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Percolation and epidemics in random clustered networks
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The social networks that infectious diseases spread along are typically clustered. Because of the close
relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight
into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered
networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of
random clustered networks and a class of random unclustered networks with the same preferential mixing.
Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold

compared to the unclustered networks.
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Classical random networks contain few short cycles, and
the proportion of nodes in short cycles goes to zero as the
number of nodes increases. In contrast social networks typi-
cally contain many short cycles. We refer to such networks
as clustered networks. The impact of clustering on percola-
tion properties is usually difficult to calculate because cycles
prevent the use of branching process arguments, but it is
widely expected that clustering significantly alters percola-
tion.

Typically studies of infectious disease spread assume out-
breaks begin with a single infected node. The disease travels
to each susceptible neighbor independently with probability
T, the transmissibility, and the node recovers. The process
repeats for each newly infected node. We focus on diseases
for which recovery provides immunity. Typically the out-
break dies out stochastically or becomes an epidemic and
spreads until the number of susceptible nodes is reduced.

It is well established that for fixed 7, epidemic spread can
be mapped to a bond percolation problem wherein each edge
is kept with probability T [1-6]. If we perform percolation
on the network and then choose the initial infection, the dis-
ease spreads from that initial infection along edges of the
percolated network, and so an epidemic occurs if and only if
the initial node is in the giant component. The size of the
epidemic matches the size of the giant component. This es-
tablishes that the probability and fraction infected in epidem-
ics are equal if T is fixed and all edges are independent [7].

Because social networks frequently exhibit clustering, a
number of studies have investigated the impact of clustering
on epidemics [8-15]. Some found that clustering reduces the
sizes of epidemics and raises the epidemic threshold. That is,
clustering reduces the size of giant components and raises
the percolation threshold. However, others have shown that
clustering appears to reduce the threshold. Consequently epi-
demics would be possible at lower transmissibility in the
presence of clustering.

This discrepancy occurs because there are many ways
used to generate clustered networks. It is difficult to separate
the impact of clustering from other features introduced by
the network generation process.
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In this Rapid Communication we introduce an algorithm
to generate random clustered networks [16]. The clustered
networks have correlations between degrees in a well-
defined manner which can lead to assortativity, the tendency
for nodes to contact nodes of similar degree. We show how
to generate unclustered networks with the same correlations.
We make analytic comparisons between the two, clearly
separating the effect of clustering from degree correlations.
Although clustered networks can have a reduced threshold
compared to purely random networks of the same degree
distribution, this is an artifact of the assortativity. Compared
to an unclustered network of the same degree correlations,
clustered networks result in smaller epidemics and higher
epidemic thresholds.

This Rapid Communication is organized as follows: we
first introduce our clustered and unclustered networks. We
then calculate and compare the epidemiological quantity R
which measures how many new infections a typical infected
node causes. Finally, we calculate the final size or probability
of epidemics assuming constant 7.

I. NETWORKS

We model our approach after standard configuration
model (CM) networks [17,18]. CM networks are useful be-
cause all edges from a node are independent of one another
in the sense that whether an epidemic results from following
one edge is independent of the result along any other edge
because short cycles are negligible.

A. Clustered networks

We begin with N nodes. To each node u we assign two
degrees, an independent edge degree k; and a triangle degree
ka. The joint probability of k; and k, is given by p(ky,ky).
Then u will be part of k, triangles and have k; other edges.
Each triangle and edge from u will be independent of other
triangles, and edges in the same way that edges in CM net-
works are independent.

We create an independent stub list and a triangle stub list.
We place each node u into the independent stub list ki(u)
times and into the triangle stub list kx(u) times. We shuffle
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the lists. We join the pairs of nodes in positions 2n and
2n+1 of the independent list and the triples in positions 3n,
3n+1, and 3n+2 of the triangle list. Some repeated edges or
loops or short cycles other than the triangles we impose may
appear, but their impact is negligible as N— o [19].

This algorithm inevitably segregates those nodes with a
high proportion of triangles from those with a low proportion
of triangles. If the degrees of nodes with many triangles dif-
fer from the degrees of nodes with few triangles, then this
effect will cause correlation of different degrees. In order to
isolate the impact of clustering, we must compare percola-
tion in these clustered networks with percolation in networks
whose nodes are segregated in the same way.

B. Unclustered segregated networks

For comparative purposes we develop a corresponding
unclustered network with the same segregation as the clus-
tered networks. Given the joint distribution p(ky,ky) of
independent and triangle degrees, we create an analogous
network where nodes are assigned blue and red degrees such
that k,=k; and k.=2k,. The joint distribution is given by
pu(kb ’ kr) =P(kh ’ kr/ 2) .

We proceed as before. We create a blue and a red list and
pair nodes in positions 2n and 2n+1 in the blue list and then
repeat with the red list, joining pairs not triples. The resulting
network has the same segregation as the corresponding clus-
tered network, but short cycles are negligible.

IL R,

R is usually defined as the number of new infections
caused by an average infected individual. Occasionally alter-
nate definitions are used, but in some way it represents the
number of new infections attributed to an average infected
individual. Ry=1 1is the threshold below which epidemic
probability is zero (i.e., the percolated network has no giant
component). If R,>1 then epidemics are possible but not
guaranteed.

A. Clustered networks

To simplify the analysis, first assume that u, v, and w are
members of a triangle and u becomes infectious first. There
are multiple ways that both v and w can become infected
from edges within the triangle, but they all have the same
impact on the epidemic. It is convenient to treat infections of
v and w as if they came from u regardless of the actual path
followed.

Thus if u# becomes infected, then with probability
2T%(1-T)+T?=3T>-2T3 it is credited with infecting both v
and w, and with probability 27(1-T)? it is credited with
infecting just 1. With probability (1-7)> it infects
neither. The expected number of infections per triangle is
2T(1+T—T?). In spirit this approach is similar to that of [20].
For bookkeeping purposes, we define the rank s of a node as
follows: the index case has rank 0. Each node v is then
assigned rank s to be the shortest path of infectious contacts
from the index case to v under the rule above for crediting
infections.
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This allows us to define a 2 X2 next-generation matrix
[21]. We separate those nodes infected along an independent
edge from those infected along a triangle edge [22]. We de-
fine ¢ and ca; to be the number of infections that a node
infected from an independent edge is expected to cause along
independent and triangle edges, respectively. We similarly
define cyp and can. If ny(s) and n,(s) are the number of nodes
of rank s which were infected along independent and triangle
edges, respectively, then

(”I(S +1) ) _ (CII C1a )(nl(s) )

na(s+1) car can/ \nals) /)’
<K12—K1) 27(14+7-T7 )(KIKQ

Where = <K CAL= <KI>

2T 147- T2)<K2—KA>

TKKy)
CiA= (Ky) °
. We give a sample calculation for c,p: with
probablhty kyp(ky,ka)/{K;) an infection along an indepen-
dent edge reaches a node with degrees k; and k,. The ex-
pected number of infections along a triangle edge is
2T(1+T-T?)ky. Thus a random node infected along an in-
dependent edge creates 27(1+T—T?)(K;K,)/{K;) infections
along triangle edges.

The dominant eigenvalue of this matrix is R,. We gener-
ally want to determine 7 such that Ry<<1. Substituting
Ro=1 into the characteristic equation

K> - K Ki-K
(T—< iKo I>—R0>(2T(1+T—T2)—< ?KA> A>—R0>

and CAA

B (KiKa)®
=27(1+T-T% KK (1)

gives the critical transmissibility 7=7,. below which epi-
demic probability is zero. At the threshold each factor on the
left-hand side is at most zero.

The original network has a giant component if Ry>1
when T=1. Setting Ro=1+p and T=1 in Eq. (1), we let
x(u) and i be the left- and right-hand side, respectively.
The concave parabola y has a negative minimum at
f=(K; = K)/ 2(K)+(K3—Ka)/(Ka)— 1. Clearly x(u)> 4 as
p—oo, If 4>0, then the intermediate value theorem guar-
antees a positive root (greater than £4). Similarly, even if the
first condition fails, x(0)<i guarantees a positive root. If
both conditions fail there is no positive root. Thus a giant
component exists if

(Ki—K) (Ki—Ka)

> 1
2Ky (Ka)
and/or
(<K%—KI> . 1><2<K2—KA> _ ) _ (KiK.
(Ky) (Ka) (K)(Ky)

If the first condition applies but not the second, then the
network has enough independent and triangle edges that a
giant component exists solely within the independent edges
and another exists solely within the triangle edges. In all
other cases the second condition applies.
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B. Unclustered segregated network

We define n,(s) and n,(s) in the same manner except that
triangles need not be considered. Then

(”b(s +1) ) B (Cbb Cbr> (nb(s))
I’lr(S + 1) - Crb Crr }’lr(S) ’
K=K _ KKK
MK &y > Ty

&, - To find the epidemic threshold we substitute R,
=1 into the characteristic equation

2 _ 2 _ 2
<T<Kb Kb> _ R()) <T<Kr Kr> _ R()) _ T2 <Ker>

I(K,K))
="k, and ¢,

where c¢y,=

(Kp) (K,) (KXK'
(2)
We divide Eq. (1) by 1+7—T? and substitute (K>—K,)/(K,)
=2((K3—Kp)/{Kp)+1 and (KK (K XK)

=2(K,\K1)?/{K,)K;) into Eq. (2). Using the fact that the fac-
tors on the left-hand side are negative, comparing terms in
the resulting equations shows that the threshold 7 in the un-
clustered network is at most the threshold in the correspond-
ing clustered network.

III. CALCULATING GIANT COMPONENT SIZE

To calculate the fraction of nodes in the giant component,
it suffices to calculate the probability that a random node is
not part of the giant component. These calculations have
been done for CM networks by [5,6,23] We assume KK,
# 0, so the giant component is unique.

A. Clustered network

We follow the approach of [5,12]. A related approach is
given by [6]. We let f be the probability a random node u is
not part of the giant component. We have

f= 2 plhuky)glighd,
k],kA

where g; and g, are the probabilities that an independent
edge or a triangle, respectively, does not connect u to the
giant component. To find g;, we note that there are two ways
an edge can fail to connect u to the giant component: it may
be deleted in the percolation process with probability 1-T7,
or it may be kept but not connect to the giant component. We
have

81= 1 —T+Th1,

where Ay is the probability that a node v reached along an
independent edge is not part of the giant component. To cal-
culate i; we note that v is selected with probability propor-
tional to k; but only has k;—1 susceptible neighbors along
independent edges. We get

_ L

hy=— 2 kip(kkp) g™ gk,

(KD s

For g, we get
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FIG. 1. (Color online) A comparison of different network con-
figurations. Assortative mixing reduces the epidemic threshold.
Clustering reduces epidemic size. Simulations on clustered net-
works match the predictions.

ga=[1=T+ThyJ?=2T*(1 = Dhx(1 - hy),

where h, is the probability a node reached along a triangle
edge does not connect to the giant component through any
edge not in the triangle. We find

1 -
a= o 2 kap(kiky)giight ™
(Ka) iy
This system of equations for g, ga, %y, and h, can be
solved iteratively beginning with #;=h,=0, and the result

gives f.

h

B. Unclustered segregated network

To find f,, the probability a random node in the unclus-
tered network is not part of the giant component, we proceed
similarly. We find

fu = 2 pu(kb?kr)g]lihg];r’
kr’kb

gy = 1-T+ Thb,
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g, =1-T+Th,

1 _
hb =\ 2 kbpu(khvkr)glgb 1g/;,’
Kp) iz,

1 -
= @ E krpu(kh’kr)g];bgl;r 1'
! k,.k,

By iterating beginning with %, and h, both zero we find g,
and g,, from which f, can be calculated. A similar approach
will find f for corresponding clustered networks. At each step
of the iteration, gf =g and g, =gy, so this holds in the limit.
We conclude f,,=f. Consequently the size of the giant com-
ponent is smaller and the threshold higher in clustered net-
works than in unclustered networks of the same degree dis-
tribution and degree correlations.

h,

IV. RESULTS

In Fig. 1 we consider outbreak spread on three networks,
all of which have the same degree distribution. We compare
simulated epidemic sizes with predictions from the clustered
equations, the unclustered segregated equations, and the
equations derived previously for configuration model net-
works [5,6,23]. The networks for simulations are clustered
networks generated by the algorithm described above.

The nodes are equally distributed between degrees 2, 4,
and 6. In each network the clustering is distributed differ-
ently. In the first, p(0,3)=1/3, p(2,1)=1/3, and
p(2,0)=1/3. That is those nodes with degree 6 are only in
triangles, nodes of degree 4 have half of their edges in tri-
angles and independent edges, and nodes of degree 2 have
just independent edges. High degree nodes tend to be clus-
tered and contact other high degree nodes. The tendency to
contact other high degree nodes reduces the epidemic thresh-
old, but the clustering raises the threshold.
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In the second network, we take p(2,0)=1/6, p(0,1)
=1/6, p(2,1)=1/3, p(4,1)=1/6, and p(0,3)=1/6. This
yields identical distributions of neighbor degrees for nodes
reached by either a triangle or an independent edge. The
unclustered segregated equations yield the same result as the
configuration model equations. The clustered calculations
have smaller epidemics.

The third network is an inversion of the first. Nodes with
high degree have independent edges while nodes with low
degree are clustered. We take p(6,0)=1/3, p(2,1)=1/3, and
p(0,1)=1/3. Again the assortativity reduces the epidemic
threshold while clustering reduces the epidemic size. In this
particular case, it is the preference for high degree nodes
(which are unclustered) to contact one another that leads to
the reduction in epidemic threshold, and so it is clear that the
effect is due to assortative mixing not clustering.

V. DISCUSSION

We have introduced a model of clustered networks on
which we study percolation and epidemics. This model al-
lows us to make a number of analytic predictions because the
edges of the network can be partitioned into sets which are
independent of one another (independent edges or triangles).

We have shown that these networks can have a lower
epidemic threshold than configuration model networks with
the same degree distribution. However, this is not a conse-
quence of clustering but rather a consequence of assortative
mixing. The clustering of the network can be proven to raise
the epidemic threshold and reduce the epidemic size from
networks with the same degree correlations but without clus-
tering.
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