence and bond orientation parameters for unit
cell and platelet �S=square system; H=hexagonal system; U
=unassigned�.

Net/system

Unit cell Platelet

� �4 �6 �� �4
� �6

�

2/S 4 1.000 0.000 3.20 1.000 0.160

6/S 5 0.250 0.250 4.00 0.352 0.255

9/S 3 1.000 0.333 2.71 0.528 0.236

19/S 4 0.615 0.615 3.43 0.640 0.680

20/S 4 0.654 0.750 3.39 0.562 0.529

21/S 4 0.809 0.238 3.38 0.100 0.378

12/S 5 0.267 0.333 4.28 0.234 0.407

14� /S 4 0.250 1.000 3.39 0.331 1.000

18/S 3.56 0.667 0.393 3.56 0.537 0.670

26/S 3 0.333 0.556 3 0.285 0.546

1/H 6 0.000 1.000 4.48 0.174 1.000

7/H 4 0.500 1.000 3.33 0.520 1.000

11/H 3 0.577 0.333 2.69 0.587 0.229

16/H 4.38 0.388 0.075 3.84 0.408 0.140

17/H 4 0.116 0.100 4.00 0.440 0.184

17� /H 5 0.175 0.300 4.40 0.234 0.285

23/H 4 0.621 0.272 3.33 0.326 0.400

27/H 3 0.000 0.500 2.53 0.026 0.421

3/H 3 0.000 1.000 2.53 0.233 1.000

4/H 5 0.200 1.000 4.38 0.150 1.000

8/H 4 0.500 0.000 3.58 0.514 0.139

10/H 3 0.000 0.333 2.71 0.208 0.472

24/H 4 0.556 0.458 3.42 0.588 0.439

5/U 5 0.250 0.500 4.38 0.602 0.465

13/U 5 0.265 0.500 4.16 0.382 0.466

15/U 3.82 0.234 1.000 3.30 0.439 1.000

25/U 4 0.556 0.458 3.40 0.588 0.439
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IV–VIIin the Appendix�. While perhaps self-evident, this se-
lectivity is more subtle for finite lattices than for infinite
periodic ones; for the latter, the catalytic efficiency of all
sites of a given valence at a given distance with respect to the
reaction center �the “deep trap” site� would be exactly the
same. This is not the case for platelets.

The advantage gained from the quantitative study pre-
sented here is that, in fabricating nanoplatelets, one can de-
termine in the design phase which site locations in a specific
geometry are likely to be optimal in facilitating the chemical
transformation of a reactant; see the supplementary online
material �13� accompanying this paper for a tabulation of the
ratio R for �almost all� the platelets considered in this study.
We reiterate that �almost all� the crystalline nets identified in
the work of O’Keeffe and Hyde �6�, and the ones studied
here, have concrete realizations in known alloys and inor-
ganic solids; thus, it may be hoped that the coded nets shown
in the Appendix and the data tabulated in the supplementary
online material �13� will be useful in analyzing results ob-
tained in catalytic studies on “real” crystal surfaces �16�.

An additional metric introduced in this study is the bond
orientation function �. Our interest in calculating � for �al-
most all� the finite platelets derived from the 27 nets in �6� is
that a precise characterization of the lattice geometry �both
the angular relationship and the connectivity of adjacent ver-
tices� must be specified in calculating �. Thus, the pointwise
symmetry of all sites N of the platelet relative to a square-
planar or hexagonal reference lattice is captured in the cal-
culation of �. From the results displayed in Table III, several
points emerge. First, the value of �4 ��6� calculated for
finite arrays may be larger or smaller than value of �4 ��6�
calculated for the unit cell of the parent net. Second, for
platelets, there are instances where a net belonging to one of
the O’Keeffe and Hyde compatibility classes �reference lat-
tice�, say the square-planar system, is characterized by a

smaller � value than � calculated assuming the other �hex-
agonal� reference lattice, and vice versa. And, third, for three
of the four nets identified in �6�, which do not belong to
either compatibility class, the values of �4 and �6 are re-
markably similar.

Despite these “irregularities,” a valuable insight can be
drawn from the data in Tables II and III. For finite arrays,
one finds that values of the overall �̄ can cluster around
specific values. Consider the nets characterized by values of
�̄ in the near vicinity of 2.7 �nets 9–11 and 26�, of 3.4 �nets
8, 14�, 19, 24, and 25�, and of 4.4 �nets 1, 4, 5, and 17�. �Net
14� is a metrically square version of 	3·6 ·3 ·6, �32 ·62�2
,
viz., the unit-cell parameters a and b of this tessellation are
specified to be equal.� Taking the square-planar lattice as the
reference lattice, a plot of �4 for nets in each of these clus-
ters is presented in Fig. 5. These data demonstrate that, for
finite arrays, a given setting of the �overall� lattice connec-
tivity can correspond to platelets of quite different geom-
etries and symmetries. In fact, there are instances �nets 8 and
19 in the second cluster and nets 4, 5, and 13 in the third� in
which platelets belonging to different unit-cell compatibility
classes are characterized by essentially the same catalytic
activity, i.e., value of �n̄�.

Summarizing, in our study �5� of docking in postnucle-
ation stages of self-assembly, it was proposed that the kinet-
ics of platelet docking on protein crystallites or zeolite nano-
particles should be qualitatively similar for any geometry
that results when a given structured surface is subjected to a
diffeomorphic distortion �one that preserves values of N, Nb,
and �̄�. To examine the validity of and to broaden this pro-
posal, a corresponding states approach to chemical catalysis,
the study presented here was undertaken. Transformations
between or among members belonging to the same compat-
ibility class, as identified in the seminal work of O’Keeffe
and Hyde, were considered explicitly. By implementing the

FIG. 5. �Color� Average va-
lence �̄ vs bond orientation func-
tion �4 for nets designated here
by the couple ��̄ ,�4� �see text�.

REACTION EFFICIENCY OF… . II. CRYSTAL SURFACES PHYSICAL REVIEW E 80, 021116 �2009�

021116-7



theory of finite Markovian processes, numerically exact val-
ues of the mean walk length �n̄� of a diffusing reactant before
localization, a measure of the reaction efficiency, were cal-
culated and the results obtained for nets belonging to the
same compatibility class �see Tables I and II� were found to
be remarkably similar. In fact, as noted in the preceding para-
graph, examples were found wherein comparable catalytic
activity was realized for platelets characterized by sensibly
the same connectivity ��̄� but belonging to different compat-
ibility classes.

In this study, we have focused on a “minimal” platelet for
each of the geometries characterized by O’Keeffe and Hyde,
viz., the planar nets displayed in their work �6�. The lattices
diagrammed there are just large enough to encompass the
unit cell for the arrangement of vertices and bonds defining a
particular net. A further study could elaborate the program
described here by considering larger and larger platelets;
while more inclusive, one knows from earlier work in lattice
statistics that differences in trapping efficiency between finite
systems and infinite periodic lattices are most pronounced
for small platelet sizes, with the behavior approaching that of
infinite periodic lattices only gradually �3�.

Our goal in this study was not to determine how large a
platelet must be to approach asymptotically infinite system
behavior, but rather to focus on the differences in catalytic
activity that can arise when finite crystal nets are considered.
Having that said, one knows that there are important prob-
lems in statistical mechanics for which the limitation to finite
system size is not justified, e.g., phase transitions. In this
context, note that if one were to replace “vertices” with
“discs” and “bonds” with “contacts,” the various geometrical
characteristics defining planar crystalline nets �see Tables
I–III� might be useful in describing structural aspects of the
phase transition in a system of hard disks.

In a recent study �12�, it was demonstrated computation-
ally that topological transformations between and among

crystalline planar nets, the program first introduced and de-
scribed by O’Keeffe and Hyde over thirty years ago, can
provide insight into the relationship between the symmetries
of certain tessellations and the hard disk freezing transition.
It was also noted that the percolated disk-disk contacts de-
scribed by the tessellation, net 21 �see Figs. 1 and 2�, were
characterized �overall� by a packing fraction ��=0.677�
smaller than the packing fractions of the tessellations
�3·6 ·4 ·6� and �3·6 ·3 ·6� ��=0.729 and �=0.680, respec-
tively� that believed to bracket the KTHNY hexatic phase
�which lies between the melting and the freezing transition�.
Taken together, these observations led to a renormalization
strategy which tracked the �possible� structural changes in a
system of hard disks from the fluid to hexatic to solid phase.
The analytical and the computational results obtained were
found to be consistent with the most extensive Monte Carlo
evidence on the hard disk phase transition reported by Mak
�17�.
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APPENDIX

Figures 6–39 exhibit the planar nets considered in this
work �redrawn from �6�� �see Tables IV–VII�.

FIG. 6. Net 1.

FIG. 7. Net 2.
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FIG. 8. Net. 3.

FIG. 9. Net 4a.

FIG. 10. Net 4b.

FIG. 11. Net 5.
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FIG. 12. Net 6.

FIG. 13. Net 7.

FIG. 14. Net 8.

FIG. 15. Net 9.
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FIG. 16. Net 10.

FIG. 17. Net 11.

FIG. 18. Net 12.

FIG. 19. Net 13.1.
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FIG. 20. Net 13a.

FIG. 21. Net 13b.

FIG. 22. Net 14.

FIG. 23. Net 15.
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FIG. 24. Net 16a.

FIG. 25. Net 16b.

FIG. 26. Net 17a.

FIG. 27. Net 17b.
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FIG. 28. Net 18.

FIG. 29. Net 19.

FIG. 30. Net 20a.

FIG. 31. Net 20b.
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FIG. 32. Net 21a.

FIG. 33. Net 21b.

FIG. 34. Net 22.

FIG. 35. Net 23.
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FIG. 36. Net 24.

FIG. 37. Net 25.

FIG. 38. Net 26.

FIG. 39. Net 27.
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TABLE IV. Ratios �n�i�� / �n�ave�� vs trap sites for nets 1–3, 4a, 4b, and 5–8. The �n�ave�� value for each of the nets below is given in
Table I.

T
Net 1

�N=25�
Net 2

�N=25�
Net 3

�N=30�
Net 4a
�N=48�

Net 4b
�N=48�

Net 5
�N=52�

Net 6
�N=36�

Net 7
�N=40�

Net 8
�N=48�

1 2.239 1.593 1.615 1.540 1.540 1.822 1.836 2.051 1.410
2 1.287 1.096 1.447 1.262 1.313 1.357 1.038 1.580 1.329
3 0.960 0.971 0.942 1.335 1.452 1.210 1.129 1.145 1.194
4 0.913 1.096 1.062 1.313 1.070 1.210 0.936 1.001 0.845
5 1.208 1.593 0.801 1.115 0.826 1.357 1.352 0.929 1.112
6 1.287 1.096 1.163 0.953 1.251 1.822 1.836 0.988 1.193
7 0.745 0.728 1.163 0.843 1.114 1.114 1.352 1.293 1.193
8 0.570 0.631 1.447 1.001 1.320 0.842 0.805 1.580 1.410
9 0.600 0.728 0.942 1.320 1.262 0.738 0.718 0.824 1.126
10 0.913 1.096 0.756 1.452 1.115 0.738 0.630 0.690 1.015
11 0.960 0.971 0.592 1.040 1.040 0.842 0.805 0.988 0.760
12 0.570 0.631 0.604 0.712 0.787 1.114 1.038 1.145 0.732
13 0.485 0.544 0.604 0.751 0.694 1.227 0.936 0.824 0.901
14 0.570 0.631 0.801 0.906 0.861 0.816 0.630 0.635 0.901
15 0.960 0.971 1.062 1.114 0.906 0.672 0.556 0.566 1.112
16 0.913 1.096 1.062 1.070 1.001 0.628 0.556 0.574 1.329
17 0.600 0.728 0.801 0.787 1.335 0.672 0.718 0.690 1.015
18 0.570 0.631 0.604 0.641 0.953 0.816 1.129 0.929 0.760
19 0.745 0.728 0.604 0.619 0.712 1.227 1.129 1.001 0.653
20 1.287 1.096 0.592 0.861 0.641 1.139 0.718 0.566 0.619
21 1.208 1.593 0.756 1.251 0.595 0.712 0.556 0.566 0.619
22 0.913 1.096 0.942 0.826 0.619 0.578 0.556 1.001 0.732
23 0.960 0.971 1.447 0.694 0.751 0.540 0.630 0.929 0.845
24 1.287 1.096 1.163 0.595 0.843 0.578 0.936 0.690 1.194
25 2.239 1.593 1.163 0.595 0.843 0.712 1.038 0.574 1.194
26 0.801 0.694 0.751 1.139 0.805 0.566 0.845
27 1.062 0.826 0.619 0.856 0.630 0.635 0.732
28 0.942 1.251 0.595 0.625 0.718 0.824 0.619
29 1.447 0.861 0.641 0.546 0.805 1.145 0.619
30 1.615 0.619 0.712 0.546 1.352 0.988 0.653
31 0.641 0.953 0.625 1.836 0.690 0.760
32 0.787 1.335 0.856 1.352 0.824 1.015
33 1.070 1.001 0.977 0.936 1.580 1.329
34 1.114 0.906 0.722 1.129 1.293 1.112
35 0.906 0.861 0.629 1.038 0.988 0.901
36 0.751 0.694 0.629 1.836 0.929 0.901
37 0.712 0.787 0.722 1.001 0.732
38 1.040 1.040 0.977 1.145 0.760
39 1.452 1.115 1.459 1.580 1.015
40 1.320 1.262 0.944 2.051 1.126
41 1.001 1.320 0.765 1.410
42 0.843 1.114 0.713 1.193
43 0.953 1.251 0.765 1.193
44 1.115 0.826 0.944 1.112
45 1.313 1.070 1.459 0.845
46 1.335 1.452 2.027 1.194
47 1.262 1.313 1.458 1.329
48 1.540 1.540 1.237 1.410
49 1.175
50 1.237
51 1.458
52 2.027
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TABLE V. Ratios �n�i�� / �n�ave�� vs trap sites for nets 9–12, 13.1, 13a, 13b, 14, and 15. The �n�ave�� value for each of the nets below
is given in Table I.

T
Net 9

�N=48�
Net 10
�N=48�

Net 11
�N=64�

Net 12
�N=65�

Net 13.1
�N=49�

Net 13a
�N=54�

Net 13b
�N=60�

Net 14
�N=33�

Net 15
�N=60�

1 1.554 1.362 1.209 1.467 1.448 1.845 1.963 1.775 1.465

2 1.070 1.234 1.292 1.389 1.159 1.378 1.419 1.322 1.175

3 1.070 1.508 0.986 1.215 1.261 1.203 1.221 0.505 1.143

4 1.554 1.266 1.022 1.078 1.128 0.877 1.149 0.505 1.340

5 1.562 1.178 1.173 1.367 0.987 1.014 0.888 1.322 1.175

6 1.101 1.062 0.997 2.150 1.292 1.108 0.814 1.775 0.858

7 0.882 0.799 1.130 1.462 2.052 0.969 0.811 1.101 0.960

8 0.781 0.775 1.443 0.967 1.343 1.410 1.154 0.786 1.099

9 0.781 0.961 1.173 0.882 0.975 2.033 1.480 1.101 1.287

10 0.882 1.023 0.876 0.817 0.844 1.151 2.062 1.104 1.802

11 1.101 1.023 0.936 0.698 0.693 0.873 1.449 0.827 1.143

12 1.562 1.234 1.600 0.947 0.688 0.764 0.919 0.643 0.858

13 1.124 1.266 1.209 1.195 0.900 0.622 0.773 0.643 0.720

14 0.723 0.700 0.997 1.697 1.289 0.622 0.742 0.827 0.681

15 0.723 0.961 0.728 1.377 0.967 0.720 0.666 1.104 0.674

16 1.124 1.178 0.749 0.960 0.715 0.766 0.633 0.858 0.945

17 0.966 0.602 1.600 0.727 0.640 1.000 0.648 0.603 1.802

18 0.615 0.775 0.986 0.659 0.592 1.528 0.803 0.858 1.340

19 0.615 1.362 0.876 0.610 0.617 1.261 1.049 1.104 0.681

20 0.966 1.062 0.631 0.699 0.778 0.867 1.563 0.827 0.619

21 1.204 0.799 0.657 0.910 1.226 0.698 1.303 0.643 0.630

22 0.820 0.700 1.443 1.343 1.151 0.578 0.972 0.643 0.733

23 0.649 0.602 1.022 0.860 0.742 0.552 0.744 0.827 0.945

24 0.568 0.569 0.728 0.718 0.603 0.583 0.639 1.104 1.287

25 0.568 0.569 0.569 0.623 0.549 0.641 0.558 1.101 0.960

26 0.649 0.602 0.657 0.561 0.576 0.811 0.544 0.786 0.674

27 0.820 0.700 1.130 0.584 0.677 1.122 0.578 1.101 0.619

28 1.204 0.799 1.292 0.665 0.948 1.122 0.680 1.775 0.660

29 0.966 1.062 0.631 0.807 1.050 0.811 0.857 1.322 0.630

30 0.615 1.362 0.569 1.180 0.735 0.641 1.163 0.505 1.099

31 0.615 0.775 0.749 1.171 0.593 0.583 1.170 0.505 1.099

32 0.966 0.602 0.936 0.776 0.580 0.552 0.869 1.322 0.630

33 1.124 1.178 0.936 0.635 0.670 0.578 0.687 1.775 0.660

34 0.723 0.961 0.749 0.651 0.801 0.698 0.581 0.619

35 0.723 0.700 0.569 0.584 1.184 0.867 0.544 0.674

36 1.124 1.266 0.631 0.569 1.493 1.261 0.557 0.960

37 1.562 1.234 0.728 0.653 0.940 1.528 0.636 1.287

38 1.101 1.023 1.022 0.810 0.719 1.000 0.737 0.945

39 0.882 1.023 1.292 1.273 0.728 0.766 0.905 0.733

40 0.781 0.961 1.130 1.004 0.805 0.720 1.288 0.630

41 0.781 0.775 0.657 1.249 0.851 0.622 1.569 0.619
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TABLE V. �Continued.�

T
Net 9

�N=48�
Net 10
�N=48�

Net 11
�N=64�

Net 12
�N=65�

Net 13.1
�N=49�

Net 13a
�N=54�

Net 13b
�N=60�

Net 14
�N=33�

Net 15
�N=60�

42 0.882 0.799 0.569 0.843 1.113 0.622 1.057 0.681

43 1.101 1.062 1.443 0.639 2.038 0.764 0.810 1.340

44 1.562 1.178 0.657 0.623 1.385 0.873 0.652 1.802

45 1.554 1.266 0.631 0.627 0.938 1.151 0.634 0.945

46 1.070 1.508 0.876 0.802 0.979 2.033 0.665 0.674

47 1.070 1.234 0.986 1.230 1.273 1.410 0.739 0.681

48 1.554 1.362 1.600 1.000 1.408 0.969 0.767 0.720

49 0.749 0.778 1.877 1.108 0.904 0.858

50 0.728 0.715 1.014 1.178 1.143

51 0.997 0.840 0.877 2.069 1.802

52 1.209 0.712 1.203 1.486 1.287

53 1.600 0.769 1.378 1.159 1.099

54 0.936 0.946 1.845 0.814 0.960

55 0.876 1.839 0.815 0.858

56 1.173 1.229 0.887 1.175

57 1.443 0.933 1.144 1.340

58 1.130 1.364 1.210 1.143

59 0.997 1.087 1.384 1.175

60 1.173 1.244 1.840 1.465

61 1.292 0.902

62 1.022 1.005

63 0.986 1.428

64 1.209 1.585

65 1.873
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TABLE VI. Ratios �n�i�� / �n�ave�� vs trap sites for nets 16a, 16b, 17a, 17b, 18, 19, 20a, 20b, and 21a. The �n�ave�� value for each of the
nets below is given in Table I.

T
Net 16a
�N=62�

Net 16b
�N=62�

Net 17a
�N=76�

Net 17b
�N=80�

Net 18
�N=51�

Net 19
�N=49�

Net 20a
�N=59�

Net 20b
�N=32�

Net 21a
�N=64�

1 1.296 1.287 1.792 1.992 1.437 1.676 1.366 1.436 1.748

2 1.166 1.287 1.159 1.248 1.174 1.291 1.989 1.165 1.705

3 1.280 1.190 1.033 1.077 1.381 1.141 1.261 1.513 1.349

4 1.498 0.868 1.333 1.380 1.024 0.990 1.148 1.061 1.203

5 1.296 0.906 1.396 1.442 1.169 1.141 1.076 0.804 1.531

6 0.881 1.316 1.311 1.363 1.675 1.291 0.845 0.716 1.531

7 0.923 1.475 1.048 1.088 1.661 1.676 1.052 0.731 1.070

8 1.569 1.570 1.151 1.241 1.130 1.291 1.350 0.804 0.941

9 1.013 1.190 1.792 1.992 0.912 0.910 1.908 1.061 0.943

10 0.883 0.981 1.151 1.241 0.944 0.732 1.591 1.436 0.801

11 0.988 0.981 0.849 0.878 0.705 0.910 0.901 1.513 0.688

12 1.242 0.770 0.910 0.819 0.813 1.291 0.744 0.731 0.825

13 1.166 0.704 1.091 0.953 1.041 0.910 0.760 0.575 1.070

14 0.679 0.836 1.015 0.897 1.127 0.691 1.109 0.716 1.748

15 1.569 1.144 0.814 0.748 1.281 0.691 1.212 1.165 1.203

16 0.883 1.275 0.830 0.863 0.699 0.910 0.865 1.165 0.825

17 0.690 1.570 1.159 1.248 0.913 1.141 0.680 0.716 0.710

18 0.746 0.868 1.048 1.088 0.865 0.691 0.638 0.575 0.725

19 1.242 0.770 0.830 0.863 0.619 0.653 0.808 0.575 0.619

20 0.881 0.628 0.701 0.726 0.647 0.691 1.034 0.575 0.616

21 0.581 0.628 0.731 0.690 0.613 1.141 0.644 0.731 0.710

22 1.498 0.572 0.690 0.663 1.174 0.990 0.604 1.513 0.941

23 0.690 0.703 0.701 0.726 0.861 0.732 1.050 1.436 1.705

24 0.616 0.836 0.849 0.878 0.731 0.653 0.553 0.804 1.349

25 0.746 1.144 1.033 1.077 0.654 0.535 0.632 0.731 0.801

26 0.988 1.475 1.311 1.363 0.499 0.653 0.781 0.716 0.688

27 0.923 1.316 1.015 0.897 0.654 0.732 0.661 0.804 0.616

28 0.679 0.906 0.814 0.748 0.731 0.990 0.567 1.061 0.527

29 0.523 0.704 0.690 0.663 0.861 1.141 0.545 1.061 0.527

30 0.581 0.572 0.591 0.631 1.174 0.691 0.613 1.513 0.619

31 1.280 0.532 0.556 0.606 0.913 0.653 0.705 1.165 0.725

32 1.280 0.532 0.591 0.631 0.613 0.691 1.018 1.436 0.943

33 0.581 0.572 0.731 0.690 0.647 1.141 1.373 0.943

34 0.523 0.704 0.910 0.819 0.699 0.910 0.694 0.725

35 0.679 0.906 1.091 0.953 0.619 0.691 0.559 0.619

36 0.923 1.316 1.333 1.380 0.865 0.691 0.596 0.527

37 0.988 1.475 1.396 1.442 1.127 0.910 0.819 0.527

38 0.746 1.144 1.091 0.953 1.041 1.291 1.325 0.616

39 0.616 0.836 0.556 0.606 0.813 0.910 1.240 0.688

40 0.690 0.703 0.556 0.606 0.705 0.732 0.917 0.801

41 1.498 0.572 0.690 0.663 0.944 0.910 0.634 1.349
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TABLE VI. �Continued.�

T
Net 16a
�N=62�

Net 16b
�N=62�

Net 17a
�N=76�

Net 17b
�N=80�

Net 18
�N=51�

Net 19
�N=49�

Net 20a
�N=59�

Net 20b
�N=32�

Net 21a
�N=64�

42 0.581 0.628 1.396 1.442 0.912 1.291 0.636 1.705

43 0.881 0.628 1.333 1.380 1.130 1.676 0.749 0.941

44 1.242 0.770 0.910 0.819 1.281 1.291 1.286 0.710

45 0.746 0.868 0.731 0.690 1.661 1.141 0.818 0.616

46 0.690 1.570 0.591 0.631 1.675 0.990 0.644 0.619

47 0.883 1.275 0.556 0.606 1.169 1.141 1.038 0.725

48 1.569 1.144 0.591 0.631 1.024 1.291 1.568 0.710

49 0.679 0.836 0.701 0.726 1.381 1.676 1.140 0.825

50 1.166 0.704 0.814 0.748 1.174 0.878 1.203

51 1.242 0.770 1.015 0.897 1.437 0.735 1.748

52 0.988 0.981 1.311 1.363 0.812 1.070

53 0.883 0.981 1.033 1.077 1.368 0.825

54 1.013 1.190 0.849 0.878 1.046 0.688

55 1.569 1.570 0.701 0.726 1.061 0.801

56 0.923 1.475 0.814 0.748 1.112 0.943

57 0.881 1.316 0.690 0.663 1.346 0.941

58 1.296 0.906 0.731 0.690 1.909 1.070

59 1.498 0.868 0.830 0.863 1.987 1.531

60 1.280 1.190 1.048 1.088 1.531

61 1.166 1.287 1.159 1.248 1.203

62 1.296 1.287 0.830 0.863 1.349

63 1.048 1.09 1.705

64 1.015 0.897 1.748

65 1.091 0.953

66 0.910 0.819

67 0.849 0.878

68 1.159 1.248

69 1.151 1.241

70 1.792 1.992

71 1.151 1.241

72 1.311 1.363

73 1.396 1.442

74 1.333 1.380

75 1.033 1.077

76 1.792 1.992

77 0.698

78 0.698

79 0.698

80 0.698
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TABLE VII. Ratios �n�i�� / �n�ave�� vs trap sites for nets 21b, 22–27, and 39a �right and left�. The �n�ave�� value for each of the nets
below is given in Table I.

T
Net 21b
�N=112�

Net 22
�N=35�

Net 23
�N=54�

Net 24
�N=52�

Net 25
�N=40�

Net 26
�N=54�

Net 27
�N=38�

Net 39
a right
�N=88�

Net 39
a left

�N=88�

1 1.703 1.521 1.799 1.649 1.779 1.262 1.191 1.567 1.589

2 1.363 1.288 1.269 1.299 1.330 1.195 1.222 1.812 1.830

3 1.326 1.278 1.802 1.155 0.851 1.395 1.064 1.355 1.424

4 1.623 1.303 1.809 0.998 1.095 1.560 0.717 1.289 1.289

5 1.046 1.288 1.179 1.057 1.173 1.547 0.957 0.873 1.143

6 1.108 0.590 0.892 1.385 1.185 1.429 0.999 1.590 1.224

7 1.187 0.752 0.944 1.807 1.451 1.027 0.843 1.872 1.820

8 1.329 0.825 1.145 0.952 1.126 0.828 1.282 1.872 1.820

9 1.332 1.494 1.852 1.179 0.762 1.046 1.550 1.099 1.111

10 1.169 0.590 0.770 1.256 0.697 0.944 1.649 0.872 0.905

11 1.703 0.597 0.756 0.832 0.883 1.440 0.971 0.958 0.828

12 0.987 1.699 1.208 0.725 0.865 1.379 0.614 0.942 0.909

13 0.887 1.278 0.882 0.715 1.185 0.815 0.746 1.277 1.082

14 0.855 0.752 0.632 0.754 1.022 0.802 1.577 1.812 1.830

15 0.914 0.466 0.655 0.876 0.694 0.697 1.348 1.277 1.082

16 1.093 0.550 0.941 1.141 0.580 0.634 1.009 0.764 0.832

17 1.002 0.715 1.294 1.507 0.567 0.837 0.849 0.704 0.720

18 1.055 1.439 0.608 0.649 0.628 1.035 0.617 0.703 0.725

19 1.363 1.303 0.752 1.040 0.766 0.925 0.589 0.741 0.831

20 1.169 0.597 1.036 0.717 1.359 0.792 0.565 1.099 1.111

21 1.055 0.550 0.738 0.622 1.359 0.688 0.519 0.942 1.224

22 0.845 0.507 0.559 0.569 0.766 0.575 0.664 0.741 0.831

23 0.746 0.742 0.555 0.598 0.628 0.687 0.765 0.631 0.678

24 0.709 0.825 0.848 0.758 0.567 0.734 0.924 0.626 0.633

25 0.763 0.507 1.175 1.025 0.580 1.236 1.335 0.652 0.680

26 0.789 1.216 0.605 0.656 0.694 1.334 1.508 0.764 0.832

27 0.792 1.494 0.608 0.815 1.022 1.000 0.768 1.355 1.424

28 0.845 0.715 1.145 1.040 1.185 0.615 0.679 1.590 1.589

29 0.987 0.742 0.698 0.717 0.865 0.603 1.177 0.873 0.909

30 1.326 0.651 0.544 0.622 0.883 0.591 1.489 0.652 0.680

31 1.332 1.185 0.560 0.569 0.697 0.722 1.290 0.578 0.594

32 1.002 1.699 0.738 0.598 0.762 0.958 0.911 0.583 0.595

33 0.792 1.439 1.408 0.758 1.126 1.114 0.816 0.631 0.678

34 0.698 1.216 0.923 1.025 1.451 1.163 0.888 0.872 0.905

35 0.669 1.185 0.555 1.507 1.185 0.946 0.751 1.567 1.143

36 0.676 0.938 0.649 1.173 0.748 0.804 0.703 0.725

37 0.727 1.276 1.256 1.095 0.640 1.117 0.583 0.595

38 0.698 0.733 0.832 0.851 0.622 1.241 0.513 0.556

39 0.746 0.608 0.725 1.330 0.675 0.578 0.594

40 0.887 0.677 0.715 1.779 1.117 0.704 0.720

41 1.046 0.784 0.754 1.368 1.289 1.289

42 1.623 0.902 0.876 1.448 0.958 0.828

43 1.329 0.696 1.141 0.896 0.626 0.633

44 1.093 1.604 0.952 0.885 0.513 0.556

45 1.187 1.635 1.179 0.895 0.513 0.556

46 0.914 0.874 1.649 0.734 0.626 0.633
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TABLE VII. �Continued.�

T
Net 21b
�N=112�

Net 22
�N=35�

Net 23
�N=54�

Net 24
�N=52�

Net 25
�N=40�

Net 26
�N=54�

Net 27
�N=38�

Net 39
a right
�N=88�

Net 39
a left

�N=88�

47 0.789 0.832 1.299 1.064 0.958 0.828

48 0.727 0.812 1.155 1.249 1.288 1.289

49 0.676 1.064 0.998 1.432 0.704 0.720

50 0.610 1.313 1.057 1.117 0.578 0.594

51 0.610 0.937 1.385 1.258 0.513 0.556

52 0.669 1.646 1.807 1.027 0.583 0.595

53 0.709 1.500 0.992 0.703 0.725

54 0.763 1.287 1.280 1.567 1.143

55 0.855 0.872 0.905

56 1.108 0.631 0.678

57 1.108 0.583 0.595

58 0.855 0.578 0.594

59 0.763 0.652 0.680

60 0.709 0.873 0.909

61 0.669 1.590 1.589

62 0.610 1.355 1.424

63 0.610 0.764 0.832

64 0.676 0.652 0.680

65 0.727 0.626 0.633

66 0.789 0.631 0.678

67 0.914 0.741 0.831

68 1.187 0.942 1.224

69 1.623 1.099 1.111

70 1.046 0.741 0.831

71 0.887 0.703 0.725

72 0.746 0.704 0.720

73 0.698 0.764 0.832

74 0.727 1.277 1.082

75 0.676 1.813 1.830

76 0.669 1.277 1.082

77 0.698 0.873 0.909

78 0.792 0.958 0.828

79 1.002 0.872 0.905

80 1.093 1.099 1.111

T
Net 21b
�N=112�

Net 22
�N=35�

Net 23
�N=54�

Net 24
�N=52�

Net 25
�N=40�

Net 26
�N=54�

Net 27
�N=38�

Net 39
a right
�N=88�

Net 39
a left

�N=88�
81 1.329 1.872 1.820

82 1.326 1.872 1.820

83 0.987 0.942 1.224

84 0.845 1.567 1.143

85 0.792 1.289 1.289

86 0.789 1.355 1.424

87 0.763 1.812 1.830

88 0.709 1.590 1.589

89 0.746
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TABLE VII. �Continued.�

T
Net 21b
�N=112�

Net 22
�N=35�

Net 23
�N=54�

Net 24
�N=52�

Net 25
�N=40�

Net 26
�N=54�

Net 27
�N=38�

Net 39
a right
�N=88�

Net 39
a left

�N=88�

90 0.845

91 1.055

92 1.169

93 1.332

94 1.363

95 1.055

96 1.002

97 1.093

98 0.914

99 0.855

100 0.887

101 0.987

102 1.703

103 1.169

104 1.332

105 1.329

106 1.187

107 1.108

108 1.046

109 1.623

110 1.326

112 1.363

112 1.703

KOZAK, BRZEZINSKI, AND GARZA-LÓPEZ PHYSICAL REVIEW E 80, 021116 �2009�

021116-24


