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Traffic-flow cellular automaton: Order parameter and its conjugated field
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We use a cellular automaton traffic model in order to study a nonequilibrium phase transition. We define an

order parameter and show that its conjugated field is a parameter of randomness of the model. We analyze the
symmetries of the free (unbroken) and of the jammed (broken) phases. Our results are consistent with a
second-order phase transition at p=0. Nontrivial critical exponents have also been obtained.
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I. INTRODUCTION

Nonequilibrium phase transitions are present in a high
number of complex dynamical systems, as, for example,
reaction-diffusion systems [1,2], sedimentation [3], mass ag-
gregation [4-6], among others. The steady states of these
systems may undergo nonequilibrium phase transitions [7]
determined by underlying microscopic dynamical processes.
The study of these transitions allows us to open a perspective
on the characterization of such phenomena and how they
may become distinct from those obtained by thermodynami-
cal phase transitions.

A simple and useful approach for the study of nonequilib-
rium steady states and their transition mechanisms is the cel-
lular automaton (CA) theory. The use of CA to simulate
complex systems has grown in the last years [8—11]. Among
the causes of its growth, we can highlight the adequacy of
the simulations (discrete space time), simplicity, flexibility,
and superiority to other methods for problems with complex
geometry. The CA brought the possibility to improve our
understanding of the phase-transitions dynamical processes:
the attractors, critical order parameters, phase diagrams, ex-
ponents, and universality classes.

In the present paper, we study the CA introduced by Na-
gel and Schreckenberg [12] as a simulator of highway traffic
flow [12-19]. Some years ago, we used this model to study
real traffic conditions [14]. This approach allowed us to ex-
plain an old question on the density-flow relation obtained
from measurements on roads under the stop-and-go condi-
tions. Now, our aim is to explore theoretically this CA as a
system in a nonequilibrium state under a possible phase tran-
sition, defining then its order parameter, conjugated field, and
critical exponents.

The question of the transition of the Nagel-Schreckenberg
CA from free flow to jammed traffic has been investigated by
several authors [14—17]. However, there is still a great con-
troversy whether this transition can be described as a critical
phenomenon (see [18] and references therein).

We will improve the study of the second-order phase tran-
sition exhibited by the Nagel-Schreckenberg CA observed
earlier [14,17]. We start by reinforcing the already known
fact that one cannot obtain the transition to nonvanishing p.
This has been considered a problem in describing the criti-
cality of this phenomenon, and this fact is the root of the
mentioned controversy [15,16]. However, up to now, the lit-
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erature still has not identified p as the conjugated field of the
order parameter, what we intend to show quite clearly. This
will allow us to define an associated susceptibility. Then, we
will be able to proceed with the analysis of the critical ex-
ponents. They will meet a standard scaling law, a nontrivial
result in view of the nonequilibrium nature of this problem.

This paper is organized as follows. In Sec. II we introduce
the CA approach. The criticality of the CA is presented in
Sec. III. Finally, in Sec. V we conclude.

II. MODEL

The CA is constituted of an array of L sites, where each
site S; can either be empty or occupied by one vehicle with
velocity v=0,1, ... ,V, The position and the velocity v; of
the jth vehicle are updated simultaneously (parallel update)
according to the following:

(1) v;j=v;+1 if the distance of the jth car to the next car is
greater than v;+1 and taking v;=v,,, as a limit.

(2) v;=D~1 if the distance to the next car is D=<v;.

(3) v;=v;—1 with a random probability p if v;=1.

(4) The jth car is advanced v; sites.

We consider a line with a periodic boundary condition
(closed circuit) and with a random initial distribution of ve-
hicle positions and null initial velocities. The rules ensure
that the total number (N) of cars is conserved under the
dynamics.

The investigation of the traffic flow CA is based on the
analysis of the fundamental traffic parameters: density, de-
fined as

to+T
pi== 2 o), (1)
Tl:t0+l
where n,(t) is zero if S; is empty and one if it is occupied at
time ¢, and flux, defined as
1 to+T
qi=7 2 mi), @

t=ty+1

where m;(¢) is one if at time 71— 1 there was a car behind or at
S; and at ¢ it is found after S; (i.e., a car is detected passing by
S;) and zero otherwise. The average is taken over a time
period T after a relaxation time 7,. As the system is homoge-
neous due to the considered boundary conditions, if we take
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FIG. 1. Steady-state phase diagram of critical density vs 1/v .,
showing the free and jammed phases.

T sufficiently long, no parameter will be position dependent
such that the density and the flux can be labeled, respec-
tively, according to p,=p and g;=¢. In this stationary state,
the results of this CA can be compared directly with mea-
surements of real traffic [12]. At low density, this model
exhibits a laminar flow (free) phase. At high density, one
expects a start-stop waves (jammed) phase. In this sense,
with increasing car density, the notion of a phase transition
emerges [14].

III. CRITICALITY OF THE TRAFFIC CA
A. Order parameter and its conjugated field
To look for a possible transition between a free and a

jammed phase, we define an order parameter

q

Umaxp

M=1- (3)

This choice of parameter is made on the consideration that
the free regime happens when all cars have a maximal ve-
locity. If we take the analytical solution for the particular
case of p=0 [14], we find

0 if p=p,

- 4
P Pe otherwise, )

M= 1

vmax ppC

where p.=1/(1+v,). There are two distinct regions. The
first, where the parameter is zero, is associated with a free
regime. After the transition point, the order parameter is not
zero anymore, representing the region where the cars tend to
get grouped in long clusters, associated with a jammed
phase. Figure 1 presents the phase diagram. We observe that
the bigger the maximal velocity gets, the smaller the region
of the free phase becomes and, consequently, the region of
the bottled phase enlarges.

The general analytical solution of this CA for an arbitrary
p is still missing up to now. Only in the limit v, =1, this
model is exactly solved [13]. The analytical expression of M
for the particular case of v,,,=1 is given by

PHYSICAL REVIEW E 80, 021105 (2009)

1.0
0.8
0.6 -
0.4 -
0.2 -
0.0
0.8 -
0.6 -
0.4
0.2 -
0.0
0.8 -
0.6
0.4 -
0.2 -
0.0
0.8 -
0.6 -
0.4
0.2
0.0
0.8 -
0.6 -
0.4 -
0.2 1
0.0

0.0 0.2 0.4 5 0.6 0.8 1.0

FIG. 2. Order parameter M as a function of the density for
different p and (a) vm=1, (b) Vmx=2, (€) Vmax=3s (d) Vmax=4,
and (e) vy=5. We perform 100 experiments with L=10% each
running over a time period 7=10° after a relaxation time #,=10L.

_2p-1+ V1 -4p(1 - p)(1 -p)
= 2 ,

M

(5)

The cases with v,,,>1 can be carried out through nu-
merical simulations using the Monte Carlo method. We will
present results obtained through simulations in which we
have performed about 100 and 50 experiments, respectively,
each running over a time period 7=10° and T=10° with L
=10* and L=10°, after a relaxation time to=10L. The order
parameter is shown in Fig. 2, where it is plotted as a function
of the density p for v, =1, 2, 3, 4, and 5, for some typical
values of p and L=10*. In particular, for v,,,,=1, we observe
that the analytical result of Eq. (5) is reproduced numerically.
For p=0, we have M=0 if p=p,. and M #0 if p>p,. For
p#0, the M parameter is not zero anymore. In all cases, p
destroys the continuous phase transition observed at p=0.
This clear relationship among p, M, and the phase character-
ization suggests that the probability p is the conjugated pa-
rameter of the order parameter of this CA.

Furthermore, to gain one more quantitative picture of this
phase transition we can define the associated susceptibility
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FIG. 3. Associated susceptibility versus density for p=0.01 and
Umax=1, 2, 3, 4, and 5.

om

P (6)

Xp=

p=0

This quantity is relevant in order to evaluate a continuous
transition, considering that it diverges where the phase tran-
sition occurs.

From Eq. (5), for v,,=1, we find

_ (1 —P)Pc

= , (7)
o= pe

p

confirming that when p— p,=1/2 we have y,— .

Figure 3 shows the numerical result for the associated
susceptibility as a function of the density considering the
cases Uy =1, 2, 3, 4, and 5 for p=0.01 and L= 10*. We can
see that it has a maximum for p=p.. The peak’s values in-
crease with decreasing p. Figure 4 shows the associated sus-
ceptibility versus the density considering the case v,,=4,
L=10* for p=0.01 and p=0.1. We see that the peak of Xps
when p— p,, tends to diverge for p—0.

We also analyzed the time needed to get to the steady
state called equilibrium time 7,,. For this study, we have
taken, for p=0, the averages over the positions S;, assuming
{(t)=%§)f=1mi(t) and ,u(t)=1—N£%ﬁ. We consider t,, as the
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FIG. 4. Associated susceptibility versus density at v, =4 for
p=0.01 and 0.1.
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FIG. 5. Equilibrium time as a function of p for L=10° and
different v .

time ¢ obtained when |w(f)—M|<0.000 001, where M is
given by Eq. (4). Figure 5 presents 7,, as a function of p for
typical vy, values with L=10°. We observe that close to the
transition, the relaxation to the steady state becomes quite
slow. For p=p,, we obtain 7,,=L/(1+0,x)=p.L, such that
increasing the system size L delays the steady state. In the
thermodynamic equilibrium limit, when L— o, the equilib-
rium time 7,, will diverge at p=p,.

All these results are consistent with a second-order phase
transition and they are analogous to an equilibrium phase
transition.

Probability has also been found to be a conjugated field of
the spreading of damage in the Ising model [20] and in the
Domany-Kinzel CA [21]. In Sec. IV, we will give a possible
explanation for this fact based on the Nagel-Schreckenberg
CA.

B. Critical exponents

We take the thermodynamical phase transition as a guide
and we assume power laws for M and x near the nonequi-
librium transition. In the limit of zero “field” (p=0), we de-
fine

P, x~(p=-p)7". (8)

At the transition (p=p,) as the field p goes to zero, we
write

M~ (p-p,

M~ p"°. )

The B, v, and & are called critical exponents. From Eq. (4), it
follows that B=1 independent of v, In particular, for
Umax=1 We can obtain exact expressions for ¢ and y. In this
situation, from Egs. (5) and (7), we obtain that y=1 and &
=2. We also found exact values for 6 and v in the limit
Umax — %@, by noticing that, in this case, p.— 0. The exact
relation between M and p, in the low-density limit, can be
obtained for any v, and p [14], without further difficulties
as M=p/v . From Fig. 3 we can observe, in agreement
with this analytical result, that x,(p=0)=1/v,,,. We have
y=0 and 6=1.

The critical exponents for v, >1 were obtained through
simulations using L=10°. The results for M as a function of
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FIG. 6. Order parameter as a function of p for different v ,, and
p=p,. Lines are guides for the eyes. In the inset: exponent & versus
1/0 max-

p at p=p, for different v, are displayed in Fig. 6 in loga-
rithmic scale in order to find &. In the inset of Fig. 6, the
exponent ¢ is plotted vs 1/v,,,., where we infer that it de-
creases smoothly with v,,. We have used the function &
=a+b(1/v,,,)° to fit this relation. Then, we found approxi-
mately that 6—1=(1/v,,,,)"*. We have also obtained the
numerical estimation for the exponent y. We summarize our
results concerning the critical exponents in Table I. The final
nontrivial observation is the agreement of the three expo-
nents with Widom scaling law y=8(5-1). Indeed, we expect
this scaling over the complete range of the CA parameters.

IV. SYMMETRY-BREAKING PROCESS

Along this work, we have been describing the properties
of a phase transition on the Nagel-Schreckenberg CA. Obvi-
ously, the existence of a parameter, such as M, that is null in
a given range of the variables of the theory is a necessary—
but not sufficient—condition for assuring a phase transition.
It is the whole complexity of divergent quantities, as the
susceptibility and the equilibrium time, together with a series
of critical exponents, culminating with a Widom scaling law,
all shown to be present in this CA that makes it rather plau-
sible that this CA effectively suffers a phase transition in the
vicinity of the critical density.

Anyway, one point is still missing. The notion of a phase
transition is always associated to the noninvariance of the
stable (vacuum) configuration in the ordered phase of the

TABLE 1. Critical exponents.

Umax B 6 04
1 1 2 1

2 1 1.73 0.73
3 1 1.61 0.60
4 1 1.54 0.54
5 1 1.48 0.47
e 1 1 0
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physical system under transition in relation to certain sym-
metries explicitly present in the disordered phase, what is
called a symmetry-breaking process. Without such descrip-
tion, the picture of the Nagel-Schreckenberg CA phase tran-
sition cannot be claimed to be complete. We will try now to
convince the reader that this blank can be filled.

As we do not have a Hamiltonian representation for this
system, we can only have an idea of which symmetries are
being broken by carefully analyzing the steady-state configu-
rations of the CA for p=0, prior and after the phase transi-
tion. In what we have called the free phase, the distinguish-
ing property of its steady states is that all cars move with the
same maximum velocity v, allowed by the CA. In the
jammed phase, there is at least one car moving with a veloc-
ity lower than v,,,. So, the symmetry that is being broken is
certainly related to this loss of homogeneity among the car
velocities.

In order to get a more profound understanding of this
symmetry breaking, we need to properly characterize the
steady-state configurations of the broken jammed phase. We
will derive rules that are sufficient to determine a steady state
in this phase. Then we begin by claiming that such states are
fully described by an array with each velocity entering in the
respective position occupied by the car at a given time step
of the CA. As an example, in the case of N cars, we represent
a steady state by (vy,v,,03,...,0y), Where by v, we mean
the velocity of an arbitrary car chosen as the first one and,
subsequently, writing the velocities of the cars to its right at
this step. If two representations describe the same steady
state in different time steps, they are said to be equivalent.
Obviously, by the periodic boundary conditions of the CA,
any two arrays that can be obtained by cyclic permutations
will be equivalent. The first law to construct a steady-state
array of the broken phase comes from the defining property
that if p= p,., the number of vacant sites in front of a car is its
velocity in each given step of the CA. As the total number of
sites L equals the number of vacant sites plus the number of
occupied sites, it follows immediately the first law (1) L
=number of vacant sites + the number of occupied sites
=Zﬁ,vi+N, where, again, v; means the velocity of the ith
car, and N is the total number of cars. The second law comes
from a specific information of the Nagel-Schreckenberg CA
that a car can only accelerate by one unit at each time step,
following the first rule of the CA (although it can break as
necessary in order not to hit the car ahead, following the
second rule). Then we establish that for a state in a steady
flow, we have (2) v;,; =v;+ 1. It is not difficult to understand
the necessity of this law. As the velocity v; of the ith car is
the number of vacant sites ahead in a given step, in the next
step the car ahead will leave v,,; vacant sites behind, imply-
ing that v; will have to assume the value v;,;. Then, as this
ith car can only accelerate by one unit in one time step, it
follows the second law.

Now, with laws 1 and 2, together with the cyclic property
determining an equivalent class, we are able to show that in
the thermodynamic limit L — o, steady states of the jammed
phase are degenerate in the sense that given a density 1 >p
>p,., we can always find at least two nonequivalent steady
states. Let us choose as an example for this reasoning a CA
with L=17, v.,«=3, and N=5. Following the first law, the
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sum of the velocities of the cars is L—N=12. Now, with the
second law it is easy to find three nonequivalent steady states
labeled by (1,2,3,3,3), (2,2,2,3,3), and (2,2,3,2,3). Other pos-
sibilities are easily seen as cyclic permutations of these ele-
ments and are then understood as belonging to one of the
equivalent classes identified by them. It is now comprehen-
sible that there will always be degenerate steady states in the
thermodynamic limit for densities finitely above the critical
density. Once different velocities are allowed for the differ-
ent cars, nonequivalent classes will appear, and this is the
symmetry-breaking process that we were looking for. Re-
suming this idea, the Nagel-Schreckenberg CA changes from
a nondegenerate steady-state phase called the free phase,
where all cars move with the same v, velocity, to a
jammed phase which has degenerate steady-state configura-
tions once the critical density is crossed.

From this point of view, if in the broken jammed phase
the steady-state configurations still have a remaining invari-
ance under a group of cyclic permutations of the car’s ve-
locities, the unbroken free phase steady-state configurations
are in fact invariant under a larger group of arbitrary permu-
tations of car’s velocities. It is the choice of a specific steady-
state (vacuum) configuration among all possible ones in the
jammed phase which makes the symmetry breaking.

Naturally, as expected from a classical system, this choice
is predictable from the initial conditions of the car’s veloci-
ties and positions. Even this point can be understood more
profoundly from a closer analogy with the usual example of
a magnetic phase transition, also enlightening the role played
by the Nagel-Schreckenberg CA conjugated parameter.

We remember that the p parameter, which makes any car
suddenly break with probability p, is a factor of randomness
in the velocities of the cars. Its presence obviously destroys
the cyclic symmetries both at the jammed and at the free
phases. This is why we have mathematically seen it as a
conjugated parameter in the previous section. So if we di-
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minish p until we make it vanish in a jammed phase, the
system will choose a steady-state configuration in a quite
unpredictable way, and it will undergo a symmetry-breaking
phase transition at this moment.

V. CONCLUSIONS

We show in this work that the random probability p in-
troduced in one of the rules of update of the Nagel and
Schreckenberg CA can be considered as the field conjugated
to the order parameter that characterizes the free and jammed
phases of the model. This means that for this CA the prob-
ability plays the role analogous to that of an external field in
ferromagnetism, which can destroy the ferromagnet phase
transition.

We should also call the reader’s attention to the nontrivi-
ality of the critical exponents listed in Table I. They are
intrinsically different from those derived from mean-field
theory, as they do not belong to the same universality class.
A better understanding of this point would allow an insight
on the intrinsic nature of the system, as its possible symme-
tries, degrees of freedom, or even the nature of the interac-
tion itself.

Finally, in the last section, through the observation of the
structure of the steady-states configurations for p=0, we
were able to identify the symmetries of the free (unbroken)
and of the jammed (broken) phases. Then, the degeneracy of
the configurations in the jammed phase, together with the
understanding of the mechanism triggered by p, completed
the phase-transition picture.
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