PHYSICAL REVIEW E 80, 021108 (2009)

Fidelity susceptibility in the two-dimensional transverse-field Ising and XXZ models
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We study the fidelity susceptibility in the two-dimensional (2D) transverse-field Ising model and the 2D XXZ
model numerically. It is found that in both models, the fidelity susceptibility as a function of the driving
parameter diverges at the critical points. The validity of the fidelity susceptibility to signal for the quantum
phase transition is thus verified in these two models. We also compare the scaling behavior of the extremum of
the fidelity susceptibility to that of the second derivative of the ground-state energy. From those results, the
theoretical argument that fidelity susceptibility is a more sensitive seeker for a second-order quantum phase

transition is also testified in the two models.
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I. INTRODUCTION

Fidelity, a concept emerging from quantum information
theory, has recently become an attractive approach toward
the study of critical phenomena in condensed-matter physics.
In a quantum many-body system, the quantum phase transi-
tion is completely driven by the quantum fluctuation in the
ground state and is incarnated by an abrupt change in the
qualitative structure of the ground-state wave function as the
system varies across the critical point [1]. Therefore, being a
measure of the similarity between two states, the fidelity is
expected to show a dramatic change across the transition
points. This motivated people to start exploring its role
played in quantum phase transitions [2—4]. Moreover, as the
fidelity can be viewed as a space geometrical quantity, no a
priori knowledge of the order parameter and symmetry
breaking of the system is required. This is thus a great ad-
vantage to the study of quantum phase transitions using fi-
delity approaches.

Following the streamline of fidelity, some alternative
schemes, such as the fidelity susceptibility [5], fidelity per
site [6], operator fidelity [7], and density-functional fidelity
[8], have been proposed. As to establish a closer picture to
condensed-matter physics, we follow the concept of fidelity
susceptibility in this paper. Mathematically, the fidelity sus-
ceptibility is just the leading term of the fidelity. It defines
the response of the fidelity to the driving parameter. As a
result, the singularity of the fidelity across the transition
points could thus be reflected in the divergence of the fidelity
susceptibility. In fact, this argument has been consolidated by
the results in a number of one-dimensional quantum many-
body systems [9] (see also a review article [10]).

In this paper, we investigate the behavior of the fidelity
susceptibility in two two-dimensional (2D) models, namely,
the 2D transverse-field Ising model and the XXZ model, nu-
merically. Our results show that the fidelity susceptibility as
a function of the driving parameter diverges at the quantum
phase-transition points in both models. The scaling behaviors
of the extremum of the fidelity susceptibility at the transition
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point and that of the second derivative of the ground-state
energy are also compared. From those results, the theoretical
argument that the fidelity susceptibility is a more sensitive
indicator than the second derivative of the ground-state en-
ergy in searching for a second-order quantum phase transi-
tion is testified. Besides, it is also found that the fidelity
susceptibility shows a scaling behavior in the vicinity of the
critical point and its critical exponents for both models are
also obtained through finite-size scaling analysis.

II. FORMULISM
For a general form of the Hamiltonian,
H(\) = Hy+ \H,, (1)

where H; is the driving Hamiltonian and A denotes its
strength. The fidelity is the modulus of the overlap between
two ground states [W,(\)) and [Wo(A+6N)) [3],

FONN+ 0N) = (Wo(N)[Wo(N + M) 2)

Since our focus is on continuous quantum phase transitions,
the ground state of the Hamiltonian is nondegenerated for a
finite system. |Wy(A+6N)) can thus be obtained from the
time-independent nondegenerated perturbation theory. Ex-
tracting the leading term of the fidelity, the fidelity suscepti-
bility can be expressed as [5,11]

(P, [H o))
XN =2 AN
w70 [Ea(N) = Eo(N)]
where |W,(\)) is a set of orthogonal basis satisfying
H\)|W,(\))=E,(\)|[¥,(\)). On the other hand, consider the

second derivative of the ground-state energy with respect to
N [12],

; 3)

20w, (N [H W)
EO()\) - En()\)

PE(N) _
-

. (4)

one may easily realize that the above expression is very simi-
lar to the perturbation form of fidelity susceptibility in Eq.
(3) except having different exponent in the denominator.
Therefore, one may expect that both the singularity of fidel-
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ity susceptibility and the second derivative of the ground-
state energy are intrinsically due to the vanishing of the en-
ergy gap in the thermodynamic limit [12]. However, the
difference in the exponent of the dominator makes fidelity
susceptibility a more sensitive quantity in searching for
quantum phase transitions. That is to say, while the fidelity
susceptibility shows a divergence at the critical point, the
second derivative of the ground-state energy may still be a
continuous function.

Furthermore, to study the scaling behavior of the fidelity
susceptibility around the critical point, we may perform
finite-size scaling analysis [13,14]. Let us consider a system
consisting of N sites such that N=L¢, where d is the real
dimension of the system. Around the critical point A, the
fidelity susceptibility behaves as

XF()\) _ 1
L =N

(5)

where a(a”) is the critical exponent of the fidelity suscep-
tibility above (below) the critical point, d,;: is the quantum
adiabatic dimension, and hence yz(\)/L% is an intensive
quantity. For a finite system, if the fidelity susceptibility
shows a peak at a certain point A, its maximum value
scales like

XF()\max) -~ Ldfl’ (6)

where d;, is the critical adiabatic dimension. The above two
asymptotic behaviors satisfy [14]

XF()\,L) _ A
Ll L% 4 BON=Ap)®

(7)

where A is a constant, B is a nonzero function of \, and both
of them are independent of the system size. From Eq. (7),
one can find that the rescaled fidelity susceptibility is a uni-
versal function of LY(N =N\ .x)s

XF()\mava) _ XF()\’L)
XF()\7L)
where v is the critical exponent of the correlation length. The

critical exponent of the fidelity susceptibility can then be
obtained as [14,15]

=f[LV(7\ - )\max)]v (8)

d—d*
at =4+, (9)
14

III. TWO-DIMENSIONAL TRANSVERSE-FIELD ISING
MODEL

The Hamiltonian of the 2D transverse-field Ising model
[16,17] defined on a square lattice reads

h
H151ng=_%SfS:_EE i, (10)
ij i

where i, S}, and S{(S{'=07/2,k=x,y,z) are spin-1/2 opera-
tors at site i, & is the transverse-field strength in unit of the
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FIG. 1. (Color online) Two-dimensional structures for different
system sizes N=10,16,18,20 which can be placed on a square
lattice with periodic boundary conditions.

Ising coupling, and the sum () runs over the nearest-
neighboring pairs on the lattice. Periodic boundary condi-
tions are assumed. This model was originally introduced by
de Gennes to describe potassium-dihydrogen-phosphate-type
ferroelectrics [16] and has been studied extensively via vari-
ous approaches, such as real-space renormalization group
[18], density-matrix renormalization [19], numerical diago-
nalization [20,21], and entanglement [22].

Obviously, the Hamiltonian of the model commutes with
the parity operator P=Iljof. Thus, each eigenstate of the
Hamiltonian is also an eigenstate of P. The Hilbert space can
then be decomposed into subspace V(p), where p is the ei-
genvalue of P and is specified in each subspace. For a finite
system, the ground state of the Ising model is nondegener-
ated in each subspace, thus the perturbation expansion as
introduced in the previous section is valid as long as the
lattice is finite. In the thermodynamic limit, the model exhib-
its a quantum phase transition at 1/h,=0.328 [20,21]. For
h> h,, the transverse field dominates and the ground state is
a paramagnetic phase, with spins almost fully polarized in
the z direction. For 4 <<h,, the ground state is a ferromagnetic
phase and is doubly degenerated.

To study a model on a two-dimensional square lattice with
periodic boundary conditions, we need to construct proper
lattice structures that are suitable for exact diagonalization.
In this paper, we will diagonalize two models with system
sizes N=10,16, 18,20, whose structures are shown in Fig. 1.
The effective length L=\N might then be a real number
instead of an integer.

Figure 2 shows the numerical result of the fidelity suscep-
tibility of the Ising model on a square lattice for various
system sizes. It can be seen that on both sides around the
critical point, the averaged fidelity susceptibility is an inten-
sive quantity, i.e., x-~N~L? and we have d§=2. More
importantly, the averaged fidelity susceptibilities for different
N all show a peak at h,,. This peak position of the fidelity
susceptibility &, is plotted as a function of 1/N, as shown
in the inset of Fig. 2. The linear fitting gives
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FIG. 2. (Color online) The averaged fidelity susceptibility in the
ground state of the 2D transverse-field Ising model on a square
lattice as a function of /. Inset shows A, as a function of 1/N. The
y intercept of the line is 2.95*0.01.

6.56
hpax =2.95 - N

In the thermodynamic limit, we obtain
h.=2.95%*0.01,

which gives 1/h,=0.326£0.001. Comparing this value to
the critical point 1/h.=0.328 obtained in previous works
[20,21], our result here is consistent with them up to two
digits.

Moreover, we can also see that the averaged fidelity sus-
ceptibility peaks sharper for a larger N and is in fact scales
approximately with N%°! as shown in the inset of Fig. 4.
Physically, as the ground-state wave function of the model
changes abruptly across the transition point, the fidelity sus-
ceptibility, as a measure of the leading response of the fidel-
ity to the driving parameter, is intuitively expected to show a
divergence at the critical point. Here, we have shown nu-
merically that this is in fact the case and verified the signifi-
cance of fidelity susceptibility in signaling for the quantum
phase transition in the 2D Ising model.

Figure 3 shows the second derivative of the averaged
ground-state energy of the Ising model for several system
sizes of a square lattice as a function of h. As it is well
known that the Ising model exhibits a second-order phase
transition, the second derivative of the averaged ground-state
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FIG. 3. (Color online) The second derivative of the averaged
ground-state energy of the 2D transverse-field Ising model on a
square lattice as a function of A. Inset shows the scaling behavior of
the minimum of the second derivative of the averaged ground-state
energy. The slope of the line is approximately 0.103.
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FIG. 4. (Color online) The finite-size scaling analysis is per-
formed for the case of power-law divergence for the 2D transverse-
field Ising model. The fidelity susceptibility for different system
sizes is a function of N”2(h—h,,,,) only, with the critical exponent
v==1.40. Insert shows the scaling behavior of the maximum of the
averaged fidelity susceptibility. The slope of the line is 0.51.

energy is expected to show a minimum at the transition
point. From the inset of Fig. 3, it is found that the minimum
value of the second derivative of the averaged ground-state
energy scales approximately with N*!1%3. Comparing this
value to that of the fidelity susceptibility, which is about
0.51(d;=3.02), we may conclude that the fidelity suscepti-
bility is a more sensitive tool in detecting for a second-order
quantum phase transition.

Figure 4 shows the finite-size scaling analysis in the case
of power-law divergence of the 2D transverse-field Ising
model. The rescaled fidelity susceptibility collapsed to a
single curve for various system sizes. The critical exponent
of the correlation length can thus be obtained as v==1.40.
Together with the slope of the line in the inset of Fig. 4 and
from Eq. (9), the critical exponent of the fidelity susceptibil-
ity is found to be

1.02
a=——=0.73.
1.40

IV. TWO-DIMENSIONAL XXZ MODEL

For the 2D XXZ model, the Hamiltonian is given by

Hyxz= 2, (SiS; + S}S] + AS;S)), (11)
Gj)

where A=J,/J,(J,=J,) is the dimensionless parameter char-
acterizing the anisotropy of the model. The sum is over all
the nearest neighbors on a square lattice. Again, periodic
boundary conditions are assumed. For the XXZ model in two
dimensions, there exists no exact solution. One has to use
either approximate analytical approach such as the spin-wave
theory or numerical approach such as exact diagonalization
studies of a finite lattice. For the latter approach, to obtain
results in the thermodynamic limit, finite-size scaling analy-
sis must be performed [23,24]. Therefore, a physical quantity
which is more sensitive to the system size than the traditional
second derivative of the ground-state energy would be very

useful to study the critical phenomena numerically.
From Eq. (11), it can be easily seen that the Hamiltonian
of the XXZ model commutes with the z component of total

021108-3



YU et al.

. Lid
0.20F ___. N=18 - g H?
--------- e L0y T
e N= S g vt
0.15} N=I0 Y, \\\ 004 0,06 008 0.10]
% //./ \ 1N
% 0.10f / A
/ \
- — N
0.0 b ~%
L Ny
u“é‘l S e
0.00 I L L L L N 2

FIG. 5. (Color online) The averaged fidelity susceptibility in the
ground state of the 2D XXZ model on a square lattice as a function
of A. Inset shows A, as a function of 1/N. The y intercept of the
line is 1.05*0.02.

spin operator S¢ ., =2;S;. Thus, each eigenstate of the Hamil-
tonian is also an eigenstate of S7,. The Hilbert space can
then be decomposed into numerous subspaces V(M), where
M is the eigenvalue of S ;. For a finite sample, the ground
state of the XXZ model is nondegenerated in any of the ad-
missible subspace V(M) [25,26]. Therefore, the perturbation
expansion can also be applied to this model as long as the
system is finite. In the thermodynamic limit, the quantum
phase transition takes place at the isotropic point A =1. This
phenomenon can be understood by the picture of the first-
excited energy levels crossing at the transition point [27]. For
A>A_, the last term in the Hamiltonian dominates and the
ground state is an antiferromagnetic phase along the z direc-
tion. For A<<A_, the first two terms in the Hamiltonian domi-
nate and the ground state is also an antiferromagnetic phase,
but in the xy plane. It is well known that long-range orders
are present in both of the two phases. However, whether
there’s a long-range order at the critical point is still an open
question. With the help of fidelity susceptibility, we may also
find some hints toward this question.

The numerical result of the averaged fidelity susceptibility
for various system sizes of the 2D XXZ model on a square
lattice as a function of A is shown in Fig. 5. The averaged
fidelity susceptibility is an intensive quantity, meaning that
Xr~ N, on both sides of the critical point. Moreover, like the
previous case of the Ising model, the averaged fidelity sus-
ceptibility of the XXZ model also shows a peak at A .. The
inset of Fig. 5 shows the peak position of the fidelity suscep-
tibility A, as a function of 1/N. The linear fitting gives

0.97
AL =1.05+ N

In the thermodynamic limit, we obtain
A, =1.05=*0.02.

Comparing to the theoretical critical point A.=1, our result
here is consistent up to two digits.

Besides, from the slope of the straight line in the inset of
Fig. 7, it is found that the peak of the averaged fidelity sus-
ceptibility scales with the system size like N'8!. Therefore,
one may expect the fidelity susceptibility to show a singular-
ity at the critical point in the thermodynamic limit. Hence,
the validity of the fidelity susceptibility as a seeker for the
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FIG. 6. (Color online) The second derivative of the averaged
ground-state energy of the 2D XXZ model as a function of A. Inset
shows the scaling behavior of the minimum of the second derivative
of the averaged ground-state energy. The slope of the line is ap-
proximately 0.96.

quantum phase transition is also verified in the 2D XXZ
model. Nevertheless, following the idea of the implication of
existence of long-range correlation from the divergence of
the fidelity susceptibility [28], we argue that long-range cor-
relation is in fact present at the transition point of the 2D
XXZ model. This is also in agreement with the previous con-
clusion drawn from the study of the 2D XXZ model using
entanglement [29].

In comparison, the second derivative of the averaged
ground-state energy for various system sizes exhibits a mini-
mum at the transition point, as shown in Fig. 6. From the
inset of Fig. 6, it is also found that the minimum value of the
second derivative of the averaged ground-state energy scales
approximately with N%%, meaning that it shows a slower
divergence at the critical point compared to the fidelity sus-
ceptibility. In other words, the fidelity susceptibility is again
a more sensitive candidate in seeking for the quantum phase
transition in the 2D XXZ model.

Figure 7 shows the finite-size scaling analysis in the case
of power-law divergence of the 2D XXZ model. The rescaled
fidelity susceptibility almost collapsed to a single curve for a
large-enough system size, say N>10. The exponent of the
correlation length is obtained as »=3.00. From the slope of
the inset in Fig. 7 and using Eq. (9), the critical exponent of
the fidelity susceptibility is calculated to be

(4)
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FIG. 7. (Color online) The finite-size scaling analysis is per-
formed for the case of power-law divergence for the 2D XXZ
model. The fidelity susceptibility for N>10 is a function of
N"2(A—-A,,,,) only, with the critical exponent »=3.00. Inset shows
the scaling behavior of the maximum of the averaged fidelity sus-
ceptibility. The slope of the line is 1.81.
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V. SUMMARY

To conclude, through the numerical study of the fidelity
susceptibility in the 2D transverse-field Ising model and the
2D XXZ model, we found that the fidelity susceptibility as a
function of the driving parameter diverges in both models at
the critical point. By comparing the scaling behavior of the
extremum of the fidelity susceptibility to that of the second
derivative of the ground-state energy, we also showed that

PHYSICAL REVIEW E 80, 021108 (2009)

fidelity susceptibility is a more sensitive indicator in detect-
ing for a second-order quantum phase transition. By per-
forming finite-size scaling analysis, the critical exponents of
the fidelity susceptibility in both models are also obtained.
Finally, due to the divergence of fidelity susceptibility in the
2D XXZ model, we argued that the system shows a long-
range correlation at the critical point of the model.
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