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We analyze transport through conical channels that is driven by the difference in particle concentrations on
the two sides of the membrane. Because of the detailed balance, fluxes of noninteracting particles through the
same channel, inserted into the membrane in two opposite orientations, are equal. We show that this flux
symmetry is broken by particle-particle interactions so that one of the orientations can be much more efficient
for transport under the same external conditions. The results are obtained analytically using a one-dimensional
diffusion model and confirmed by three-dimensional Brownian dynamics simulations.
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Water-filled pores of biological channels usually have
complex geometry that only rarely can be approximated by a
cylinder. For example, high-resolution crystallography of
bacterial porins and other large channels demonstrates that
their pores can be envisaged as tunnels whose cross sections
change significantly along the channel axis. For some of
them, variation in cross-section area exceeds an order of
magnitude �1,2�. This leads to the so-called entropic wells
and barriers �3–9� in theoretical description of transport
through such structures. In addition to biological channels,
entropic effects are also important for understanding trans-
port in nanofluidic devices �10� and synthetic nanopores
�11–13�. As the above mentioned theoretical studies deal
with single particles, their results are limited to transport of
noninteracting particles. Here we consider the effect of
particle-particle interaction on transport through membrane
channels of varying cross section. Note that the effects of
interparticle interactions have been studied in the context of
single-file diffusion in narrow pores �14�, as well as in wide
pores using one-dimensional site models of particle dynam-
ics in the channel �15�. However, neither the theory of
single-file transport nor the theories based on site models
address the entropic effect analyzed below.

Consider two membranes separating empty and particle-
containing reservoirs connected by the single channels as
shown in Fig. 1. The channel on the left is a truncated cone
facing particle-containing reservoir with its wider opening;
the channel on the right is identical to its left counterpart but
has the opposite orientation. Which channel orientation is
more efficient in facilitating transport of particles driven by
the same concentration difference between the two reser-
voirs?

The channel on the left has larger entry area but to go
though the channel a particle has to climb up the entropy
barrier. At the same time, although the channel on the right
has smaller entry area, translocating particles slide down the
entropy hill. In spite of these distinctions, both channels are
equally efficient in transporting noninteracting particles. If
not, then for a given orientation of the channel there would
be a net flux between the reservoirs at equilibrium �when the

particle concentrations in the reservoirs are equal�. This vio-
lates the condition of detailed balance. In this Rapid Com-
munication we show that particle-particle interaction breaks
the symmetry of the fluxes driven by the difference in the
particle concentrations on the two sides of the membrane.
We demonstrate that, contrary to one’s intuition, configura-
tion B is more efficient for transport of strongly repelling
particles. This is shown analytically in the framework of a
one-dimensional diffusion model of particle dynamics in the
channel �16,17� and supported by three-dimensional Brown-
ian dynamics simulations.

We use the Smoluchowski equation to describe the par-
ticle motion in the channel, i.e., we assume that the Green’s
function G�G�x , t �x0�, which is the probability density of
finding the particle at point x at time t on condition that it
was at x0 at t=0 and has not escaped from the channel during
time t, satisfies

�G

�t
=

�

�x
�Dch�x�exp�−

U�x�
kBT

	 �

�x

exp�U�x�

kBT
	G�� . �1�

Here U�x� is the potential of mean force acting on the par-
ticle in the channel, Dch�x� is a position-dependent particle
diffusion coefficient in the channel, and kB and T have their
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FIG. 1. Which one of these two identical but oppositely oriented
channels is more efficient in transporting particles? The particles
strongly repel each other so that the channel cannot be occupied by
more than one particle at a time. In both cases the transport is
driven by the same difference in particle concentrations on the two
sides of the membrane.
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usual meanings of the Boltzmann constant and absolute tem-
perature. The propagator satisfies the initial condition,
G�x ,0 �x0�=��x−x0�, and the radiation boundary conditions
�16,17� at the channel ends located at x=xL and x=xR,

Dch�xL�exp�−
U�xL�
kBT

	 �

�x

�exp�U�x�

kBT
	G�


x=xL

= �LG�x=xL
,

− Dch�xR�exp�−
U�xR�
kBT

	 �

�x

�exp�U�x�

kBT
	G�


x=xR

= �RG�x=xR
. �2�

The rate constants �L and �R entering into the boundary con-
ditions are related to the rate constants kon

�L,R�, which charac-
terize the rate of the particle entrance into the channel from
the left and right reservoirs. The relations are

�I =
kon

�I�

A�xI�
, I = L,R , �3�

where A�x� is the channel cross-section area at a given value
of the coordinate x. For a conical channel of radius r�x� this
area is A�x�=�r2�x� and the rate constants kon

�L,R� are given by
the Hill formula �18�

kon
�I� = 4Dbr�xI�, I = L,R , �4�

where Db is the particle diffusion coefficient in the bulk so-
lutions in the reservoirs.

We assume that there is a long-distance repulsive interac-
tion between the particles. When analyzing the effect of this
interaction on channel-facilitated transport, one has to deal
with a many-body problem. Unfortunately, this problem is
too complicated to be solved analytically. Therefore, here we
consider a toy model, in which the long-distance interparticle
repulsion is described by the requirement that the channel
cannot be occupied by more than one particle. In addition,
we neglect the effect of the interparticle repulsion in the bulk
on their entrance into the empty channel. With these approxi-
mations we manage to find analytical solutions for the fluxes
JA and JB �Eqs. �12� and �13�� in the two orientations of the
channel shown in Fig. 1. Thus, the two simplified assump-
tions mentioned above are the price we have to pay for the
analytical solution.

We consider the case of no specific interactions between
the particles and the channel walls. As a consequence, the
potential of mean force, U�x�, is purely entropic. It arises
naturally when reducing the three-dimensional diffusion
problem to an effective one-dimensional problem. This po-
tential accounts for the deviation of the channel geometry
from that of a cylinder �3�. For single point particles the
entropy potential can be written in terms of the channel
cross-sectional area, A�x�, and its minimum value, Amin, as

U�x� = − kBT ln
A�x�
Amin

�5�

so that the one-dimensional equilibrium concentration of
noninteracting particles is proportional to the channel cross-
section area,

c�x� � exp�− U�x�/kBT� � A�x� . �6�

The potential U�x� vanishes at x=xR for the channel orienta-
tion shown in configuration A of Fig. 1 and at x=xL for the
opposite orientation of the channel shown in configuration B
of Fig. 1. For all other values of x, xL�x�xR, the potential
is negative.

Equation �5� determines the potential profile that particles
entering the channel through the wide opening have to climb
up in order to translocate. Particles entering through the nar-
row opening slide down the corresponding entropy hill. To
answer the question which channel orientation is more effi-
cient in transporting particles between the two reservoirs,
one also has to account for the differences in the on rates: the
wide opening receives more particles per unit time than the
narrow one. Thus, a detailed analysis of the problem is re-
quired.

Noncylindrical geometry of the channel also manifests it-
self in the position dependence of the effective diffusion co-
efficient �3–5,19�. The expression for Dch�x� was first de-
rived by Zwanzig �3� assuming that the channel radius r�x� is
a slowly varying function of x, �dr�x� /dx��1. Later, based
on heuristic arguments, Zwanzig’s result was generalized by
Reguera and Rubi �4� to read as

Dch�x� =
Dcyl

�1 + �dr�x�/dx�2
, �7�

where Dcyl is the particle diffusion constant in a cylindrical
channel. Detailed analysis of this question was performed in
a series of papers by Kalinay and Percus �see Ref. �5� and
references therein�. Recently we carried out a numerical
study of diffusion of single particles in conical channels �19�
with the goal to test the applicability of different approxi-
mate expressions for Dch�x�. We found that the formula in
Eq. �7� works reasonably well when the growth rate of the
channel radius, �=dr�x� /dx, is not too large, specifically,
����1. For the conical channels shown in Fig. 1 the growth
rate of the channel radius is a constant, and therefore, the
diffusion coefficient in Eqs. �1� and �2� is independent of x
and given by Dcyl /�1+�2.

Eventually, Eq. �1� reduces to the conventional Fick-
Jacobs equation �20� with the renormalized diffusion coeffi-
cient

�G

�t
=
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�1 + �2

�

�x
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�

�x

 G

A�x��� , �8�

and the boundary conditions in Eq. �2� take the form
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 �
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� G
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,

−
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 �
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= kon
�R�G�x=xR

. �9�

To find the fluxes JA��� and JB��� we use general rela-
tions derived in Ref. �17�, which for conical channels shown
in Fig. 1 lead to
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and
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where Vch is the channel volume. Carrying out the integrations and assuming that Dcyl=Db=D we arrive at

JA��� =
4�a�a + ���L�Dc

��2a + ���L� + 4L�1 + �2 + ��a + ���L�c
 f����� +
2

3
���L3�1 + �2� , � � 0 �12�

and

JB��� = �1 +

��Lc
 f��� +
2L2

3
�a + �L��1 + �2�

��2a + �L� + 4L�1 + �2 + �acf���
�JA�− ��, � 	 0 �13�

with function f��� defined as f���=Vch+2L2�a
+�L /3��1+�2, where L and a are the channel length and the
radius of its small opening, respectively. The results in Eqs.
�12� and �13� are exact in the sense that no additional as-
sumptions were made on the way to these expressions.

One can see that JB���
JA��� except for the cases when
either L or � or c tend to zero. The cases of L=0 and �=0
correspond to symmetric systems, in which JB=JA. When the
system is asymmetric, L
0 and ��0, but the particle con-
centration is small, c→0, the particle-particle interaction can
be neglected �channel occupancy tends to zero�, and the flux
symmetry is restored, JB���=JA���. Thus, the flux asymme-
try is a nonlinear effect that arises only when c is high
enough.

The � dependence of the fluxes �Eqs. �12� and �13�� for
channels of different length is illustrated in Fig. 2. In this
figure we also compare our analytical predictions based on
the one-dimensional diffusion model �Eqs. �1� and �2�� with
the results of three-dimensional Brownian dynamics simula-
tions. The results are given for the three channel lengths �L
=25, 50, and 100� and normalized to the fluxes through the
corresponding cylindrical channels of radius a. It can be seen
that the difference between the two orientations of the chan-
nel may lead to significant flux asymmetry. The strength of
the effect depends on the particle concentration as well as on
the geometric parameters, ��� and the channel length, namely,
the larger ��� and/or the longer the channel, the stronger the
effect.

This can be understood if one takes into account the fact
that the main parameter characterizing the effect of interpar-
ticle interaction on transport is the average channel occu-
pancy. For a singly occupied channel the occupancy is given
by the probability of finding a particle in the channel. When
this probability is small, the system should exhibit symmetric

behavior independently of its structural asymmetry. At fixed
concentration of the particles the probability of finding a
particle in the channel grows with the channel length. At c
=2.5�10−5 the occupancy of the relatively short channel of
length L=25 is low, and the fluxes in Fig. 2 are nearly sym-
metric in � within the whole range of its variation. The chan-
nel occupancy is much higher in the longest channel �L
=100�. As a result, the particle-particle interaction breaks the

FIG. 2. �Color online� Fluxes JA���, ��0, and JB���, �
0,
through the conical channels of different lengths as functions of �
=dr�x� /dx normalized to the fluxes at �=0. Solid lines are theoret-
ical predictions while symbols represent results of Brownian dy-
namics simulations. The channel lengths are L=25 �triangles�, 50
�squares�, and 100 �circles�. Other parameters are: a=5, Dcyl=Db

=D=0.02, c=2.5�10−5. The fluxes are asymmetric and their asym-
metry at fixed � grows with the channel length.
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flux symmetry, and the orientation shown in configuration B
of Fig. 1 at �=1 proves to be more than tenfold more effi-
cient for the transport than the orientation in configuration A
of Fig. 1 at �=−1.

At small deviations of the channel shape from a cylinder,
����1, the fluxes are almost symmetric in �. Both fluxes first
grow linearly with ���. However, as ��� is getting larger, the
role played by entropic effects becomes more and more im-
portant. Indeed, for the longest channel at �=−1 the effect of
climbing the entropy barrier is so strong that the flux through
this channel is well below the flux through its cylindrical
counterpart of radius a. This happens in spite of the fact that
the radius of the channel opening facing the particle-
containing reservoir, a+L, is much larger than a.

Comparison with the numerical results shows that our
model of particle dynamics in the channel provides an accu-
rate description of channel-facilitated transport in the pres-
ence of entropy potentials and long-distance repulsion be-
tween the particles. In Fig. 2, small deviations of the
simulation results from the analytical predictions at ���

0.5 are due to the limitations of the approximation given
by Eq. �7�, which were studied recently in Ref. �19�. Impor-
tantly, our analysis is based only on given geometric param-
eters of the channel, a, L, and �, and does not use any ad-
justable parameters.

In summary, while earlier studies of entropic effects in
transport were focused on single particles, here we analyze
how particle-particle interaction affects the transport in the

presence of entropy potentials. We demonstrate that the long-
distance repulsion of the particles breaks the flux symmetry
inherent in transport of noninteracting particles. Finally, we
note that the flux asymmetry discussed here should be dis-
tinguished from the asymmetry that underlies current rectifi-
cation in charged synthetic conical nanopores �13,21� or
asymmetric diffusion through these structures �22�. While
the subject of the present Rapid Communication is a purely
entropic effect due to the asymmetry in the channel geometry
�Fig. 1�, the current rectification, which is due to the asym-
metry in the volume charge density �13�, is a purely energetic
effect. The asymmetric diffusion �22� is not of the entropic
origin either. Rather, it is related to the salt concentration
effect on the thickness of the electric double layer within the
nanopore �22�. This, in turn, changes the effective aperture of
the narrow opening of the channel and, therefore, controls
transport in a concentration-dependent manner.
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