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We present a lattice spin model that mimics a system of interacting particles through a short-range repulsive
potential and a long-range attractive power-law decaying potential. We perform a detailed analysis of the
general equilibrium phase diagram of the model at finite temperature, showing that the only possible equilib-
rium phases are the ferromagnetic and the antiferromagnetic ones. We then study the nonequilibrium behavior
of the model after a quench to subcritical temperatures, in the antiferromagnetic region of the phase diagram
region, where the pair interaction potential behaves in the same qualitative way as in a Lennard-Jones gas. We
find that even in the absence of quenched disorder or geometric frustration, the competition between interac-
tions gives rise to nonequilibrium disordered structures at low enough temperatures that strongly slow down
the relaxation of the system. This nonequilibrium state presents several features characteristic of glassy systems
such as subaging, nontrivial fuctuation dissipation relations, and possible logarithmic growth of free-energy
barriers to coarsening.
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I. INTRODUCTION

The nature of glassy magnetic states in the absence of
quenched disorder has been object of a great deal of work
�1�, both experimental and theoretical. Simple experimental
realizations of nondisordered systems in which glassy phases
have been found are antiferromagnets with kagomé geom-
etries �2–4�. In particular, the presence of slow dynamics and
aging effects in kagomé antiferromagnets is well established
�5�. Anyway, these are nondisordered geometrically frus-
trated systems, so the understanding of the mechanisms
present on the dynamics of these systems has to deal with the
effects of the involved geometry of the kagomé lattice. On
the other hand, the glassy behavior in structural glasses ap-
pears dynamically, without any kind of imposed disorder or
geometrical frustration. A prototype model for structural
glasses is the Lennard-Jones binary mixture �6�. One may
wonder whether glassy behavior can appear in lattice spin
systems sharing some of the basic features of the Lennard-
Jones model such as the competition between short-range
repulsive interactions �i.e., hard core� and long-range attrac-
tive interactions. A simple model with those properties is the
Ising model with competitive interactions on the square lat-
tice.

Consider the general lattice Hamiltonian,

H = J1�
�i,j�

�i� j + J2�
�i,j�

�i� j

rij
3 , �1�

where �= �1. The first sum runs over all pairs of nearest-
neighbor spins on a square lattice and the second one over all
distinct pairs of spins of the lattice. rij is the distance mea-

sured in crystal units between sites i and j. For J1�0 and
J2�0, this Hamiltonian describes an ultrathin magnetic film
with perpendicular anisotropy in the monolayer limit �7� and
it has been the subject of several theoretical studies �see
Refs. �8,9� and references therein�.

In this work, we consider the case J2=−1 �long-range
ferromagnetic interactions� J�J1 / 	J2	�0 �short-range anti-
ferromagnetic interactions�, so Eq. �1� reduces to the dimen-
sionless Hamiltonian,

H = J�
�i,j�

�i� j − �
�i,j�

�i� j

rij
3 . �2�

For J�1, this Hamiltonian mimics a system of particles
interacting through a short-range repulsive potential and a
long-range power-law decaying attractive potential, qualita-
tively similar to the Lennard-Jones pair interactions potential
�see an example in Fig. 1�. Although the exponent 3 in the
power-law interacting potential is arbitrary in this case, it
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FIG. 1. Pair interaction potential as a function of distance for
J=1.5.
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presents two advantages. First, in a two-dimensional �2D�
system it is large enough to ensure the existence of the ther-
modynamical limit and, second, it allows us to use all the
previous knowledge of the much more studied related system
J�0 and J1�0 �ultrathin magnetic films model�. As we will
show, it displays a complex low-temperature dynamical be-
havior, even when its equilibrium properties are simpler than
those observed in the ultrathin magnetic films case. In order
to correlate equilibrium and nonequilibrium properties, we
start our analysis by investigating the finite temperature ther-
modynamical behavior of the model. Since, to the best of our
knowledge, this model has not been previously studied in the
literature and also for completeness we perform in Sec. II a
detailed analysis of the complete equilibrium phase diagram
using Monte Carlo �MC� simulations. In Sec. III we analyze
the low-temperature relaxation properties of the model by
computing different quantities such as the average linear size
of domains, energy, two-times correlation functions, and
fluctuation-dissipation relations �FDR�. In Sec. IV we dis-
cuss our results, comparing them with previous reported re-
sults of slow dynamics in nondisordered systems, in particu-
lar, the Lennard-Jones gas.

II. EQUILIBRIUM PHASE DIAGRAM

As a first step, we analyze the zero-temperature properties
of the model. In the absence of the long-range term, the
model reduces to the Ising antiferromagnetic model and the
ground state of the system is a Néel antiferromagnetic state.
For J=0, it is clear that the ground state is ferromagnetic. To
obtain the ground state between these two limits, we evalu-
ated the energy per site for different spin configurations,
namely, ferromagnetic, antiferromagnetic, stripes of different
widths �1, 2,… rows of spins�, and checkered domains of
different sizes. The energies per spin of the ferromagnetic
and antiferromagnetic states are given by Ef =2J−a and
Eaf =−2J+b, respectively, with �10� a=4.5168 and b
=1.3230. The energy per spin of a state composed by ferro-
magnetic stripes of width h is given by Es�h�=2�1−1 /h�J
+Sh. The values of Sh were calculated numerically in Ref.
�10�; for instance, S1=0.4677, S2=−0.7908, etc. In Fig. 2 we
compare the energy per site for different configurations. The
figure shows that the only stable states are the ferromagnetic
and the antiferromagnetic ones for any value of J. By equat-
ing Ef =Eaf, we obtain for the transition point between the
ferromagnetic and the antiferromagnetic states the value Jt
=1.4599: the ground state is ferromagnetic below this value
and antiferromagnetic above of it. We also checked different
checkered antiferromagnetic states �10�, verifying that they
have higher energies than either the ferromagnetic or the
antiferromagnetic states for any value of J. MC simulations
at low temperatures confirm that these are the only low-
temperature stable phases.

We next consider the equilibrium finite temperature prop-
erties of the model by using Metropolis Monte Carlo algo-
rithm in finite square lattices with N=L�L sites and periodic
boundary conditions. To handle the contribution of the long-
range terms in the periodic boundary conditions, we used the
Ewald sums technique �7�. In order to speed up the simula-

tions, the codes were implemented by keeping track of all the
local fields. In this way, local fields update �an operation
which is of O�N�� is performed only when a spin flip is
accepted. This implementation is very effective when relax-
ation is very slow �in general at low temperatures� and,
therefore, the acceptance rate is small, while it does not
change the computational time when the acceptance rate is
high �usually at intermediate or high temperatures�. This will
be particularly important when considering nonequilibrium
effects in Sec. III, allowing us to treat large system sizes at
very low temperatures.

To characterize the critical properties of the model, we
calculate different thermodynamical quantities as a function
of the temperature, for different values of J and L, namely,
the magnetization per spin m, the staggered magnetization
per spin ms, the associated susceptibilities,

��T� =
N

T
��m2� − �m�2� , �3�

�s�T� =
N

T
��ms

2� − �ms�2� , �4�

the specific heat,

C�T� =
1

NT2 ��H2� − �H�2� , �5�

and the fourth-order cumulant,

V�T� = 1 −
�H4�

3�H2�2 , �6�

where � . . . � stands for an average over the thermal noise. All
these quantities are calculated starting from an initially
equilibrated high-temperature configuration and slowly de-
creasing the temperature. For every temperature, the initial
spin configuration is taken as the final configuration of the
previous temperature; we let the system to equilibrate M1
Monte Carlo steps �one MCS is defined as a complete cycle
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FIG. 2. �Color online� Energy per site vs J for different spin
configuration; h1 corresponds to a state composed by stripes with
width one, h2 to stripes with width two, and so on. The chequered
states give similar values for the energy per site �not shown here� to
the stripes states with the same width.
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of N spin update trials� and average out the results of M2
MCS, typical values of M1 and M2 being around 105 and 5
�105, respectively.

Figures 3 and 4 show the typical results for the different
thermodynamical quantities in the antiferromagnetic region
of the phase diagram, namely, for J�Jt. Figure 4�b� shows
that the fourth-order cumulant exhibits a vanishing mini-
mum, consistent with a second-order phase transition. Figure
3�b� shows that the staggered susceptibility exhibits a size-
dependent maximum, which scales as L�/	, with � /	
=1.8�0.1, consistent with the exact value � /	=1.75 of the
two-dimensional short-range Ising model. Moreover, as J in-
creases � /	 approaches systematically the value 1.75 �for
instance, for J=3 we found � /	=1.74�0.05; see Fig. 7�. We
see from Fig. 4�a� that the specific heat exhibits a size-
dependent maximum which scales as L
/	, with 
 /	
=0.23�0.05; similar values were found for other values of
J�Jt �see Fig. 7�. Although small, those values are larger

than expected for a phase transition in the universality class
of the two-dimensional Ising model �
=0�. However, since
those values are also observed for large values of J, we be-
lieve that this is a finite-size effect. Hence, we conclude that
the whole line between the paramagnetic and the antiferro-
magnetic phases �J�Jt� belongs to the universality class of
the short-range two-dimensional Ising model.

The critical properties for J�Jt are a bit more complex.
For J�1.3, the order parameter �magnetization�, the suscep-
tibility, the specific heat, and the fourth-order cumulant
present qualitatively the same behavior as those quantities in
the J�Jt case, but with a different set of critical exponents
�see Fig. 7�. We found � /	
1.1 and 
 /	
0.14, which are
close to the renormalization group estimates for the J=0 case
�11�: 	=1, 
=0, and �=1; the small difference between
those values and ours can be attributed to finite-size effects,
which are very strong when the long-range ferromagnetic
interactions dominate. Hence, we conclude that the whole
line for 0�J�1.3 belongs to the universality class of the

FIG. 3. �Color online� Order parameter �absolute value of the
staggered magnetization� �a� and associated staggered susceptibility
�b� as a function of the temperature for J=1.6 and for different
system sizes; the inset in �b� shows the finite-size scaling of the
maximum of �s.

FIG. 4. �Color online� Moments of the energy as a function of
the temperature for J=1.6 and for different system sizes. �a� Spe-
cific heat C; the inset shows the finite-size scaling of the maximum
of C. �b� Fourth-order cumulant.
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two-dimensional 1 /r3 ferromagnetic Ising model. For 1.3
�J�Jt, we find a clear evidence that the ferro-para transi-
tion is a first-order one. The typical behavior of the thermo-
dynamical quantities in this case is illustrated in Figs. 5 and
6. We see that the fourth-order cumulant presents a clear
converging minimum as the system sizes increases, as ex-
pected in a first-order transition �12�. The finite-size scaling
of susceptibility is also consistent with the L2 behavior ex-
pected for a first-order transition in a two-dimensional sys-
tem �13�. The specific-heat exponent for J=1.4 is 
 /	
=1.1�0.2. This value is certainly far from 2 �the expected
value in a first-order transition�, but it is larger than the criti-
cal exponent of any continuous transition. Besides finite-size
effects, such large difference is probably also associated to
the presence of a tricritical point somewhere between J
=1.3 and J=1.4. This assumption is consistent with the fact
that 
 /	 approaches the expected value 
 /	=2 as J in-

creases approaching J=Jt �we obtained 
 /	=1.8�0.1 for
J=1.43; see Fig. 7�.

We summarize the obtained results for the critical expo-
nents in Fig. 7 and the overall phase diagram in Fig. 8.

III. NONEQUILIBRIUM PROPERTIES

This section deals with the far-from equilibrium proper-
ties of the system at low temperatures, i.e., its relaxation
dynamics after a sudden quench from T=� to a temperature
T�Tc.

A. Nonequilibrium domain structures: Energy relaxation
and characteristic domain length

First we analyze the time evolution of the energy, with the
time measured in MCS. We consider both the instantaneous
energy per spin E /N �i.e., the energy along single MC runs�

FIG. 5. �Color online� Order parameter �absolute value of the
magnetization� �a� and associated susceptibility �b� as a function of
the temperature for J=1.4 and for different system sizes; the inset in
�b� shows the finite-size scaling of the maximum of �.

FIG. 6. �Color online� Moments of the energy as a function of
the temperature for J=1.4 and for different system sizes. �a� Spe-
cific heat C; the inset shows the finite-size scaling of the maximum
of C. �b� Fourth-order cumulant.
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and the mean excess of energy 
e�t���H� /N−u�T�, where
� . . . � stands for an average over different MC runs �i.e., over
different realizations of the thermal noise�. u�T� is the equi-
librium energy per spin at temperature T; u�T� is obtained by
equilibrating first the system during 104 MCS starting from
the ground-state configuration and then averaging over a
single MC run during 105 MCS.

To check out our results, we first calculate the evolution
of 
e�t� in the simple case J�Jt for different quench tem-
peratures. The typical behavior is shown in Fig. 9. We find
that after a short transient period and before the system com-
pletely relaxes, the excess of energy behaves as 
e�t�� t−1/2

independently of T. Since it is expected that 
e�t��1 / l�t�,
where l�t� is the characteristic length scale of the domains,
this behavior is consistent with a normal coarsening process
of a system with nonconserved order parameter �14�, where
l�t�� t1/2.

Next, we consider the relaxation in the antiferromagnetic
region J�Jt for different quench temperatures. At low
enough temperatures, the relaxation of the system clearly

departs from that expected in a normal coarsening process.
The typical behavior of the instantaneous energy is shown in
Fig. 10, together with typical domain configurations along
single MC runs for J=2 and T=0.04. In that figure, the do-
mains correspond to regions of antiferromagnetic ordering,
namely, black and white colors codify regions with local
staggered magnetization ms
1 and ms
−1, respectively.

Different relaxation regimes can be identified. After a
short-time quick relaxation process 0� t��0
20 MCS, in
which local antiferromagnetic order is set, the system always
gets stuck in a complex nonequilibrium disordered state
composed mainly by a few intermingled macroscopic anti-
ferromagnetic domains; its typical shape is illustrated for a
larger system size in Fig. 11. This state presents a sort of
labyrinth structure, in the sense that there is always at least
one macroscopic connected domain, i.e., in such domain any
pair of points can be connected by a continuous path without
crossing a domain wall �see, for example, the black domain
in Fig. 11�. Up to certain characteristic time �1, the system
slowly relaxes by eliminating small domains and fluctuations
located in the large domain borders, in such a way that the

FIG. 7. Critical exponents obtained from finite-size scaling as a
function of J. �a� Susceptibility exponent � /	; �b� specific-heat ex-
ponent 
 /	. The dashed lines indicate the reference values 1, 1.75,
and 2 in �a� and 0 and 2 in �b�.

FIG. 8. Phase diagram T vs J. The critical temperatures were
estimated from the maxima of the specific heat. Filled circles and
open hexagons correspond to second and first-order phase transi-
tions, respectively.

FIG. 9. �Color online� Excess of energy 
e�t� as a function of
time for J=1, L=100, and different quench temperatures T�Tc.
The results were averaged over 2000 MC runs.
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local curvature of the domain walls is reduced �Fig. 10�.
Along this process, the area of the main domains remains
almost constant. In this sense, such process is reminiscent of
a spinodal decomposition. We will call this the glassy re-

gime. For time scales longer than a certain characteristic time
�1, both domains finally disentangle and relaxation is domi-
nated by the competition between only two large domains
separated by rather smooth domain walls. Figure 10 illus-
trates the two possible outcomes of this process: either the
system relaxes directly to its equilibrium state �Fig. 10�a�� or
it gets stuck in an ordered configuration composed of stripe
shaped antiferromagnetic domains with almost flat domain
walls �Fig. 10�b��. We observe that both outcomes can hap-
pen with finite probabilities; the former being a bit more
probable than the latter. The second case covers a large va-
riety of configurations, including more than two stripes that
can be oriented parallel to one of the coordinate axes �as in
Fig. 10�b�� or diagonally oriented �not shown�. We will call
this the ordered regime. Once the system arrives to one
striped configuration, relaxation proceeds through the paral-
lel movement of the domain walls, which perform a sort of
random walk until two walls collapse and the system either
attains the equilibrium state or gets stuck in a new striped
configuration with a lesser number of stripes. The mecha-
nism of movement of the domain walls in this case is dent
formation, i.e., single isolated spin flips along the interface
creating an excitation that propagates along it, until either it
disappears or covers the whole line �15�, which therefore
advances in the perpendicular direction. The same kind of
nonequilibrium structures and relaxation dynamics has been
observed in two-dimensional short-range interacting spin
models at very low temperatures, namely, the Ising �15� or
Potts �16� models. However, in those cases the movement of
the dents is dominated by single spin-flip barriers, while in
the present one the associated mechanism is more complex
due to the long-range interactions.

In Fig. 12 we illustrate the typical behavior of the excess
of energy 
e�t� at a fixed temperate for different system
sizes. In Fig. 13 we show the excess of energy for different
temperatures at a fixed system size. The three different relax-
ation regimes can be clearly seen in those curves: transient,
glassy, and ordered. The glassy regime appears for tempera-
tures smaller than certain value Tg �Tg
0.15 for J=2�. In

(b)

(a)

FIG. 10. Instantaneous energy per spin as a function of time for
single realizations of the stochastic noise for J=2, L=48, and T
=0.04. Typical antiferromagnetic domain configurations are shown
along the evolutions, where black and white colors codify regions
with local staggered magnetization ms
1 and ms
−1, respec-
tively. The dashed lines correspond to the equilibrium energy at this
temperature. �a� After living the glassy regime, the system equili-
brates. �b� After living the glassy regime, the system gets stuck in a
striped configuration.

FIG. 11. Typical antiferromagnetic domain configuration for J
=2, T=0.04, L=256, and t=100; MCS. Black and white follows the
same convention as in Fig. 10.

FIG. 12. �Color online� Excess of energy per spin �see text for
details� as a function of time for J=2, T=0.06, and different system
sizes. Every curve was obtained by averaging over 400 runs. The
dashed and full lines correspond to a power-law and exponential
fittings, respectively.
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this regime, the excess of energy exhibits a size-independent
pseudoplateau, where it decays very slowly; indeed, the be-
havior of 
e�t� can be well fitted by a power law 
e�t�
� t−�, with very small exponents that decrease with tempera-
ture �the exponent for J=2 ranges from �
0.03 for T
=0.04 up to �
0.1 for T=0.1�, suggesting a logarithmic
relaxation at very low temperatures. This suggests an acti-
vated dynamics with multiple energy barriers �we will return
to this point later�. After this regime, the system relaxes ex-
ponentially into the ordered regime 
e�t��e−t/�1�T� �see Fig.
12�. The characteristic relaxation time �1�T� can be estimated
by fitting the corresponding part of the relaxation curve, as
shown in Fig. 12. The inset of Fig. 13 shows an Arrhenius
plot of �1. The exponential decay, together with the clear
Arrhenius behavior of �1, indicates that the crossover be-
tween the two regimes is dominated by the activation
through a single free-energy barrier.

To gain further insight about the nature of the relaxation
in the glassy regime, we analyze the scaling properties of the
characteristic domain length l�t�. A sensible way to estimate
the behavior of that quantity is to define it as �17–19�

l�t� �
− u�T�

e�t�

. �7�

In Fig. 14 we show l�t� for J=2, L=48, and different
temperatures T�Tg. The behavior of the excess of energy
implies that for time scales �0� t��1, l�t� increases very
slowly from a temperature-independent value l0= l��0�; for
time scales t��1, the characteristic length departs exponen-
tially from the pseudoplateau �see Fig. 14�a��. We estimated
l0 as the average of the curves for different temperatures at
�0, obtaining l0
5.78. In Fig. 14�b� we show a double log
plot of the rescaled quantity �l�t�− l0� /Ta vs ln�t�. The expo-
nent a was chosen to obtain the best data collapse in the
glassy regime of the data presented in Fig. 14�a�. Actually, a
good data collapse inside the error bars of the statistical fluc-
tuations is obtained for values of a between 2.65 and 2.75;
for values of the exponent outside that range, the curves

clearly do not collapse. Hence, we estimated a=2.7�0.05.
The power-law-like behavior of the rescaled curves in Fig.
14�b� shows that the characteristic length behaves as

l�t� � l0 + �T

b
ln t
a

, �8�

for t0� t��1�T� �a log-log plot of l�t�− l0 vs t shows that a
power-law fit in the entire time interval is clearly inferior
than in Fig. 14�. Such behavior is consistent with a class 4
system, according to Lai et al. classification �20�, i.e., a sys-
tem with domain-size-dependent free-energy barriers to
coarsening �18� f�l�. In our case, this would correspond to
f�l��b�l− l0�1/a. The numerical results suggest that in the
present model, such growth would stop when some maxi-
mum characteristic length lmax is reached at �1�T�, where
the barrier becomes independent of l. After this point, the
system relaxes exponentially with a characteristic time �1
�exp�F /T�, where F= f�lmax� and, therefore, lmax
 l0
+ �F /b�a. From the data of Fig. 14�b�, we estimate b
0.32,
while from the data of the inset of Fig. 13 we estimated F

0.44, giving an estimation of lmax
8.

To check the above interpretation, we analyze the charac-
teristic time �s for shrinking squares, i.e., the time needed for
a square excitation of linear size ls to completely relax. This
technique has been proved to be a sensitive way to check the
relaxation dynamics of short-range models when free-energy

FIG. 13. �Color online� Excess of energy per spin as a function
of time for J=2, L=48, and different quench temperatures T�Tc

�decreasing from left to right�. Every curve was obtained by aver-
aging over 400 runs. The inset shows an Arrhenius plot of the
crossover time. �1.

FIG. 14. �Color online� �a� Characteristic domain length �see
text for details� as a function of time for J=2, L=48, and different
temperatures T�Tc �decreasing from left to right�. �b� Log-log plot
of the normalized length �l− l0� /Ta vs ln�t� from the same data as in
�a� for the lowest temperatures; l0=5.78 is indicated in �a�; the
value of the exponent a=2.7 was chosen to obtain the best data
collapse of the curves in the glassy regime. The straight line is a
reference �power with exponent a�.
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barriers are involved �18,19,21�. In particular, Shore et al.
�18� argued �and shown to be valid in particular cases� that
the energy barriers to shrink square-shaped excitations
should be a measure of the free-energy barriers to coarsen-
ing. In our case, we started with a ground-state configuration
of size L with a square of inverted spins of size ls�L� ls� and
periodic boundary conditions. Although it is not clear to us
whether the arguments of Shore et al. �18� can be straight-
forwardly extended to a system with long-range interactions
or not, one can still expect the barriers to shrink a square to
provide at least a rough measure of the free-energy barriers
to coarsening. In our case, this expectation is based on the
direct observation of the domain configurations during relax-
ation in the glassy regime. We observe that rough domain
walls tend to become flat rather fast and that relaxation pro-
ceeds mainly at small jumps in the energy every time a sharp
edge moves. The results for the time for shrinking squares
support this conjecture. In Fig. 15 we show an Arrhenius plot
of �s for different values of ls and temperatures T�Tg. We
see that �s exhibits a clear Arrhenius behavior at all the tem-
peratures for ls�4 �for sizes ls�4, the squares shrink
quickly in a few MCS�, with associated barriers that grow
slowly for ls�8 and saturate for ls�9 at a value around 0.5,
close to F=0.44. Although the limited range of values of ls
where the barrier shows a dependency on it does not allow a
more accurate comparison, the consistency with the previous
interpretation of the behavior of l�t� is clear.

For temperatures larger than Tg, the glassy regime com-
pletely disappears and the system decays through a normal
coarsening process, i.e., 
e�t�� t−1/2 �see Fig. 13�. However,
for some range of temperatures it still gets stuck in some
long-lasting antiferromagnetic-striped configuration with
high probability, so the corresponding plateau in the excess
of energy is still observable �for J=2, we observed it for
temperatures up to T
1.5�. Those configurations are highly
stable, even at relatively high temperatures. The characteris-
tic equilibration time �2 defined as the time after which the
system attains the equilibrium state with probability one is

very difficult to estimate, but it is at least three orders of
magnitude larger than �1 for T�Tg.

B. Time correlation and response functions

Another way to characterize the out of equilibrium dy-
namics of complex magnetic systems is through the analysis
of the two-time autocorrelation function C�t , t��. A system
that has attained thermodynamical equilibrium or metaequi-
librium satisfies time translational invariance �TTI�, i.e.,
C�t , t���C�t− t��, at least for certain time scales. Far from
equilibrium, TTI is broken and time correlations exhibits a
dependency on the history of the sample after the quench.
This phenomenon is called aging and in real systems it can
be observed through a variety of experiments. A typical ex-
ample is the zero-field-cooling �22� experiment, in which the
sample is cooled in zero field to a subcritical temperature at
time t=0. After a waiting time tw, a small constant magnetic
field is applied and the time evolution of the magnetization is
recorded. It is then observed that the longer the waiting time
tw the slower the relaxation and this is the origin of the term
aging. Moreover, the scaling properties of two-times quanti-
ties provides information about the underlying relaxation dy-
namics �23,24�.

Although aging can be detected through different time-
dependent quantities, a straightforward way to establish it in
a numerical simulation is to calculate the spin autocorrela-
tion function,

C�tw + t,tw� = � 1

N
�
i=1

N

�i�tw + t��i�tw�
 , �9�

where tw is the waiting time from the quench at t=0 �com-
pletely disordered initial state� and ��i�t�� is the spin con-
figuration at time t.

First of all we calculate C�tw+ t , tw� in the ferromagnetic
part of the phase diagram, i.e., for J�Jt. We found that
C�tw+ t , tw� depends on t and tw through the ratio t / tw, as
shown in Fig. 16. This type of scaling is called simple aging
and it is characteristic of a simple coarsening �i.e., domain
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FIG. 15. �Color online� Arrhenius plot of the characteristic time
for shrinking squares for different values of the square side ls: from
bottom to top ls=5, 6, 7, 8, and 9. The lines are a guides for the
eyes. The inset shows the energy barrier �slope of the linear fittings
in the Arrhenius plot� as a function of ls �the symbol size in the inset
is larger than the statistical error bars�.
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growth� process. This result is in agreement with the ob-
served behavior of the excess of energy �Fig. 9�

Next we consider the behavior of the correlations during
the glassy regime observed in the previous section for J
�Jt. The typical behavior of the autocorrelation function is
shown in Fig. 17, where we plot C�tw+ t , tw� vs t for T
=0.04, J=2, and L=256 and different waiting times. The
simulation was run up to t=5�105 MCS and typical aver-
ages were performed over 2000 realizations of the thermal
noise; both times were chosen such that �0� t+ tw��1. A
first trial to collapse those curves showed that in this case
C�tw+ t , tw� does not exhibit simple aging. A similar behavior
is observed for J=2, T=0.06�Tg, and �0� t+ tw��1.

It has been observed for a large variety of systems that in
the aging scenario the curves of C�tw+ t , tw� for different tw
always collapse into a single one using an adequate scaling
function �23�. Although there is no theoretical basis for de-
termining the scaling function, there are a few choices that
have been able to take into account both experimental and
numerical data, perhaps the most frequent one being the ad-
ditive form,

C�tw + t,tw� = Cst�t� + Cag�h�tw + t�
h�tw�

� , �10�

where Cst�t� is a stationary part, usually well described by an
algebraic decay,

Cst�t� = Bt−�. �11�

The function h, appearing in the aging part of the autocorre-
lations Cag, is some scaling function �in the case of simple
aging, h�t� is a power law that describes the characteristic
linear domain-size growth�. In our case, the best data col-
lapse of the autocorrelation curves was obtained using a scal-
ing function of the form,

h�t� = exp� 1

1 − �
� t

�
�1−�
 , �12�

which has been used to account for experimental data �23�
and in the Edwards-Anderson model for spin glasses �25�,
where � is a microscopic time scale. It is worth to note that
the scaling function �12� interpolates a range of scenarios:
from subaging for 0���1 to superaging for ��1,
through simple aging for �23� �=1; for �=0 TTI is recov-
ered. In Fig. 18 we show the collapse of the data from Fig.
17 using the scaling parameter values shown in Table I ��
was arbitrarily fixed to one�. A similar data collapse was
observed for J=2 and T=0.06 �see parameters in Table I�. To
check possible finite-size effects, we performed a similar cal-
culation for T=0.04, J=2, and L=64, finding the same col-
lapse shown for L=256 in Fig. 18 with the same scaling
parameters; only a small variation in the master curve is
observed. We see that for T�Tg, the best data collapse is
obtained without stationary part and a clear subaging is ob-
served.

We also repeat the correlation calculation for temperatures
T�Tg at time scales corresponding to the ordered regime
tw+ t��1 �T=0.6 and T=1 for J=2 and L=64�. Again, aging
is observed in this regime and a data collapse similar to that
shown in Fig. 18 using the scalings �10�–�12� is obtained.
The corresponding scaling parameter values are shown in
Table I. We see that for this temperature range, the best data
collapse is obtained by including a stationary part and that
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TABLE I. Scaling parameter values obtained from the best data
collapse for the correlation curves for J=2 at different temperatures
using the scaling forms �10�–�12�.

T B � �

0.04 0 0.50

0.06 0 0.30

0.6 0.19 0.22 0.25

1.0 0.16 0.30 0.14
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the scaling parameter � decreases systematically as the
quench temperature increases signaling that the system ap-
proaches TTI. We find that � becomes zero at a temperature
T
1.5�Tc, which can be considered as the onset of this
nonexponential relaxation.

To further characterize this nonequilibrium behavior, we
also analyze the generalized FDR, which can be expressed as
�26�

R�tw + t,tw� =
X�tw + t,tw�

T

�C�tw + t,tw�
�tw

, �13�

where R�tw+ t , tw�=1 /N �i���i�tw+ t�� /�hi�tw� is the response
to a local external magnetic field hi�t� and X�tw+ t , tw� is the
fluctuation-dissipation factor. In equilibrium, the fluctuation-
dissipation theorem �FDT� holds and X�tw+ t , tw�=1, while
out of equilibrium X depends on t and tw in a nontrivial way.
It has been conjectured �26� that X�tw+ t , tw�=X�C�tw
+ t , tw��. This conjecture has proved valid in all systems stud-
ied to date.

Instead of considering the response function, it is easier to
analyze the integrated response function,

��tw + t,tw� = �
tw

tw+t

R�tw + t,s�ds . �14�

Assuming X�tw+ t , tw�=X�C�tw+ t , tw��, one obtains

T��tw + t,tw� = �
C�tw+t,tw�

1

X�C�dC , �15�

and by plotting T� vs C one can extract X from the slope of
the curve. In particular, if the FDT holds X=1 and T��t�
= �1−C�t��; any departure from this straight line brings infor-
mation about the nonequilibrium process. In numerical simu-
lations of spin-glass �27�, structural glass �28� and random
anisotropy Heisenberg �29� models, it has been found that in
the nonequilibrium regime, this curve follows another
straight line with smaller �in absolute value� slope when
t / tw�1. In this case, the FD factor X can be interpreted in
terms of an effective temperature �30� Tef f =T /X.

We apply this procedure during the glassy and ordered
relaxation regimes previously found for J�Jt. At time tw, we
took a copy of the system spin configuration, to which a
random magnetic field hi�t�=h�i was applied, in order to
avoid favoring long-range order �31,32�; �i was taken from a
bimodal distribution ��i= �1�. We have used different values
of h in order to check that the system was within the linear-
response regime. All the results presented here were obtained
with h=0.025.

In Fig. 19 we display T��t , tw� vs C�tw+ t , tw� in a para-
metric plot for different waiting times in the glassy regime
�i.e., tw+ t��1� at T=0.04. We observe a typical two-time
separation behavior �33�. At t=0, the system starts in the
right bottom corner �fully correlated and demagnetized� and
during certain time �that depends on tw� it follows the equi-
librium straight line, indicating the existence of a quasiequi-
librium regime. Nevertheless, at certain time the system
clearly departs from this quasiequilibrium curve and moves
along a different straight line, but with a different �smaller�

slope, indicating an effective temperature that is larger than
the temperature of the thermal bath �Tef f =4 for the data of
Fig. 19�. Notice that the quasiequilibrium regime is very
small, consistently with the absence of a stationary part ob-
served in the correlation function �see Table I�.

In Fig. 20 we display T��t , tw� vs C�tw+ t , tw� in a para-
metric plot for different waiting times in the ordered regime
�i.e., tw+ t��1� at T=0.6. The two-slope structure is again
observed, although with a smaller effective temperature
�Tef f =1.5�.
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FIG. 19. �Color online� Parametric plot of T��t , tw� vs C�tw

+ t , tw� in the glassy regime �J=2, T=0.04, and L=256; tw+ t��1�
for different waiting times. The dashed lines are linear fittings; the
dash-dotted lines represent the thermal equilibrium relation T�=1
−C. The linear fittings have a slope X=0.01, corresponding to an
effective temperature Tef f =4. Waiting times from top to bottom are
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IV. DISCUSSION

We presented a lattice spin model that mimics a system of
interacting particles through a short-range repulsive potential
and a long-range power-law decaying potential. Through a
detailed Monte Carlo simulation analysis, we computed the
complete equilibrium phase diagram of the model at finite
temperature and characterized the order of the different tran-
sition lines. We showed that the model presents only two
simple ordered phases at low temperatures: ferromagnetic
�for J�Jt� and antiferromagnetic �for J�Jt�, without any
trace of geometrical frustration and/or complex patterns.

We then analyzed the out of equilibrium relaxation of the
system after a quench from infinite temperature down to sub-
critical temperatures, in different regions of the phase dia-
gram. While a normal coarsening behavior appeared in the
ferromagnetic region of the phase diagram J�Jt �i.e., a do-
main growth process that follows Allen-Cahn law l�t�� t1/2�,
the system shows a complex relaxation scenario in the anti-
ferromagnetic region J�Jt. This is precisely the most inter-
esting situation since for those values of J the pair interaction
potential of the model shows the same qualitative features as
a continuous, Lennard-Jones �LJ�-like potential, namely, a
nearest-neighbors repulsive interaction �i.e, “hard-core like”�
and an attractive power-law decaying interaction at longer
distances �see Fig. 1�. We must stress that we did not intend
to present a lattice version of the LJ gas but to show that
some very basic features present in it �i.e., the competition
between short- and long-range interactions� are enough to
produce nontrivial slow relaxation properties. We observed
that such competition gives rise to nonequilibrium structures
that strongly slow down the dynamics, even in the absence of
geometrical frustration and/or imposed disorder. The most
interesting of those structures gives rise to a relaxation re-
gime with several appealing properties that strongly re-
semble those observed in different glassy systems.

First of all, that regime is characterized by a dynamically
generated disordered nonequilibrium state characterized by a
labyrinth structure, i.e., composed of at least one macro-
scopic connected domain. The energy of such state displays a
pseudoplateau and a finite lifetime �1 that diverges when T
→0; both properties are independent of the system size.
Such phenomenology is extremely reminiscent of transient
particles colloidal gels obtained by quenching a monodis-
perse gas of colloidal particles under Brownian dynamics
�Langevin dynamics in the overdamped limit� that interact
through a generalized 2n−n LJ potentials �34,35�. A gel is a
nonequilibrium disordered state characterized as a percolat-
ing cluster of dense regions of particles with voids that
coarsen up to certain size and freeze when the gel is formed;
transient gels do not have permanent bonds between them
and collapse after a finite lifetime �35�. The energy of tran-
sient gels of 2n−n LJ colloidal particles displays a slowly
decaying pseudoplateau �36�, as in the present case. It has
also been observed that the lifetime of the gel strongly in-
creases as the interaction range is decreased �36�, for in-
stance, by changing the value of n. It would be interesting to
check if a similar effect can be obtained in the present model
by changing the interaction range �for instance, by changing
the exponent of the long-range interaction term in Hamil-
tonian �2��.

Second, during the glassy regime the dynamics appears to
be governed by free-energy barriers to coarsening that scale
as a power law with the characteristic domain size, with an
associated logarithmic growth l�t���T ln�t��a �and therefore
a logarithmic relaxation�. Such behavior is characteristic of
class 4 systems, according to Lai et al. classification �20�.
Some examples of nondisordered short-range interacting sys-
tems that present growing free-energy barriers with the do-
main size are already known, such as the three-dimensional
Shore and Sethna �SS� model �18,37,38� �i.e., an Ising model
with nearest-neighbors ferromagnetic interactions and next-
nearest-neighbors antiferromagnetic interactions� and a gen-
eralization of the previous one introduced by Lipowski et al.
�19�, including a four-spin plaquette interaction term. How-
ever, in those models the barriers appear to grow linearly
with the domain size �which corresponds to a pure logarith-
mic growth l�t�� ln�t�� and, therefore, fall into the class 3
category of Lai et al. �18�. So far, examples of class 4 sys-
tems were found only among disordered systems such as
spin glasses �39� and the Ising model with random quenched
impurities �40�. This would be an example of a class 4 be-
havior in a nondisordered system. Nevertheless, an important
difference between the above-mentioned nondisordered
models and the present one have to be remarked. While in
those models the logarithmic growth appears to lead to di-
vergent barriers, in the present case the apparently barriers
growth stops at some maximum value F that determines the
lifetime �1. This implies the existence of a characteristic
length lmax in the dynamics of the system. Although such
limited length scales make very difficult to obtain better nu-
merical evidence of the existence of growing barriers, the
consistency between the scaling of the excess of energy and
the time for shrinking square excitations gives support to our
conjecture. Thus, this system appears to behave, at least for
certain time scale that can become very long a very low
temperatures, as a class 4 system, even though in the long
term it behaves as a class 2 system in the sense that its
ultimate dynamics is governed by a single free-energy bar-
rier. This opens the possibility of having a truly nondisor-
dered class 4 system if the lifetime of the glassy state at finite
temperature could be extended by tuning the range of the
interactions, as previously discussed. Indeed, we believe that
the possibility of having in a nondisordered class 4 system
makes it worth to further investigation.

While we do not have an explanation for such possible
relaxation scenario �i.e., power-law growth of barriers with a
rather small exponent 1 /a and limited length scale for grow-
ing�, probably a key ingredient to explain it would be the
moderated long-range character of the interactions. It would
be very interesting to check if the same behavior can be
detected in the LJ gas or its generalizations, which appear to
present a similar phenomenology �36�. However, the range
interactions would be not enough in the present model to
generate dynamical frustration �in the sense stated by Shore
et al. �18�, i.e., systems whose dynamics is slowed down by
the presence of growing free-energy barriers�, but the type of
competition between interactions would be equally impor-
tant. This can be clearly seen by looking at the nonequilib-
rium behavior after a quench of the reverse model, namely,
that given by the Hamiltonian �1� with the inverse coeffi-
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cients sign �J1�0 and J2�0�. While the equilibrium phase
diagram of that model is by far more complex than the
present one �9,8�, its domain growth behavior after a quench
to subcritical temperatures is relatively simple, at least for
the regions of the phase diagram explored up to now. De-
pending on the ratio of couplings J1 /J2, it behaves as a class
2 system �41� �which implies domain-size-independent free-
energy barriers�, like the 2D SS model �18,37�, or relaxation
can be dominated by nucleation effects �42�. Accordingly,
that system presents simple aging �43,44� and trivial FD re-
lations �32� �infinite effective temperature�, at variance with
the present case.

In the glassy regime of the present model, we found non-
trivial aging effects, with scaling properties characteristic of
glassy systems �subaging�. Nontrivial aging has also been
found in the nondisordered four-spin ferromagnetic model
�45� �a particular case of the model of Lipowski et al. �19��;
but in this case the system displays superaging, while the
disordered version of the same model displays subaging �46�.
Subaging has also been reported in molecular-dynamics
simulations of small LJ clusters �47�.

We also found FD relations displaying a well-defined ef-
fective temperature in the aging regime. It is interesting to
note that although nontrivial behavior of time correlations
and responses are usually associated to glassy systems, they
have also been observed in very simple systems, which un-
dergo domain growth at intermediate time scales �as in the
present case�, namely, the ferromagnetic Ising chain �48� and
the 2D ferromagnetic Ising and Potts models with Kawasaki
dynamics �38�. A similar behavior has been found in a non-
disordered plaquette model for glasses introduced by Cava-
gna et al. �49,50�. It is worth noting that the three-
dimensional SS model presents only trivial FD relations,
even for the temperature range where it appears to present
logarithmic growth of domains �38�.
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