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We study a fully connected network �cluster� of interacting two-state units as a model of cooperative
decision making. Each unit in isolation generates a Poisson process with rate g. We show that when the number
of nodes is finite, the decision-making process becomes intermittent. The decision-time distribution density is
characterized by inverse power-law behavior with index �=1.5 and is exponentially truncated. We find that the
condition of perfect consensus is recovered by means of a fat tail that becomes more and more extended with
increasing number of nodes N. The intermittent dynamics of the global variable are described by the motion of
a particle in a double well potential. The particle spends a portion of the total time �S at the top of the potential
barrier. Using theoretical and numerical arguments it is proved that �S� �1 /g�ln�const�N�. The second portion
of its time, �K, is spent by the particle at the bottom of the potential well and it is given by �K

= �1 /g�exp�const�N�. We show that the time �K is responsible for the Kramers fat tail. This generates a
stronger ergodicity breakdown than that generated by the inverse power law without truncation. We establish
that the condition of partial consensus can be transmitted from one cluster to another provided that both
networks are in a cooperative condition. No significant information transmission is possible if one of the two
networks is not yet self-organized. We find that partitioning a large network into a set of smaller interacting
clusters has the effect of converting the fat Kramers tail into an inverse power law with �=1.5.
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I. INTRODUCTION

The phenomenon of decision making is by its nature in-
terdisciplinary and its understanding has attracted an ever
increasing number of investigators �1–3�. One aspect of the
broad interest stems from the fact that group decisions are
just as important to human beings as they are to other social
animals �1�, thereby bridging the gap between sociology and
biology.

On the other hand, experiments on collective behavior in
humans �2� show that the topology of the human group net-
work can affect the speed of the decision-making process.
This observation establishes a connection with the physics of
living neural networks �4� where the transport of information
along the network seems to play a crucial role for the net-
work’s function �5�.

The decision-making process is consequently character-
ized by the joint action of two distinct forms of complexity:
dynamic complexity and network complexity. The transport
of information between complex networks occurs through
the complexity matching �CM� phenomenon which may de-
pend on the joint action of the two kinds of complexity. The
remainder of Sec. I illustrates these three concepts.

A. Structural complexity

The pioneering paper by Watts and Strogatz �6� estab-
lished that real networks depart from the condition of total
randomness, which is characterized by weak clustering, and
show surprisingly large clustering coefficients instead.
Barabási and Albert �7� pointed out that real networks are
also characterized by the scale-free condition, a property that

implies an inverse power-law distribution density of links per
node. Since then, attempts have been made to create a model
that generates both high-clustering and scale-free properties.
One such attempt is that of Holme and Kim �8�, who as-
sumed that the new nodes not only establish links preferen-
tially with nodes already having a high number of links but
they also establish additional links with the neighbors of
these nodes. Another interesting proposal suggests that the
networks grow by incorporating units that are already clus-
tered, for instance, as triangles �9�.

The structure of scale-free networks with high-clustering
coefficients �10� consists of many clusters, each with a local
leader or hub. There exists hub-to-hub coupling that can be
interpreted as a channel of communication between clusters.
This hub-to-hub connectivity suggests that real networks
may rest on the presence of both scale-free and high-
clustering properties to realize maximum efficiency of the
decision-making process.

Making general predictions on the influence of network
complexity on the efficiency of a decision-making model is a
hard problem due the fact that the efficiency of a model may
be different from the topological or structural efficiency �11�
and may depend on the specific nature of the model.

As a significant example of decision-making model de-
pendence on network structural complexity we refer the
reader to the recent work in Ref. �12�, which shows that the
scale-free networks are not necessarily those that reach col-
lective decisions the fastest.

We are convinced that the decision-making model pro-
posed herein may not produce faster decisions than if they
were scale-free and may not benefit from the hierarchical
structure of the network. We believe that decision making
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benefits from the existence of clusters, and for this reason,
we limit our discussion of network structural complexity. In
fact we restrict analysis to the very simple case of a limited
number of interacting clusters and each cluster within the
model is fully connected. On the other hand the network of
clusters departs from the all-to-all coupling condition be-
cause only a limited number of elements from within one
cluster are allowed to interact with another cluster.

B. Dynamic complexity

Dynamic complexity can be realized, in principle, by us-
ing a network whose structure is not complex, fitting the
fully coupled condition within a cluster. Dynamic complex-
ity is closely related to the phase-transition process occurring
in physical systems, corresponding to the emergence of a
global behavior, for instance, the synchronization of a fully
coupled set of Kuramoto oscillators �13�. The single nodes
used herein are not Kuramoto oscillators but are the stochas-
tic oscillators recently studied by three research groups
�14–16�. The main reason for our choice is that the two-state
version of this model is that it provides a description of a
simple decision-making process. The single units, in fact,
correspond to individuals who have to choose between two
possibilities, 1 and −1. In the absence of cooperation, the
individuals act independently; the choice is virtually equiva-
lent to tossing a coin. Actually, an individual’s decision is
kept for a time on the order of 1 /g after which time it might
change. Cooperation within a cluster, modeled by the inter-
actions of the two-state nodes, implies that during the
decision-making process the dynamics of each unit is influ-
enced by the choices made by the units to which each unit is
linked. We show that an effect of cooperation is that the
decision making can be made global and, due to self-
organization, the entire network behaves as a single macro-
scopic unit. In the asymptotic case of all-to-all coupling in a
dynamic network with an infinite number of units, the choice
of either 1 or −1 becomes permanent.

As we prove in this paper, in the case of a finite number of
nodes, the choice of either 1 or −1 does not last very long.
The internode coupling generates intermittent behavior in the
time series representing the overall state of the cluster. The
non-Poisson character of the network time series is the most
significant signature of dynamic complexity.

Investigators �16� used the two-state version of this model
to provide a convenient picture of the fluorescent intermit-
tency of blinking quantum dots. In fact, the waiting-time
distribution of the “light on” and “light off” states is an in-
verse power law with index �=1.5 and the corresponding
sequence is a renewal process �16�, in accordance with the
statistical analysis of real intermittent signals �17�. Bianco et
al. �16� did not discuss the origin of the truncation of this
inverse power law, interpreting it to be a property obscuring
the true complexity underlying the emergence of the inverse
power law. To prepare the ground for studying the transmis-
sion of information from one cluster to another, which is
related, as we shall see, to network complexity, herein we
explore the detailed mechanisms responsible for the trunca-
tion of the inverse power law. Moreover we prove that rather

than being irrelevant, this unexpected and disturbing trunca-
tion of the inverse power law is an important part of the
nonergodic nature of the process. Consequently, the trunca-
tion plays an important role in the transmission of informa-
tion from one cluster to another.

In summary, dynamic complexity is signaled by the non-
Poisson intermittence emerging in the condition of phase
transition from uncoordinated short-time decisions to global
decision-making process in which a cluster reaches near con-
sensus. We shall refer to this latter condition as self-
organization. In fact, as we shall see, the global decision-
making process is realized by the internal interaction
between the single units of the system rather than by an
external control parameter, such as temperature in physical
networks.

It is important to stress that to some extent the dynamic
process of this paper is related to the issue of thermally ac-
tivated processes and of dynamically bistable networks
�18,19�. This fact is made evident herein where the decision-
making process is described in part by a bistable potential
that is illuminated with the help of Kramers theory �20�.
However, the true source of fluctuation in these nonphysics
networks is not thermal, thereby assigning to complex dy-
namics a nature different from that of ordinary phase-
transition processes, and explains our adopting of the term
self-organization.

C. Complexity matching

In the literature there are many papers devoted to the
study of the global properties of complex networks, which
are primarily concerned with network structure. The main
focus of the present paper is on determining how the transfer
of information from one cluster to another is facilitated by
the self-organization within each of the clusters. A decision
maker in isolation makes decisions lasting for finite times,
and the sequence of time durations of these decisions is a
renewal Poisson process. A self-organized cluster retains a
decision for a much longer time than that of a decision maker
in isolation. However, the time duration of a decision made
by a self-organized cluster is also finite and the self-
organized cluster also generates a renewal time series: the
main difference between the self-organized and isolated de-
cision maker is that the time series generated by the self-
organized cluster is not a Poisson process. The abrupt deci-
sion changes in a cluster are crucial events �16�. In
accordance with existing nomenclature �16� we denote as
crucial the renewal events when the time distance between
two consecutive events is a stochastic quantity whose mean
value is infinite. We denote with the symbol ���� the distri-
bution density of decision-time durations �. In the case
where �����1 /��, the renewal events are crucial if ��2.
Herein the idea of an event being crucial is realized by fat
tails that in the finite time region accessibility to information
turns out to be slower than in the inverse power-law tails.
Thus the response of a self-organized cluster to an external
stimulus is expected to be characterized by the CM principle
�21�. One consequence of the CM principle is that a self-
organized cluster is only sensitive to the influence of another
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self-organized cluster. The upshot of analysis and computa-
tions made herein is the assessment of how CM dominates
the communication between network clusters. It is expected
that this discovery can be used to establish guidelines for the
study of the decision-making process of sets of decision
makers that are the members of a complex network. In con-
clusion, we think that the CM effect, discussed in this paper,
may help us to establish the connection between dynamic
and network complexity.

The outline of this paper is as follows. In Sec. II we
present a concise review of the dynamic two-state model
�16� applied to decision making so that the present paper is
as self-contained as possible. In Sec. III we explain why the
decision-making survival probability has the typical form of
an inverse power law that is truncated by an exponential
shoulder. To prove that the decision-making process emerg-
ing from the cooperation of many units is renewal we devote
Sec. IV to illustrating the results of numerical experiments
that assesses the renewal nature of this process. In Sec. V we
show the weak breakdown of ergodicity with effects that are
very similar to those currently assessed by the observation of
inverse power-law processes, with no tail truncation. Section
VI illustrates how the transfer of information between two
networks depends on their relative complexity. In Sec. VII
we illustrate the effect of splitting the networks into four
weakly coupled parts. Finally, we devote Sec. VIII to con-
cluding remarks and plans for future work.

II. THEORETICAL PREDICTION IN THE CASE OF ALL-
TO-ALL COUPLING AND N=�

This section is devoted to a concise review of the
decision-making model �16�. This will allow us to define the
barrier intensity Q, which is similar to the energy barrier
between the two wells of a double well potential used by
Kramers �20�. The parameter Q is useful for the theoretical
interpretation of the numerical results presented subse-
quently.

A. Cooperative decision-making model

The dynamic of a single unit is described by the two-state
master equation,

d

dt
p1 = − g12p1 + g21p2, �1�

d

dt
p2 = − g21p2 + g12p1, �2�

where pj is the probability of being in the state �j� and p1
+ p2=1. The states �1� and �2� correspond to the values 1 and
−1, respectively.

When there is no network the single unit is isolated and
the transition rates are g12=g21=g�1. From a formal point
of view the master equation can be derived by assuming that
the decision between the two alternatives is made by this
node tossing a fair coin and then retaining this decision for a
time � derived from the exponential distribution density,

���� = r exp�− r�� , �3�

with the transition rate given by g=r /2. Here r is the rate at
which decisions are made or a number of decisions made per
unit time. In this simple case once a decision is made, it is
kept for an average time �D given by the inverse of the rate,

�D =
1

r
=

1

2g
. �4�

Each node of a given network is occupied by a dynamic
unit described by the master equation of Eqs. �1� and �2�. A
given unit is perturbed by all the other units to which it is
directly connected according to the prescription,

gij�t� = g exp�K�	 j�t� − 	i�t���
 j,i�1, �5�

where

	s =
Ms

M
. �6�

M denotes the number of nodes connected to the site that we
are considering and Ms is the number of the nearest-neighbor
nodes that are in the state s, s=1,2. The parameter K is the
control parameter, generating the coupling factor

Ci,j = exp�K�	 j�t� − 	i�t��� . �7�

The single unit now keeps its decision for a time longer or
shorter than �D according to the choices made by its neigh-
bors. If half of its neighbors are in the state �j� and half in the
state �i�, the single unit remains in the state �i� as it would in
isolation. If the majority of its neighbors are already in the
state �j�, the single unit makes its decision of selecting �j�
earlier than in isolation. In the opposite state when the ma-
jority of its neighbors are still in the state �i� the single unit
keeps the original decision for a longer time.

The key point is that the master equation of each site is
well defined, but it is a fluctuating master equation. In fact
the transition coefficients gij depend on the quantities 	s,
which have random values depending on the stochastic time
evolution of the environment of a specific site. As a matter of
fact, we may define another frequency,

�s =
Js

J
, �8�

where J denotes the total number of sites in the network. It is
evident that the quantity �s is also an erratic function of time
even if it is expected to be smoother than 	s. In fact, �s is a
global property, obtained from the observation of the entire
network, while 	s is a property of the environment of a given
site. The smaller the cluster, the more erratic the quantity 	s.
We also define the stochastic variable

�t� = �1�t� − �2�t� , �9�

whose variability is characteristic of the network.

B. Stable condition

Let us consider the all-to-all coupling case and assume
that the total number of nodes, N, becomes infinite. In this
case 	s=�s= ps, thereby yielding
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g12 = g exp�− K�p1 − p2�� �10�

and

g21 = g exp�− K�p2 − p1�� . �11�

Let us define the difference in the probabilities

� 	 p1 − p2. �12�

Subtracting Eq. �2� from Eq. �1� yields the rate equation for
the difference variable,

d

dt
� = − �g12 + g21�� + �g21 − g12� . �13�

By inserting Eqs. �10� and �11� into Eq. �13� we obtain

d

dt
� = − g�eK� + e−K��� + g�eK� − e−K�� = −

dV

d�
.

�14�

For K�1, half of the nodes are in the state �1� and half are in
the state �2�. At the critical value K=Kc=1 a bifurcation oc-
curs and the potential develops two wells separated by a
barrier �Fig. 1�a��. It is straightforward to prove that for K
�1, but very close to 1, the barrier intensity Q is given by

Q = g
K − 1

K
�2

�15�

and the two equilibrium values of � are

�eq = � 
2�K − 1�
K

�1/2

. �16�

Figures 1�b� and 1�c� serve to illustrate the agreement be-
tween the barrier intensity Q and the equilibrium values �eq
and their approximations by Eqs. �15� and �16�, respectively.

At K slightly larger than the critical value Kc=1, a major-
ity decision emerges. The condition of perfect consensus is
reached for K→�. In this case � gets either the value of 1 or
of −1. It is important to stress that, even if for K�1 but finite
the consensus is only partial, the network is in an equilibrium
condition, where the majority and the minority keep their
choice forever, with no change of opinion.

C. Fluctuating condition

The condition for the existence of the stable condition can
be violated. There are two main causes for this violation. The
first is that the number of nodes is finite. The second cause is
the lack of the all-to-all coupling. In real networks both
sources of equilibrium breakdown are expected to occur.
Herein we consider all-to-all networks, with N nodes, where
the variable  becomes stochastic and its time evolution is
described by the Langevin equation,

d�t�
dt

= −
dV��

d
+ ��t� , �17�

where ��t� is a random fluctuation whose intensity is propor-
tional to 1 /�N. Although Eq. �17� is written in the continu-
ous time representation, in practice the numerical calcula-

tions of this paper correspond to the adoption of a finite
integration time step �t=1. Note that the stochastic rate
equation �Eq. �17�� replaces the master equation �Eq. �14�� in
the case of a finite N and that Eq. �14� is recovered in the
ideal case N=�. We also consider the case of two or more
all-to-all coupled networks that mutually interact by means
of only a fraction of all possible links. In this case the result-
ing network departs from the picture of Eq. �17�. In fact in
this latter case, we can no longer invoke the assumption that
	s�t� is independent of the node considered. We may de-
scribe, for instance, the coupling between two all-to-all net-
works as corresponding to the interaction between two
Langevin equations of the same kind as Eq. �17� with sto-
chastic forces of different intensities if the two clusters have
a different number of nodes.

III. CASE OF A FINITE NUMBER OF NODES: BEYOND
THE KRAMERS-SUZUKI THEORY

In this section we consider the all-to-all coupling condi-
tion, with a finite number of nodes, N. In Fig. 2 the fluctu-
ating variable �t� is depicted as a function of time under
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FIG. 1. �Top� The double well potential V��� as a function of �
for g=0.01 and different values of the coupling constant K. Solid
line for K=1.05, dashed line for K=1.10, and dotted line for K
=1.20. �Middle� The barrier intensity Q�K� as a function of the
coupling constant K for g=0.01. Solid line for the barrier intensity
derived from Eq. �14�; dashed line for barrier intensity approxi-
mated by Eq. �15�. �Bottom� The equilibrium value �eq�K� as a
function of the coupling constant K for g=0.01. Solid line for val-
ues derived from Eq. �14�; dashed line for values approximated by
Eq. �16�.
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differing conditions. Notice that with increasing N the fluc-
tuation �t� becomes more distinctly dichotomous, with an
increasingly sharp transition from the “up” to the “down”
state. This pattern corresponds to the entire network keeping
a decision for a longer and longer time as the size of the
network increases. The ideal condition of a decision lasting
forever is reached in the ideal case N=�.

We define as an event the abrupt transition from the up
�down� to the down �up� state. We also notice that there exist
transitions from �t��0 ��t��0� to �t��0 ��t��0� with a
virtually vanishing residence time in the state up �down� on
the time scale of these figures. These decisions of very short-
time duration are important for the exchange of information
between clusters and cannot be ignored. They are responsible
for the inverse power-law regime of the distribution density
����. We decided to record both long and short-time dura-
tions of the global choices, and for this reason we define as
an event the crossing of the origin of the  axis. The time
duration of a choice is then the time interval between two
consecutive recrossings of the origin of the  axis.

In Fig. 3 we plot the survival probability

��t� = 
t

�

d����� . �18�

For values of N of the order of N�10 the survival probabil-
ity is similar to that of a single unit in the isolation condition,

��t� = exp�− gt� . �19�

For values of N on the order of 100 the time region of the
Poisson process of Eq. �19� is turned into an inverse power
law with index �−1�0.5. A further increase in N does not

affect the time region defined approximately by t�1 /g, and
it has only the effect of producing a more and more extended
shoulder that we refer to as the Kramers shoulder due to the
theoretical interpretation of its cause.

We note that the process becomes ergodic for times larger
than the Kramers time �K�exp�const�QN� �we subse-
quently explain the physical origin of this time�. The much
shorter time 1 /g is close to the Suzuki time �S, which is also
explained later in this section.

Imagine producing infinitely many realizations of the
decision-making process all with the same initial condition
=0. The probability distribution density P� , t� will evolve
from a Dirac delta function 
�� to the final equilibrium den-
sity,

Peq�� � exp
−
V��

D
� . �20�

The parameter D is the diffusion coefficient determined by
the strength of the noise ��t� in Eq. �17�. We set

D =
g

N
. �21�

The equilibrium distribution �Eq. �20�� is realized in the
Kramers time scale t��K. In this time scale the decision-
making process is expected to be ergodic. However, we have
to take into account that our observation process rests on
sequences, whose size L ranges from L=104 to L=107. Note
that N�100 already generates a Kramers time on the order
of �K=104. As a consequence, we reach the preliminary con-
clusion that the observation process limited to the range of L
forces us to interpret the decision-making process as being
out of equilibrium if �K is of the order of L.

To make theoretical predictions on the decision-time dis-
tribution density ���� we use the formula �22�

P� = 0,t� � R�t� = �
n=1

�

�n�t� , �22�

where �n�t� denotes the probability density for the network
to return to the origin for the nth time, given the condition
that it was at the origin at t=0. The quantity R�t� is the
number of returns to the origin per unit of time, given the
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FIG. 2. The fluctuation of the mean-field-average phase as a
function of time. �Top� For a system of N=500 clocks, K=1.05, and
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condition that the network was at the origin at time t=0. The
physical justification of this formula is that in the micro-
scopic time scale the network leaves the origin at the first
time step due to the fluctuation �.

Using the renewal condition we connect �n�t� to �n−1�t�
by means of

�n�t� = 
0

t

dt��n�t − t���1�t�� , �23�

with �1�t�=��t�, the decision-time distribution density. Let
us use the method of Laplace transform and the notation

f̂�u�	�0
�dt exp�−ut�f�t�. It is straightforward to prove that

R̂�u� =
�̂�u�

1 − �̂�u�
. �24�

We note that R�t� has the dimension of the inverse of
time. Therefore it is convenient to write

R�t� = kP� = 0,t� , �25�

where k is a convenient factor ensuring that both terms of
Eq. �25� have the same physical dimensions. The choice of k
depends on whether we consider the short- or the long-time
region. Let us assume we can completely neglect the fact that
the network is regressing toward the equilibrium condition
�Eq. �20�� or, more precisely, that the network is in a free-
diffusion situation corresponding to V��=const. In this case
the function P�=0, t� decays as 1 / t
, as prescribed by the
rescaling property of a diffusion process with � t
. Thus we
are led to

R�t� �
1

�c

 �c

t
�


, �26�

where �c is the time necessary to move from the discrete time
evolution to a scaling regime, where 
 can be clearly evalu-
ated. We estimate �c to be about ten time larger than the
integration time step �t that, as earlier stated, is set equal to
1 in the numerical calculations of this paper. Consequently,
�c�10. The regression to the origin is virtually independent
of D, which controls the intensity of the fluctuations but not
the regression times. A trajectory leaving the axis =0 at ti
and coming back to it at ti+1, in between these two times may
depart from the origin by quantities whose modulus is pro-
portional to D, but the time interval �ti+1− ti� is determined by
the scaling coefficient 
. Using the Tauberian theorem,

1

t
 →
��1 − 
�

u1−
 , �27�

we convert Eq. �26� into

R̂�u� � ��cu��
−1���1 − 
� . �28�

To go from R�t� to ��t� we use Eq. �24� that yields

�̂�u� = 1 −
1

R̂�u�
� 1 −

��cu��1−
�

��1 − 
�
. �29�

Let us assume that

��t� = �� − 1�
T�−1

�t + T�� . �30�

This distribution density is properly normalized and affords a
simple way to ensure the asymptotic time property ��t��

1
t�

with no divergence at t=0. The parameter T determines the
size of the time interval within which the distribution density
��t� is not yet an inverse power law. The Laplace transform
of ��t� is given by

�̂�u� � 1 − ��2 − ���uT��−1. �31�

By comparing Eq. �31� to Eq. �29� we get

� = 2 − 
 �32�

and

T =
�c

���1 − 
���
��1/�1−
� . �33�

We note that the diffusion process generated by the ran-
dom fluctuation � is ordinary, thereby yielding 
=0.5 for the
scaling of the left-hand side of Eq. �22� and, through Eq.
�32�,

� = 1.5. �34�

Using Eq. �33� and 
=0.5 we predict that

T =
�c

��0.5�4 � 0.1�c. �35�

Thus we estimate T to be of the order of 1, in accordance
with the numerical results of Fig. 3.

How extended is this out-of-equilibrium process with an
inverse power-law structure? To answer this important ques-
tion we use the Suzuki theory �23� of 30 years ago. Suzuki
established the time scale necessary to produce macroscopic
order in a physicochemical system on the basis of weak fluc-
tuations. This time is essentially the time spent by the net-
work at the top of the barrier separating the two potential
wells �see Fig. 1�a��.

When the diffusion trajectory x�t�=�0
t dt��t�� departs suf-

ficiently from the origin, it is attracted by the well bottoms
and reaches one of them through fast deterministic motion.
Subsequently, the network fluctuates around the well bottom
until it eventually returns to the top of the barrier. This more
extended time scale is determined by Kramers theory �20�.
The Suzuki time scale �23� is

�S �
1

g
ln�1/D� . �36�

This prediction assumes that the second derivative of the
potential V��� at the top of the barrier and at the bottoms of
the two potential wells is of the order of 1. The Suzuki time
scale tends to increase upon increase in N �1 /D�N� and this
produces a time scale that has a weak logarithmic depen-
dence on N that can be ignored.

Now, let us move from the idealized condition that the
network lives forever in the free-diffusion out-of-equilibrium
regime to the opposite extreme of perfect thermodynamic
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equilibrium. Imagine the capability �that we do not have� of
observing the network on a time scale sufficiently large as to
perceive the network in the equilibrium condition �Eq. �20��.
In this idealized condition Eq. �22� can be written as the
time-independent constant,

a = �
n=1

�

�n�t� , �37�

where a is the constant rate of the origin recrossings, which
yields

a = A exp
−
Q

D
� , �38�

where Q and D is given by Eqs. �15� and �21�, respectively,

and A is a constant factor. In this case R̂�u�=a /u and Eq.
�24� yields

��t� = a exp�− at� . �39�

In Fig. 4 we show the result of a fitting procedure of the
Kramers shoulder that allows us to establish the excellent
accuracy of the theoretical prediction of Eq. �38� and to de-
fine what is meant by the Kramers time scale �K. The Kram-
ers time scale is defined by

�K = 1/a . �40�

It is now evident that, as stated earlier, the Kramers time
scale has an exponential dependence on N ��K�exp�const
�N��.

IV. AGING EXPERIMENT

This section is devoted to establishing that the sequence
of opinion changes is renewal. The renewal property is es-
sential to classifying the change in opinion events as crucial.
The first condition, ���=�, has been established in Sec. III.
We know that for N larger than about 100 the mean time
duration of a choice exceeds the maximum length of the
sequence that we can observe and therefore is operationally
infinite. This N dependence is shown to generate ergodicity
breakdown, but we have to establish that this breakdown
occurs under the specific form of renewal ergodicity break-
down. We notice that the theoretical interpretation adopted in
Sec. III may give the misleading impression that the process

is not renewal and that first we have a sequence of short time
corresponding to the inverse power-law distribution density
with �=1.5 and later to a sequence of Kramers times. This is
not so. If we locate the network on the origin =0 at t=0, the
network moves according to the diffusion-free arguments. If
the sojourn time is shorter than the Suzuki time, it certainly
belongs to this short-time distribution. However, since this
short-time distribution is renewal, after a sojourn time
smaller than �S we may have a new sojourn time that is much
larger than �S. This would certainly occur in the absence of
the Kramers barrier and in the absence of the repulsion walls
as well. The presence of the constraining walls converts this
extended time into a much shorter one and, in the presence
of the potential barrier, into the time of Kramers theory.

Although the renewal nature of the decision-making
model has already been studied and assessed in the earlier
work in Ref. �16�, we notice that those preliminary results
had to do with cases of a Kramers shoulder that was not very
well pronounced. For this reason, we decided to re-examine
the renewal property of this model. At the same time, we
judged it important to give more details on the nature of the
aging experiment used to establish the renewal nature of the
process.

The aging experiment is a method of analysis of time
series originally proposed by Allegrini et al. in Ref. �24�. As
indicated by the sketch of Fig. 5, the aging experiment pro-
ceeds as follows. We adopt a window of size ta, correspond-
ing to the age of the network that we want to examine. We
locate the left end of the window on the time of occurrence
on an event, and we record the time interval between the
right end of the window and the first event after emerging
out of the window. It is evident that the adoption of windows
of vanishing size corresponds to generating ordinary histo-
grams. The histograms generated by ta�0 produce different
decision-time distribution densities, and these distribution
densities, properly normalized, generate survival probabili-
ties whose relaxation can be distinctly different from that of
the ordinary survival probability. A nonergodic renewal pro-
cess is expected to generate a relaxation that becomes slower
and slower as ta increases. To establish whether the aging is
renewal or not, we shuffle the sequence �1 ,�2 , . . . ,�n , . . . so
as to realize a new time series that is renewal. We then apply
the aging experiment to the shuffled sequence, and if the two
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FIG. 4. The result of fitting Kramer’s shoulder of the survival
probability ��t� with an exponential function.
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FIG. 5. Illustration of the aging experiment. Vertical bars on the
top figure indicate the crucial events. Horizontal bar represents ag-
ing time ta. Gray horizontal bars on the middle figure reflects wait-
ing times for the aged system, which are represented as a sequence
on time scale on bottom figure.

COMPLEXITY AND SYNCHRONIZATION PHYSICAL REVIEW E 80, 021110 �2009�

021110-7



survival probabilities coincide, we conclude that the process
is renewal. The results of Fig. 6 show that the decision-
making process is renewal with very good accuracy even
though the survival probability has a very pronounced Kram-
ers shoulder.

On the other hand to double check the renewal nature of
the process we made an additional numerical experiment. We
have generated a very large number of single realizations,
1000, with L=107. This very long-time interval has been
divided into three subintervals. The first subinterval runs
from time t=0 to time L1=104. The second runs from L1 to
L−L1 and finally the last runs from L−L1 to L. We make our
observation on the first and the last subintervals, each of
which has the length L1=104. This time interval is too short
to afford good statistics with only one realization and is the
reason why we have made 1000 realizations. The results are
illustrated in Fig. 7.

We see from Fig. 7 that there is no significant difference
between the observations made after a time interval on the
order of 107 from one another. We also notice another inter-
esting effect. The inverse power-law region, with a slightly
larger power-law index �=1.6 rather than �=1.5, is ex-
tended over a larger number of decades thereby going be-
yond the Suzuki time limit.

V. WEAK BREAKDOWN OF ERGODICITY

In the literature ergodicity breakdown �25,26� is associ-
ated with the emergence of an inverse power-law distribution
density with ��2. Poisson processes are generally consid-
ered to be ergodic processes. This vision does not take into
account the important fact that ergodicity or the breakdown
of ergodicity depends on the time scale. If ��2, the mean
time ��� diverges, and the process is not ergodic regardless
the time scale adopted to prove the ergodicity breakdown. An
illuminating example of this time scale dependence of ergod-
icity breakdown is given by the physics of blinking quantum
dots, whose nonergodic nature is well assessed �27–29�.
However, it is also known �30� �see also �31�� that the in-
verse power-law distribution density of light on and light off
times has an upper �as well as a lower� bound. In our case the
upper bound is not given by the Suzuki time, which is of the
order of �S, but it is given by the Kramers time �Eq. �40��.

Here we adopt the numerical experiments proposed by the
authors in Refs. �25,26� to establish the ergodicity break-
down for time scales shorter than �K. We generate single
realizations of the fluctuation  with different values of N, so
as to realize different values of �K. We turn these sequences
into symbolic sequences with the value of 1 when �0 and
the value of −1 when �0. We consider a window of size l
and we move it along each symbolic sequence. For each
window position there is a given number of +’s, N+, and a
given number of −’s, N−, thereby generating the ratio

z 	
N+ − N−

N+ + N−
, �41�

whose range is −1�z�1. In the ergodic case the probability
distribution density of z is bell shaped centered at z=0. In the
nonergodic case the distribution takes on the typical U shape
first identified by Lévy and Lamperti �25,26�. In Fig. 8 we
see that for a fixed value of l=20 000 the probability density
function of z changes from the U form when N=1000 to a
bell shape when N=100. It is evident that decreasing the
value of N has the effect of weakening the strong ergodicity
breakdown. However, we notice that full ergodicity is real-
ized when p�z� is a Dirac delta function centered at z=0. The
case N=100 is still very far away from the ergodic condition,
in line with our observation that full ergodicity is realized
with N smaller than 100. We therefore conclude that the
process we are examining from N=100 to higher values is
not ergodic.

VI. TRANSMISSION OF INFORMATION BETWEEN TWO
NETWORKS

We have established that our proposed model for coopera-
tive decision making is a nonergodic renewal process. As a
consequence, on the basis of the general arguments illus-
trated in the recent review �21�, we expect that one self-
organized cluster is insensitive to external perturbations not
sharing its complexity. The easiest way to create an external
perturbation with the same complexity of a given self-
organized cluster S is to generate a cluster P identical to
cluster S. The condition of weak perturbation is realized by
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FIG. 6. Testing for renewal property. Survival probability func-
tion ��t� for K=1.08, g=0.01, and network size N=1000 �solid
line�. Survival probability ��ta� aged by time ta=200 �dashed line�.
Survival probability in the renewal case �r�ta� �dotted line�.
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FIG. 7. Average over an ensemble of independent single real-
izations confirms renewal property of the process under investiga-
tion. Solid line for the survival probability function ��t� obtained
for the first interval from time t=0 to time L1=104. Dashed line for
the survival probability function ��t� obtained for the last interval
from time L−L1 to L. Dotted line for the survival probability func-
tion ��t� obtained for the interval from time t=0 to time L1=105.
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assuming that a small fraction F of the N nodes of S is linked
to all the nodes of P. To ensure the nature of an external
perturbation with dynamics independent of S we set the con-
dition that the N nodes of P are not affected by the FN nodes
of S that they perturb. To make it possible to realize a con-
dition far from the CM condition, we do not set the rigid
constraint KP=KS. Additionally, we define perturbation cou-
pling constant KPS, which is used to realize the change in the
transition rate gij for the fraction FN of nodes of network S
due to the coupling with network P.

In Fig. 9 we show a variety of cases: �a� both clusters S
and P are self-organized but not interacting; �b� both clusters
S and P are self-organized and weakly interacting; �c� cluster
P is self-organized and S is not, but P perturbs S; and finally
�d� cluster S is self-organized and P is not, but P perturbs S.
It is evident that in most cases there is no synchronization.
The comparison of Figs. 9�a� and 9�b� shows that the cou-
pling between two self-organized clusters results in synchro-
nization when KS�KP. In the case presented on Fig. 9�a�
there exists a mismatch between lengths of consecutive lami-
nar regions. As marked on the plot, one can distinguish re-
gions where the perturbation P is positive and the fluctuation
of the mean-field of network S is negative in the first portion
and positive in the second portion of the region. This is made
possible by the fact that KS�KP. Consequently, the S lami-
nar regions are less extended than the P laminar regions.
Figure 9�b� shows that in spite of this mismatch in the un-
coupled case, when the coupling is switched on, a very good
synchronization emerges: the weak perturbation is sufficient
to extend the length of the laminar regions of S.

Therefore, only when both clusters are self-organized
there is synchronization through the cluster to cluster inter-
action. To establish all this on a more quantitative level we
evaluate the asymptotic properties of the cross-correlation
function,

� = lim
t→�

�P�t�S�t�� , �42�

as an average over a very large number of realizations of this
perturbation experiment. In the three-dimensional represen-
tation of Fig. 10 we illustrate the result of this analysis.

The results of Fig. 10 are impressive and surprising. It is
evident that when one cluster is self-organized and the other
is not, synchronization is very weak or vanishing. When both
clusters are self-organized and characterized by values of K
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FIG. 8. �Top� Ergocity test performed for the fluctuation �t�
obtained for a network with parameters K=1.05, g=0.01, and
N=1000. �Bottom� Ergocity test performed for the fluctuation �t�
obtained for a network with parameters K=1.05, g=0.01, and
N=100. All tests were performed with window of length 20 000.
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FIG. 9. The results of coupling two networks of stochastic os-
cillators depend on their coupling constants. Both networks S and P
were realized with N=1000 clocks and unperturbed transition rate
g=0.01. The coupling was realized by connecting FN=20 nodes of
network S with all nodes of network P. The perturbation coupling
constant was KPS=2 in all cases. The fluctuations of the mean field
�t� is depicted by gray and black lines for networks S and P,
respectively. �a� Uncoupled case, KP=1.06, KS=1.03. �b� Introduc-
ing the coupling between network P and network S leads to the
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present when one of the networks is not in the complex regime.
Here, perturbed network S, with KS=0.80, does not respond to the
complex perturbation of the network P, where KP=1.06. �d� Syn-
chronization is also absent in the case when the perturbing network
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well above the phase-transition threshold, synchronization
becomes perfect.

To appreciate the importance of this result, it is conve-
nient to mention the recent work for the extension of the
well-known linear response theory �LRT� of Kubo �32� to the
case of event-dominated dynamics. The traditional LRT re-
quires the use of stationary correlation functions and cannot
be used to study irretrievably nonstationary processes such
as our decision-making model. For this reason LRT has been
suitably generalized by the authors in Refs. �33–35� while
maintaining the rigorously linear dependence on the pertur-
bation strength of the original theory. According to the gen-
eralized LRT, the mean value over infinitely many realiza-
tions of the response of S to the same perturbation P�t� is
given by

�S�t�� = �
0

t

ds
 d

dt
�S�t,s��P�s� , �43�

where

�S�t,s� 	 �S�t�S�s�� �44�

is the nonstationary correlation function of S�t�. Note that
this LRT requires S to be a renewal non-Poisson process, a
condition fulfilled by the fluctuation S of our decision-
making model, as proved in Sec. IV. The parameter �, defin-
ing the perturbation strength, is a real number of the interval
�0,1�. However, to generate a LRT the authors in Refs.
�33–35� had to set the important condition

� � 1. �45�

It is easy to prove �36� that Eq. �43� yields

�S�t�S�s�� = �
0

t

ds
 d

dt
�S�t,s���P�t,s� , �46�

where

�P�t,s� 	 �P�t�P�s�� �47�

is the nonstationary correlation function of P�t�. The result
of Eq. �46� can be proved in the case when S is a dichoto-
mous renewal process �33–35�. The renewal condition is not
necessary for P�t�, which, in principle, can also be a regular
function of time. In the case when both S�t� and P�t� are
Poisson dichotomous noises, with laminar regions whose
time durations are derived from the waiting-time distribution
densities,

�S��� = gS exp�− gS�� �48�

and

�P��� = gP exp�− gP�� , �49�

respectively, it is straightforward to prove �36� that

�

�
=

gS

gS + gP
. �50�

According to the CM principle �21� the maximum effi-
ciency of the information transport is reached when the per-
turbed system shares the complexity of the perturbing sys-

tem. The event-dominated LRT supports the CM principle,
insofar as �=� �37�, which is the maximum as possible syn-
chronization is compatible with the linear response to a weak
perturbation.

After this digression, we can explain why the results of
Fig. 10 are surprising. Although the decision-making model
of this paper fits the conditions necessary for the event-
dominated LRT to work, with only 2% of the nodes of S
perturbed by P and KS�1.2 and KP�1.2, � turns out to be
very close to 1, thereby forcing us to set �=1, a condition
inconsistent with the LRT. This is confirmed by Fig. 9�b�
showing that the time length of the laminar regions of S is
drastically changed by the P perturbation, whereas the LRT
is valid when the dynamical properties of S are virtually
indistinguishable from those in the absence of perturbation.

We are not yet in a position to determine analytically the
perturbation parameter � so as to support numerically the
theoretical prediction that this decision model must obey the
event-dominated LRT. However, the numerical results of Fig.
11 allow us to establish that, if it does, the region of LRT
validity is restricted to a portion of the phase space
�FN ,KPS�.

We see that the correlation indicator � vanishes at FN
=0 and it becomes smaller and smaller if FN�0 when KPS
becomes smaller and smaller than 1. Figure 11 shows that in
the region approximately corresponding to KPS�1 and FN
�5, we should set �=1 to make the results compatible with
the nonstationary LRT. Since we expect that ��1 is the
condition for the validity of the LRT, we must conclude that
the LRT may hold true for KPS�1 and F�0.02. The
decision-making model of this paper generates a surprisingly
accurate synchronization with a small number of perturbed
nodes of S, provided that the control parameter KPS is suffi-
ciently large �KPS�1.5�. In the whole phase space of Fig. 11
the system S partially correlates with P. This partial correla-
tion becomes an almost exact form of synchronization of S
with P in the plateau region KPS�1 and FN�5.

In conclusion, the decision-making model of this paper
generates a significantly large value of � with KP�1 and
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FIG. 11. A three-dimensional graph of the cross-correlation in-
tensity �. Both system S and system P have 100 nodes. � is plotted
as a function of the number of intercluster links FN and of the
intercluster interaction intensity KPS. KS=KP=1.3. The numerical
results have been obtained using sequences of length L=108. Al-
though the statistics are not yet accurate enough to define the tran-
sition from the region of low or vanishing correlation, it is clear that
in the region 0�KPS�1 and 0�FN�5, there is small or vanish-
ing correlation. The linear response theory is expected to hold true
in this region.
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F�0.02 and a fast increase in � to the maximum value of 1
with a modest increase in KP and F. We note that the CM
phenomenon has been conjectured on the basis of a generali-
zation of the well-known LRT of Kubo �32�, which allows
the perturbed system to maintain its unperturbed dynamic
properties. The decision-making model of this paper indi-
cates that the CM principle is not limited to the LRT condi-
tion: it can generate exact synchronization, with the per-
turbed system forced to adopt the dynamical properties of the
perturbing system in spite of the fact that P perturbs a sur-
prisingly small fraction of S nodes.

VII. PARTITIONING THE NETWORK

As pointed out in Sec. II C, the adoption of the mean-field
approach yielding Eq. �17� is legitimate only when a single
all-to-all coupling cluster is considered. When the network
consists of several clusters weakly coupled together the con-
dition for the adoption of Eq. �17� is violated. In Fig. 12 we
show the effect of partitioning the network into four interact-
ing parts. We see that a critical value of the coupling among
the four cluster exists �K=5� which has the effect of recov-
ering the Kramers shoulder as an effect of the cooperation
among clusters �in this case the coupling among clusters is
bidirectional� without using the all-to-all coupling condition.
The long dashed line of Fig. 12, corresponding to intercluster
interaction with five nodes indicates that the inverse power-
law region is not confined to t��S. We believe that in a very
large network, not fulfilling the all-to-all condition, the very
fat Kramers shoulder may be converted into a significant
extension of the inverse power law showing up in the Suzuki
time region.

VIII. CONCLUSIONS AND PLANS FOR FUTURE
RESEARCH WORK

In this paper we show that the decision-making model in
Refs. �14–16� can be used to discuss the consensus emer-

gence with theoretical arguments resting on the dynamic bi-
stability of Kramers theory �20�. It is surprising that the
Kramers theory 68 years after its publication is still the sub-
ject of research and debate. The reason is that the dynamic
bistability is ubiquitous and acts under conditions different
from the idealized condition originally set by Kramers. In
some cases �18� the quantum and classical noise plays dual
role. We note that quantum noise was ignored in the original
work of Kramers �20�. In other cases �19� the action of non-
Gaussian noise rather than the white noise of Kramers is
considered. Finally, the new condition of a potential barriers
of very small intensity �26� can be considered. This makes it
possible to reveal the existence of an extended time region
departing from the Poisson condition of Kramers theory.

A very important result of the present paper is in fact the
discovery that the Kramers exponential tail is a source of
complexity. In the temporally wide region between �S and
�K, in fact, the survival probability ��t� is much higher than
the ��t� of complex networks whose inverse power-law be-
havior with �=1.5 was truncated at a time ttrunc on the order
of �K. In a sense, the ergodicity breakdown is even more
intense than the ergodicity breakdown realized with complex
networks characterized by the ordinary upper truncation
�30�.

In conclusion, the extended Suzuki time region is respon-
sible for a striking departure from the Poisson condition of
Kramers theory. The CM phenomenon is a clear sign of the
breakdown of this departure. The conventional Poisson con-
dition would generate only a modest synchronization be-
tween two different networks �36�. We show, on the contrary,
that with our decision-making model the CM effects reach
the condition of maximal efficiency.

We believe that this property will have important applica-
tions in the wide field of decision-making processes. A com-
plex network can be interpreted as a set of interacting clus-
ters which exchange information so as to turn the local into
global consensus. This paper shows that this transfer of in-
formation is realized through the crucial role of renewal non-
Poisson events. According to �21� the efficient transport of
information occurs in the nonergodic regime, and herein we
have confirmed this theoretical expectation. On the basis of
this property it will be possible to address the study of com-
munication transport through networks of any kind regard-
less of size. This will have the effect of establishing a con-
nection between structural and dynamic complexities.
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