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The integration of time-dependent quantum mechanical wave equations is a fundamental problem in com-
putational physics and computational chemistry. The wave-function’s energy spectrum as well as its momen-
tum spectrum impose fundamental limits on the performance of numerical algorithms for the solution of wave
equations. We demonstrate how canonical transforms may be applied to negotiate these limitations and to
increase the performance of numerical algorithms by up to several orders of magnitude. Our approach includes
the so-called Kramers-Henneberger transform as a special case and puts forward modifications toward an
improved numerical efficiency.
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I. INTRODUCTION

The time-spatial evolution of quantum mechanical sys-
tems is determined by quantum wave equations, e.g., the
Schrödinger equation, the Pauli equation, or its relativistic
analog the Dirac equation. Analytic solutions to these equa-
tions are known for only a few systems �1,2� and, therefore,
numerical algorithms are an indispensable tool for the theo-
retical investigation of quantum mechanical systems. In fact,
numerical approaches to the Schrödinger equation had been
undertaken long before electronic calculating machines be-
came available �3�.

Various authors have proposed different algorithms for
an efficient solution of quantum mechanical wave equations
during the last decades. Among the most popular methods
are the Crank-Nicolson scheme �4–6�, the leap-frog method
�7,8�, and the split operator method �9�. In order to increase
its efficiency, generalizations to higher orders of accuracy
have been suggested for the Crank-Nicolson scheme �10�,
the leap-frog method �11�, as well as for the split operator
method �12–15�. Recent approaches to solve quantum wave
equations include, for example, the real-space-product finite-
element discrete-variable representation approach �16–18�,
Chebychev propagator methods �19�, and the quantum lattice
Boltzmann method �20–22�. Initially, the algorithms men-
tioned above have been introduced to solve the time-
dependent Schrödinger equation and a comparison of various
numerical integration schemes for this equation can be found
in �23�. However, these methods can also be applied to rela-
tivistic quantum mechanical wave equations �24–26�.

In contrast to �4–26� and many other publications that
deal with the efficient integration of quantum mechanical
wave equations, we are not trying to deduce another actual
numerical scheme. Instead, we will show that the choice of
the Hilbert-space representation of a quantum mechanical
system has a crucial impact on the efficiency of numerical
algorithms and we will demonstrate how a reformulation of
the wave equation by means of a canonical transform can
increase both the performance and the accuracy of existing
algorithms significantly.

This paper is organized as follows. After a short review of
quantum mechanical wave equations in Sec. II, we will draw
the reader’s attention in Sec. III to some fundamental limits
that are related to the numerical solution of quantum wave
equations. In Secs. V and VI we will introduce some tech-
niques that allow us to negotiate these limitations by trans-
lating the Hamiltonian by canonical transforms. Canonical
transforms will be reviewed in Sec. IV. Finally, Sec. VII
presents some numerical results and benchmarks.

II. QUANTUM MECHANICAL WAVE EQUATIONS

The state of a quantum mechanical system is specified by
a wave function ��x , t�. This function spreads continuously
in time t and space x; its evolution is governed by a quantum
mechanical wave equation that has a so-called Schrödinger
form

i�
�

�t
��x,t� = Ĥ��x,t� �1�

or can be transformed into this form, where � denotes the
Planck constant divided by 2�. Equation �1� includes various
wave equations that share the same mathematical structure,
e.g., the Schrödinger equation, the Pauli equation, the Dirac
equation �27�, as well as the Klein-Gordon equation in the
Feshbach-Villars representation �28�. However, the form of

the wave function ��x , t� and the operator Ĥ �the Hamil-
tonian� differs.

The Schrödinger equation is an equation for a complex-
valued scalar wave function ��x , t�. In its most general
form, it describes a particle of mass m and charge q in
the electromagnetic potentials ��x , t� and A�x , t�. The
Schrödinger equation Hamiltonian reads as

Ĥ =
1

2m
�− i�

�

�x
− qA�x,t��2

+ q��x,t� . �2�

It describes a nonrelativistic spin zero particle and is invari-
ant under the Galilean transformation. In contrast to the
Schrödinger equation, the Dirac equation describes a relativ-
istic spin half particle and is invariant under the Lorentz
transformation. Its Hamiltonian is given by
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Ĥ = c� · �− i�
�

�x
− qA�r,t�� + q��r,t� + mc2� , �3�

with �= ��1 ,�2 ,�3�T and the speed of light c. The 4�4
matrices �1 ,�2 ,�3, � obey the algebra

�i
2 = �2 = 1, �i�k + �k�i = 2	i,k, �i� + ��i = 0, �4�

with i ,k� �1,2 ,3�. A Dirac wave function is a four compo-
nent complex-valued vector function. For one-dimensional
systems, the Dirac wave function reduces to a two compo-
nent complex-valued vector function and the matrices �1 and
� reduce to 2�2 matrices.

In the subsequent sections, we are going to formulate our
arguments as generically as possible. That means we will use
the fact that wave equations are given in Schrödinger form
�1�, but we will not take into account specific features of
particular Hamiltonians. However, for illustrative purposes
and in numerical applications, we will refer to the
Schrödinger equation �2� and the Dirac equation �3�.

III. FUNDAMENTAL LIMITS OF NUMERICAL
ALGORITHMS

Quantum mechanical wave functions ��x , t� spread con-
tinuously in time and space. Every numerical algorithm for
the propagation of a wave function �that works in real space�
will reconstruct the wave function on discrete points in time
and space starting from an initial condition ��x ,0�=�0�x�.
For simplicity, let us assume that the spacing of these points
is equidistant and given by 
x for spatial dimensions and by

t for the temporal dimension. When propagating ��x , t�
over a fixed domain in time and space, it is desirable to
render the number of space-time sampling points small, that
is, to make 
t and 
x large because the computing time
grows with the number of space-time sampling points. Yet,

t and 
x cannot be chosen arbitrarily large.

They are limited not only by algorithm specific con-
straints. In fact, the magnitude of the wave-function’s time-
spatial oscillations restricts 
t and 
x in a fundamental way.
The energy and the canonical momentum operators in coor-
dinate representation are proportional to derivatives with re-
spect to time and space, respectively. Therefore, temporal
oscillations of ��x , t� are related to the energy spectrum,
while spatial oscillations are related to the momentum spec-
trum of the quantum mechanical system. The Shannon sam-
pling theorem �29� establishes a relation between spatial os-
cillations and 
x and temporal oscillations and 
t more
rigorously. It imposes fundamental limits on 
x and 
t.

Let us consider a one-dimensional system with a time-

independent Hamiltonian Ĥ and a wave function ��x , t� in
its coordinate representation. The wave function can be ex-
panded into various bases, e.g., into eigenfunctions �E�x� of

the Hamiltonian Ĥ or into plane waves exp�i(px−E�p�t) /��,
where E�p� denotes the energy-momentum relation of a free
particle with mass m; E�p�= p2 / �2m� for Galilean invariant
wave equations and E�p�=	m2c4+ p2c2 for Lorentz invariant
wave equations, respectively. If ��x , t� is band limited in the
momentum domain to p̃ and band limited in the energy do-

main to Ẽ, respectively, then the expansion of ��x , t� into
plane waves reads as

��x,t� = 

−p̃

p̃

a�p,t�exp�−
i

�
E�p�t�exp� i

�
px�dp �5a�

and the expansion into energy eigenfunctions is given by

��x,t� = 

−Ẽ

Ẽ
b�E��E�x�exp�−

i

�
Et�dE . �5b�

We call p̃ as the momentum band limit and Ẽ as the energy
band limit of the system.

The Shannon sampling theorem states that ��x , t� can be
reconstructed from evenly distributed sampling points if and
only if


x �
��

p̃
, 
t �

��

Ẽ
. �6�

Note that Eq. �6� is a necessary constraint on the step sizes

x and 
t. Practical numerical algorithms may require con-
siderably smaller step sizes, e.g., because of algorithm spe-
cific instabilities �30,31�.

IV. CANONICAL TRANSFORMS

A �quantum� canonical transform �Table I� is a change in
phase-space variables from �x̂ , p̂� to �x̂� , p̂�� that preserves
the canonical commutation relation,

x̂p̂ − p̂x̂ = x̂�p̂� − p̂�x̂� = i� . �7�

Canonical transforms played a prominent role in the concep-
tual development of quantum mechanics �32,33� and have
proven to be a valuable tool for the analytical treatment of
quantum mechanical problems. In this contribution, we will
demonstrate how canonical transforms can help to overcome
the fundamental limitation of numerical algorithms �6�.

Let Ô be a Hermitian operator that represents some ob-
servable with a possibly time-dependent expectation value


O��t� =
 ��x,t�Ô��x,t�d3x �8�

and Û a unitary transform. Then the mapping of Ô to

Ô� = ÛÔÛ−1 �9�

is a canonical transform. Both Ô and Ô� have the same ei-
genvalue spectra—the same expectation values—that is,

O��t�= 
O���t�, and represent the same observable in differ-
ent Hilbert spaces H and H�. In each Hilbert space there
exists a wave function that encodes the evolution of the same
quantum mechanical system. Let the wave function ��x , t�
evolve in H under Eq. �1� then the evolution of ���x , t� in
H� is determined by

Ûi�
�

�t
Û−1���x,t� = ÛĤÛ−1���x,t� . �10�

From Eqs. �1� and �10�, it follows that ��x , t� and ���x , t�
are related by
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���x,t� = Û��x,t� . �11�

To construe ��x , t� and ���x , t� as wave functions for the
same physical system in different Hilbert spaces is not the
only possible interpretation of the mapping �11�. As we
pointed out in Sec. III, the limits �6� have their roots in the
coordinate representation of the energy operator and the ca-
nonical momentum operator. If one maintains the standard
coordinate representation of the position operator, the mo-
mentum operator, the energy operator, and other operators
then ���x , t� can be interpreted as the wave function of a

new system with a new Hamiltonian Ĥ�. Solving Eq. �10� for
i� �

�t���x , t�, we find the Schrödinger form i� �
�t���x , t�

= Ĥ����x , t� with

Ĥ� = ÛĤÛ−1 − Û�i�
�

�t
Û−1� . �12�

In the reminder of the paper and if not stated otherwise, we
refer to the stared operators as shown in Table I if we speak
of the Hamiltonian, the momentum operator, the energy op-
erator, etc., of the new wave function ���x , t�.

In general, the energy and canonical momentum spectra
of the new system will differ from the ones of the original
system. In particular, the expectation value of the energy

E��t� is shifted to


E���t� = 
E��t� + i�
 Û��x,t�
�Û

�t
��x,t�d3x . �13�

For the expectation value of the momentum 
p��t�, we find
the analogous result


p���t� = 
p��t� − i�
 Û��x,t�
�Û

�x
��x,t�d3x . �14�

This modification of the energy and momentum spectra is
the key to efficient numerical algorithms for the integration
of quantum mechanical wave equations and we will seek for

phase-space transforms Û leading to Hamiltonians Ĥ� that

are more convenient for numerical algorithms than Ĥ. In
order to overcome the limits enforced by the Shannon sam-

pling theorem, the transform Û will be chosen in a way such

that ���x , t� has a smaller band limit in the momentum do-
main and/or a smaller band limit in the energy domain than
��x , t�. Hence, ���x , t� will less fluctuate in space and/or in
time.

The transition from the Schrödinger picture to the Heisen-
berg picture is an important example for the type of trans-
forms we are looking for. Using Dyson’s time-ordering op-

erator T̂, the temporal evolution of an initial wave function

��x ,0� under the effect of the Hamiltonian Ĥ is determined

by a unitary operator ÛĤ,

��x,t� = ÛĤ��x,0� , �15a�

with

ÛĤ = T̂ exp�−
i

�



0

t

Ĥ���d�� . �15b�

The operator Û
Ĥ

−1
establishes the transition from the

Schrödinger picture to the Heisenberg picture. In the
Schrödinger picture, the wave function evolves in time; po-
sition and momentum operators are time independent. In the
Heisenberg picture, however, position and momentum opera-
tors are time dependent but the wave function does not de-
pend on time,

i�
�

�t
���x,t� = i�

�

�t
Û

Ĥ

−1
��x,t� = i�

�

�t
��x,0� = 0. �16�

Therefore, Û
Ĥ

−1
provides a transform that allows numerical

algorithms to take arbitrary large time steps 
t. However,

calculating Û
Ĥ

−1
is as difficult as calculating the evolution of

��x , t�. As we will show in the following sections, there are
other more applicatory canonical transforms that reduce tem-
poral and/or spatial fluctuations of the wave function.

One should note that the idea of using phase-space trans-
formations to overcome limitations imposed on the effi-
ciency of specific numeric integration algorithms has been
implemented earlier, e.g., in molecular-dynamics simulations
of classical systems �34� by splitting algorithms. However,
here we take a broader perspective; our arguments do not
make any algorithm specific assumptions. The phase-space
transformations that we are looking for will be induced by

TABLE I. Operators of some observables in coordinate representation and their representation after a

canonical transform ���x , t�= Û��x , t�. There are two different ways to interpret the new wave function
���x , t�. Either it represents the same physical system as ��x , t� does but in another Hilbert space where
operators of observables have a nonstandard representation or ���x , t� represents a new system with Hamil-

tonian Ĥ�, where operators are given in standard representation.

Original system in standard
coordinate representation

Original system in
transformed representation

New system in
coordinate representation

Position x̂=x x̂�= ÛxÛ−1 x̂�=x

Momentum p̂=−i� �
�x p̂�= Û�−i� �

�x �Û−1 p̂�=−i� �
�x

Energy Ê= i� �
�t Ê�= Û�i� �

�t �Û
−1 Ê�= i� �

�t

Hamiltonian Ĥ Ĥ�= ÛĤÛ−1 Ĥ�= ÛĤÛ−1− Û�i� �
�t Û

−1�

CANONICAL TRANSFORMS AND THE EFFICIENT… PHYSICAL REVIEW E 80, 016706 �2009�

016706-3



the physical properties of the system under investigation not
by algorithm specific considerations.

V. GAUGE TRANSFORMS AND SPECTRUM-GUIDED
INTEGRATION

In order to reduce a wave-function’s high-frequency time-
spatial oscillations, we propose a technique called spectrum-
guided integration that is based on gauge transforms. Gauge
transforms are canonical transforms, which are induced by a
scalar gauge function g�x , t� via

Ûg = exp„ig�x,t�/�… . �17�

Gauge transforms do not only preserve the canonical
commutation relation �7�, they also preserve the form of the
quantum mechanical wave equation up to a change in the
electromagnetic potentials, viz.,

Ĥ�
„A��x,t�,���x,t�… = Ĥ„A�x,t�,��x,t�… , �18�

with

A��x,t� = A�x,t� +
1

q

�g�x,t�
�x

, �19a�

���x,t� = ��x,t� −
1

q

�g�x,t�
�t

. �19b�

The electromagnetic fields E�x , t� and B�x , t� are invariant
under gauge transforms

E�x,t� = −
���x,t�

�x
−

�A�x,t�
�t

= −
����x,t�

�x
−

�A��x,t�
�t

= E��x,t� , �20a�

B�x,t� =
�

�x
� A�x,t� =

�

�x
� A��x,t� = B��x,t� .

�20b�

Furthermore, gauge transforms preserve the probability den-
sity

��x,t���x,t� = ���x,t����x,t� �21�

and, as a consequence of Eq. �21�, the center-of-mass motion
is invariant under gauge transforms too,


x��t� = 
x���t� . �22�

However, the expectation values of the energy as well as of
the canonical momentum are shifted by gauge transforms.
Using Eqs. �13� and �14�, we find


E���t� = 
E��t� − 
gt��t� �23a�

and


p���t� = 
p��t� + 
gx��t� , �23b�

where we have introduced the quantities


gt��t� =
 ��x,t�
�g�x,t�

�t
��x,t�d3x , �24�


gx��t� =
 ��x,t�
�g�x,t�

�x
��x,t�d3x . �25�

The basic idea of the spectrum-guided integration is to
reduce time-spatial oscillations by choosing a gauge function
g�x , t� such that the gauge transform causes a shift of the
energy spectrum and/or the momentum spectrum so that

E���t� and/or 
p���t� vanish or are close to zero. That means
the energy spectrum and/or the momentum spectrum are �ap-
proximately� centered around zero provided that the original
energy and momentum spectra are not extremely skewed.

A. Reducing temporal oscillations

In order to reduce temporal oscillations by shifting the
energy spectrum, we introduce a time-dependent gauge func-
tion,

g�x,t� = 

0

t

Ē���d� , �26�

that is parametrized by some function Ē�t�. For this particu-
lar gauge transform, the new electromagnetic potentials �19�
are given by

A��x,t� = A�x,t� , �27a�

���x,t� = ��x,t� − Ē�t�/q , �27b�

and plugging Eq. �26� into Eqs. �23a� and �23b� we obtain
the expectation values


E���t� = 
E��t� − Ē�t� , �28a�


p���t� = 
p��t� . �28b�

We refer to the spectrum-guided integration in the energy
domain if ��x , t� is transformed into ���x , t� by a gauge

transform �17� with Eq. �26� and Ē�t� such that the mean
energy 
E���t� of the new system ���x , t� vanishes and for
that reason ���x , t� has a smaller energy band limit and ex-
hibits temporal oscillations that have reduced frequencies
compared to ��x , t�.

For time-independent systems, 
E��t� is constant and may

be computed from the initial condition; thus, we have Ē�t�
= 
E��t�= 
��x ,0��Ĥ���x ,0��. In general, 
E��t� is not known
a priori. However, if quantum effects are small, 
E��t� equals
approximately the energy of the corresponding classical sys-

tem. Therefore, we set Ē�t� to the energy of the classical

system. Note that if Ē�t� does not strictly equal 
E��t�, this
just means that the reduction in the energy band limit might
be nonoptimal, but this will not introduce any errors.

For one-dimensional wave functions, the effect of the
gauge transform �26� may be visualized in two-dimensional

HEIKO BAUKE AND CHRISTOPH H. KEITEL PHYSICAL REVIEW E 80, 016706 �2009�

016706-4



diagrams that show the real and the imaginary parts of the
wave function. Figure 1�a� shows the oscillation pattern of
an initial Gaussian wave packet

��x,0� = � 1

2�
2�1/4
exp�−

x2

4
2 + ipx� , �29�

with spatial width 
 and momentum p evolving in a har-
monic potential. The one-dimensional Schrödinger equation
for a harmonic oscillator in dimensionless units with �=1,
m=1, and q=1 reads as

i
���x,t�

�t
= −

1

2

�2��x,t�
�x2 +

x2

2
��x,t� . �30�

An analytic solution ��x , t� of the initial value problem
given by �29� and �30� is presented in �35�.

The wave function ��x , t� features high-frequency time-
spatial oscillations as visualized in Fig. 1�a�. However, tem-
poral oscillations can be reduced by an appropriate gauge
transform. The energy of a Gaussian wave packet �29� in a

harmonic potential equals 
��x ,0��Ĥ���x ,0��= p2 /2+
2 /2
+1 / �8
2�. Therefore, we apply a gauge transform �17� of
type �26� with

Ē�t� =
p2

2
+


2

2
+

1

8
2 , �31a�

g�x,t� = 

0

t

Ē���d� , �31b�

to Eq. �30� to get a new Hamiltonian Ĥ� and the wave equa-
tion

i
����x,t�

�t
= −

1

2

�2���x,t�
�x2 + � x2

2
− Ē�t�����x,t� . �32�

The new wave function ���x , t�=exp(ig�x , t�)��x , t� fea-
tures reduced temporal oscillations as illustrated in Fig. 1�b�.
Yet, spatial oscillations are still present.

B. Reducing spatial oscillations

Spatial oscillations of a wave function may be reduced by
applying a gauge transform with the gauge function

g�x,t� = 

0

t

x��� ·
d

d�
�m

dx���
d�

+ qA„x���,�…�d�

− x · �m
dx�t�

dt
+ qA„x�t�,t…� , �33�

that is parametrized by some function x�t�. For the gauge
transform �33�, the new electromagnetic potentials �19� are
given by

A��x,t� = A�x,t� − A„x�t�,t… −
m

q

dx�t�
dt

, �34a�

���x,t� = ��x,t� + „x − x�t�… ·
d

dt
�m

q

dx�t�
dt

+ A„x�t�,t…� .

�34b�

Plugging Eq. �33� into Eqs. �23a� and �23b� and using the
relation

x

t
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(b)

(a)

(c)

(d)

FIG. 1. �Color online� Reduction in time-spatial oscillations by
the spectrum-guided integration. �a� A one-dimensional Gaussian
wave packet ��x , t� in a harmonic potential with initial momentum
p=4 and width 
=1 oscillates rapidly in time and space. �b�
Spectrum-guided integration in the energy domain reduces temporal
oscillations, while the �c� spectrum-guided integration in the mo-
mentum domain reduces spatial oscillations. �d� The combination of
spectrum-guided integration in the energy domain and the
spectrum-guided integration in the momentum domain smoothes
the wave function and removes all fast oscillations. Figures display
real �left� and imaginary �right� parts of the wave function.
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p��t� = m
d
x��t�

dt
+ q
A��t� �35�

between the mean canonical momentum 
p��t� and the mean
kinetic momentum md
x��t� /dt, we get


E���t� = 
E��t� + „
x��t� − x�t�… ·
d

dt
�m

dx�t�
dt

+ qA„x�t�,t…� ,

�36a�


p���t� = 
p��t� − �m
dx�t�

dt
+ qA„x�t�,t…� . �36b�

We refer to the spectrum-guided integration in the momen-
tum domain if ��x , t� is transformed into ���x , t� by a gauge
transform �17� with Eq. �33� and x�t� such that the mean
canonical momentum 
p���t� of the new system ���x , t� van-
ishes and for that reason ���x , t� has a smaller momentum
band limit and exhibits spatial oscillations that have reduced
frequencies compared to ��x , t�. It is insightful to insert re-
lation �35� between the canonical momentum and the kinetic
momentum into Eq. �36b�, which results in


p���t� = m
d

dt
„
x��t� − x�t�… + q�
A��t� − A„x�t�,t…� .

�37�

As a consequence of Eq. �37�, the spectrum-guided integra-
tion in the momentum domain can be realized by setting x�t�
equal to the trajectory of the corresponding classical system
provided that quantum effects are small, that is, the classical
trajectory equals 
x��t� and 
A��t��A(
x��t� , t). The expec-
tation value of the energy �36a� will not be changed if x�t�
equals the center-of-mass motion of ��x , t�. Note that if x�t�
does not strictly equal the center-of-mass trajectory 
x��t�,
this just means that the reduction in the momentum band
limit might be nonoptimal, but this will not introduce any
errors.

In order to reduce spatial oscillations of the harmonic-
oscillator wave function, one has to apply a gauge transform
�17� of type �33� with

x̄�t� = p sin t , �38a�

g�x,t� = 

0

t

x̄���
d2x̄���

d�2 d� − x
dx̄�t�

dt
, �38b�

to the wave equation �30�. The function x̄�t� equals the clas-
sical trajectory related to the quantum harmonical oscillator
�30�. In Fig. 1�c� we show the oscillation pattern of the wave
function ���x , t�=exp(ig�x , t�)��x , t�. Oscillations in the
spatial domain have been reduced significantly.

C. Reducing temporal and spatial oscillations

It is possible to combine the gauge functions of the
spectrum-guided integration in the energy domain �26� and
spectrum-guided integration in the momentum domain �33�
into a single gauge function

g�x,t� = 

0

t �Ē��� + x��� ·
d

d�
�m

dx���
d�

+ qA„x���,�…��d�

− x · �m
dx�t�

dt
+ qA„x�t�,t…� �39�

that reduces both temporal and spatial oscillations. The func-

tions Ē�t� and x�t� have to fulfill the conditions of the
spectrum-guided integration in the energy domain and
spectrum-guided integration in the momentum domain, re-
spectively.

For our harmonic-oscillator example, we combine the
gauge transforms �30� and �37� into the gauge function

Ē�t� =
p2

2
+


2

2
+

1

8
2 , �40a�

x̄�t� = p sin t , �40b�

g�x,t� = 

0

t �Ē��� + x̄���
d2x̄���

d�2 �d� − x
dx̄�t�

dt
�40c�

that reduces both temporal and spatial oscillations of the
wave function as demonstrated in Fig. 1�d�.

VI. WAVE EQUATIONS IN ACCELERATED
FRAMES OF REFERENCE

The numerical propagation of wave functions is per-
formed on spatial grids of finite size. In addition to the grid
spacings 
x and 
t, the extent of the spatial grid limits the
performance of numerical schemes for the propagation of
wave functions too. On one hand, the grid has to be large
enough to hold at all times all significant parts of the wave
function. That is, the grid size has to ensure that the prob-
ability density outside of the grid is never significantly larger
than zero. On the other hand, the grid should not be unnec-
essarily large in order to keep computational costs maintain-
able.

If a wave packet moves over distances that are large com-
pared to the width of the wave packet then a static compu-
tational grid has to be much larger than the size of the wave
packet. Consequently, the numerical propagation of fast
moving wave packets is much more time demanding than the
propagation of wave packets with a stationary center of
mass. We can negotiate this problem by switching into an
accelerated frame of reference.

A. Schrödinger equation in accelerated frames of reference

Let us consider two Schrödinger equation wave functions
��x , t� and ���x , t� describing the same physical system in
two different frames of reference that are shifted against each
other by a time-dependent vector x�t�. These functions are
related per construction by

���x,t� = D̂„x�t�…Ûg��x,t� , �41�

where Ûg denotes an arbitrary gauge transform �17� and

D̂(x�t�) denotes the unitary displacement operator that is
generated by the canonical momentum operator p̂
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D̂�x�t�� = exp� i

�
„− x�t� · p̂…� = exp�x�t� ·

�

�x
� . �42�

It is not difficult to show that the transform �41� changes
the electromagnetic potentials but keeps the Schrödinger
Hamiltonian �2� form invariant. That means Eq. �18� holds
and the electromagnetic potentials transform as

A��x,t� = A„x + x�t�,t… +
1

q
��g��,t�

��
�

�=x+x�t�
+

m

q

dx�t�
dt

,

�43a�

���x,t� = �„x + x�t�,t… −
1

q��g„x + x�t�,�…
��

�
�=t

− �A„x + x�t�,t… +
1

q��g��,t�
��

�
�=x+x�t�

� ·
dx�t�

dt

−
m

2q�dx�t�
dt �2

. �43b�

However, the electromagnetic fields are not invariant be-

cause the operator D̂(x�t�)Ûg does not represent a gauge
transform. A transformation into an accelerated frame of ref-
erence causes inertial forces. The fields that correspond to
the potentials �43� are given by

E��x,t� = E„x + x�t�,t… −
m

q

d2x�t�
dt2 , �44a�

B��x,t� = B„x + x�t�,t… . �44b�

The expectation values of the energy and the canonical mo-
mentum of the wave function in the accelerated frame of
reference are given by


E���t� = 
E��t� − 
gt��t� − „
p��t� + 
gx��t�… ·
dx�t�

dt
,

�45a�


p���t� = 
p��t� + 
gx��t� . �45b�

1. Kramers-Henneberger transform

Transformation �41� is a generalization of the so-called
Kramers-Henneberger transform �36�. The Kramers-
Henneberger transform has proven to be useful for the nu-
merical integration of the Schrödinger equation in dipole ap-
proximation as well as in the none-dipole regime �37�. For
example, it had been utilized successfully to study various
aspects of ionization dynamics �38�, the suppression of ion-
ization in superintense fields �39�, as well as multiphoton
ionization �40�. The Kramers-Henneberger transform reduces
the energy band limit by switching into an accelerated frame
of reference. As we will show, however, it does not reduce
the energy band limit as much as possible in all physical
setups.

Henneberger applied transformation �41� with

x�t� = − 

0

t q

m
A���d� �46a�

g�x,t� = 

0

t q2

2m
A���2d� �46b�

to the Schrödinger equation in dipole approximation, where
it is assumed that the vector potential does not depend on x.
The Hamiltonian is given by Eq. �2� with A�x , t�=A�t�. The
Kramers-Henneberger transform changes the electromag-
netic potentials into

A��t� = 0, �47a�

���x,t� = �„x + x�t�,t… , �47b�

and the expectation values of the energy and the canonical
momentum are given by


E���t� =

p2��t�

2m
+ q
���t� , �48a�


p���t� = 
p��t� , �48b�

where we have used the expression


E��t� =

p2��t�

2m
−

q

m
A�t� · 
p��t� +

q2

2m
A2�t� + q
���t�

�49�

for the mean energy in the original frame.
From Eq. �48�, it follows that the Kramers-Henneberger

transform does not affect the canonical momentum distribu-
tion. Yet, it reduces the energy band limit by shifting the
energy spectrum. The mean energies �49� and �48a� differ by
− q

mA�t� · 
p��t�+ q2

2mA2�t�, but the Kramers-Henneberger trans-
form does not reduce the mean energy 
E���t� to zero. Hence,
it is not optimal. Only if − q

mA�t� · 
p��t�+ q2

2mA2�t� is the domi-
nating contribution to the mean energy �49� the Kramers-
Henneberger transform will reduce the energy band limit sig-
nificantly. If the scalar potential term q
���t� or the canonical
momentum term 
p2��t� / �2m� in Eq. �49� is large, the
Kramers-Henneberger transform may fail to reduce the en-
ergy band limit appreciably and the transformed wave func-
tion will exhibit high-frequency temporal oscillations as the
original one does.

The failure of the Kramers-Henneberger transform may
be illustrated by a system having an analytic solution, a par-
ticle in a harmonically oscillating homogeneous electric field
with angular frequency �, and amplitude � �35�. The
Schrödinger equation of this system reads in dimensionless
units as

i
���x,t�

�t
=

1

2
�− i

�

�x
− A�t��2

��x,t� , �50a�

with
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A�t� =
�

�
sin��t� . �50b�

Figure 2�a� visualizes the motion of the wave packet in the
laboratory frame. The parameters of the initial Gaussian
wave packet �29� are chosen such that a high initial canonical
momentum propels the wave packet to the right and the elec-
tric field pushes the particle into the opposite direction. Be-
cause of the particle’s high energy and its high momentum,
the wave function oscillates strongly in time and space. Fig-
ure 2�b� shows the motion of the same particle in the
Kramers-Henneberger frame

x̄�t� = − 

0

t �

�
sin����d� , �51a�

g�x,t� = 

0

t 1

2

�2

�2sin2����d� . �51b�

In the Kramers-Henneberger frame, the canonical momen-
tum equals the kinetic momentum and both are conserved
quantities. The wave packet moves with constant velocity to
the right. Because of the high initial momentum, the particle
has also in the Kramers-Henneberger frame a high kinetic
energy. Thus, the frequencies of time-spatial oscillations are
reduced only slightly.

2. Schrödinger equation in the center-of-mass frame

We will circumvent the failure of the Kramers-
Henneberger transform by transforming the Schrödinger
equation into an accelerated frame of reference by Eq. �41�,
where the gauge transform Ûg is generated by the gauge
function of spectrum-guided integration �39�. In the acceler-
ated frame of reference, the new potentials �43� are given by

A��x,t� = A„x + x�t�,t… − A„x�t�,t… , �52a�

���x,t� = �„x + x�t�,t… + x ·
d

dt
�m

q

dx�t�
dt

+ A„x�t�,t…�
−

dx�t�
dt

·�A„x + x�t�,t… − A„x�t�,t…�

+
m

2q
�dx�t�

dt
�2

−
Ē�t�

q
. �52b�

Note that in contrast to the Kramers-Henneberger transform,
we do not require the dipole approximation A�x , t�=A�t�.
Using Eqs. �39� and �45� and the relation �35� between the
canonical momentum and the kinetic momentum, we find the
expectation values of the energy and the canonical momen-
tum


E���t� = 
E��t� − Ē�t� −
dx�t�

dt
· �m

d

dt
„
x��t� − x�t�…

+ q�
A��t� − A„x�t�,t…�� , �53a�


p���t� = m
d

dt
„
x��t� − x�t�… + q�
A��t� − A„x�t�,t…� .

�53b�

As a consequence of Eqs. �53�, the expectation value of the
energy 
E���t� and the canonical momentum 
p���t� vanish if

x�t� equals the center-of-mass motion of ��x , t�, if Ē�t�
equals 
E��t� and if quantum effects are small, that means

A��t��A(
x��t� , t).

A transformation into an accelerated frame of reference
that is determined by the center-of-mass motion of ��x , t�
may be much more suitable to reduce time-spatial oscilla-
tions than the Kramers-Henneberger transform. For example,
Fig. 2�c� shows the oscillation pattern of the wave function
of a particle in a harmonically oscillating homogeneous elec-
tric field after transformation into the frame of reference that
is determined by the classical energy
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FIG. 2. �Color online� Motion of a wave packet in a harmoni-
cally oscillating homogeneous electric field �49� with field strength
�=16 and frequency �=1. The figure compares the wave-packet’s
motion in the �a� laboratory frame, in the �b� Kramers-Henneberger
frame, and in the �c� center-of-mass frame. The initial wave func-
tion in the laboratory frame is a Gaussian wave packet �29� of width

=1 and momentum p=8. Figures display real �left� and imaginary
�right� parts of the wave function.
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Ē�t� =
1

2
�p −

q�

�
sin��t��2

, �54a�

the classical trajectory of the wave function ��x , t�

x̄�t� =
q�

�2„cos��t� − 1… + pt , �54b�

and the gauge function

g�x,t� = 

0

t �Ē��� + x̄���
d2x̄���

d�2 �d� − x
dx̄���

d�
. �54c�

In this frame, the center of mass is fixed and the wave-
function’s fast time-spatial oscillations virtually disappeared
as shown in Fig. 2�c�.

To sum up, the transformation of a quantum system into
its rest frame in combination with the gauge transform �39�,
where x�t� and Ē�t� are determined by the trajectory and the
energy of the corresponding classical system fixes the center
of mass and reduces high-frequency time-spatial oscillations.
This transform may be interpreted as the removal of classical
features from the motion of the wave function. However, the
wave function in the center-of-mass frame ���x , t� still com-
prises all quantum features, e.g., the broadening of a wave
packet �see, for example, Fig. 2�c��.

B. Dirac equation in accelerated frames of reference

Two Dirac equation wave functions ��x , t� and ���x , t�
in two different frames of reference that are shifted against
each other by x�t� are related by a canonical transform �41�
as in the case of Schrödinger wave functions. However, the

shift operator D̂(x�t�) has to take into account a Lorentz

boost. For the Dirac wave functions, the operator D̂(x�t�)
reads as

D̂„x�t�… = exp� i

�

�

c
n · N̂�exp�−

i

�
x�t� · p̂� . �55�

The operator N̂ is defined as �27�

N̂ =
1

2
�Ĥ0x + xĤ0� , �56�

where H0 denotes the free particle Dirac Hamilton operator
�operator �3� with ��x , t�=0 and A�x , t�=0� and the unit vec-
tor n and the rapidity � are defined via

dx�t�
dt

= cn tanh � . �57�

The application of the operator D̂(x�t�)Ûg to the Dirac equa-
tion �3� gives a new Dirac equation for ���x , t� with trans-
formed electromagnetic potentials. The operator �55� allows
us to switch into the center-of-mass frame of ��x , t� in order
to reduce the wave-function’s high-frequency time-spatial
oscillations as we did for the Schrödinger equation. How-
ever, we will not follow this path because the Lorentz boost
mixes spatial coordinates with the coordinate of time. From
this, it follows that an initial value problem for ��x , t� with

an initial value function given at t=0 is transformed by Eq.
�55� into an initial value problem for ���x , t� with an initial
value function given at some space-time slice. This is a kind
of initial value problem that standard algorithms for the so-
lution of time-dependent partial differential equations do not
account for.

VII. CANONICAL TRANSFORMS AND NUMERICAL
ALGORITHMS

In Secs. V and VI we demonstrated how a wave-
function’s high-frequency time-spatial oscillations may be
reduced by canonical transforms. In this section, we are go-
ing to investigate how the reduction in time-spatial oscilla-
tions actually affects numerical algorithms.

A. Numerical solution of wave equations

In order to demonstrate the merits of canonical transforms
for the numerical solution of quantum mechanical wave
equations, we have implemented various numerical algo-
rithms for the solution of the Schrödinger equation �2� and
the Dirac equation �3�. All these algorithms are based on the
Cayley form of the time evolution operator �15b�, a method
that goes back to Goldberg et al. �4�.

The Cayley form is a Padé approximant of the time evo-

lution operator. Neglecting the time-ordering operator T̂, we
expand the time evolution operator into

��x,t + 
t� = T̂ exp�−
i

�



t

t+
t

Ĥ���d����x,t�

= exp�−
i

�



t

t+
t

Ĥ���d����x,t� + O�
t3�

=

1 −
i

2�



t

t+
t

Ĥ���d�

1 +
i

2�



t

t+
t

Ĥ���d�

��x,t� + O�
t3� . �58�

Up to terms of order 
t3, the expansion �58� is equivalent to
the implicit equation

D̂+��x,t + 
t� = D̂−��x,t� , �59a�

with

D̂� = 1 �
i

2�



t

t+
t

Ĥ���d� . �59b�

Mapping spatial coordinates to a regular grid, �59� gives a
second-order accurate implicit time stepping scheme for the
propagation of the initial value problem �1�, ��x ,0�
=�0�x�. The scheme �59� preserves the unitarity of the time
evolution operator �15b� and is unconditionally stable.

In the spatially discrete version of Eq. �59�, the operators

D̂� are matrices and Eq. �59a� is a system of linear equations
that is solved very efficiently by iterative methods, i.e., Kry-
lov subspace methods �41–45�. In particular, the conjugate
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gradients squared method �42� and the biconjugate gradients
stabilized method �44� have proven to be very efficient solv-
ers for Eq. �59a�. Iterative solvers construct a series of ap-
proximative solutions of the Eq. �59a� starting from the ini-
tial approximation ��x , t+
t����x , t�. The solver stops if
a sufficient degree of accuracy is achieved. It is not required
to solve Eq. �59a� to full machine precision, this will be a
waste of computing time. However, the tolerable error in the
solution of Eq. �59a� has to scale proportionally to 
t3 as the
error of the Cayley form does.

Krylov subspace methods are able to take advantage of

the sparsity pattern of the coefficient matrix D̂+. It may be
dense or sparse, depending on the way how spatial deriva-

tives in the operator D̂+ are approximated. Finite difference
approximations of differential operators result in sparse co-
efficient matrices, while pseudospectral methods �46� yield
dense coefficient matrices. This makes the solution of the
linear system �59a� computationally expensive. But pseu-
dospectral methods may be superior to finite difference
methods because they calculate spatial derivatives with
“spectral accuracy,” meaning the numerical error in the
approximation of the spatial derivatives decreases superpoly-
nomially in the number of grid points. The sparsity pattern
also depends on the type of wave function and the dimension
of the system. In the case of the one-dimensional
Schrödinger equation with a second-order finite difference

approximation of spatial derivatives, the matrix D̂+ is tri-
diagonal and the time stepping scheme �59� reduces to the
well-known Crank-Nicolson scheme �4�.

The implicit scheme �59� with finite difference approxi-
mations of differential operators and variants of this method
�5,6,10� have been applied to the Schrödinger equation many
times with great success. Here we apply the scheme �59� to
the Dirac equation.

B. Numerical results

Spectrum-guided integration and integration in the center-
of-mass frame are designed to reduce a wave-function’s
time-spatial oscillations. From a numerical point of view,
propagating the transformed wave function ���x , t� has two
important advantages over propagating the original wave
function ��x , t�.

�i� If ��x , t� and ���x , t� are propagated on a grid with
the same time-spatial spacings 
t and 
x then the propaga-
tion of ���x , t� will be more accurate than the propagation of
the original wave function ��x , t�.

�ii� If a particular degree of accuracy is required then
���x , t� allows larger time-spatial spacings 
t and 
x than
the propagation of the original wave function ��x , t�. That
means the spectrum-guided integration reduces computa-
tional costs.

These two important facts shall be illustrated by some
examples.

1. Spectrum-guided integration

In our first example, we applied the spectrum-guided in-
tegration to the Schrödinger equation of the one-dimensional

harmonic oscillator. We calculated the evolution of a Gauss-
ian wave packet in a harmonic potential from t=0 to t=� �a
half period�. The simulation was performed in the standard
form �30� and in the form as obtained by spectrum-guided
integration in the energy domain �32�. The numerical results
�num�x , t� and �num� �x , t� were compared to the exact solu-
tions ��x , t� and ���x , t� to determine the global errors of
the modulus,


mod = max
x

����x,t�� − ��num�x,t��� , �60a�

as well as of the phase


phase = max
x

��x, t�·��x,t��0.01

�arg„��x,t�/�num�x,t�…� . �60b�

For vector-valued wave functions, we take the maximum
over all components and, for the calculation of the global
phase error, we did not take into account regions of very
small probability density, where phase errors can become
very large but are of minor importance. Errors 
mod� and

phase� of �num� �x , t� are defined analogously.

Figure 3 shows the effect of the spectrum-guided integra-
tion in the energy domain on the numerical errors �60a� and
�60b� for �num�x , t� and �num� �x , t� as a function of the tem-
poral step width 
t. The inset of Fig. 3 illustrates the shift of
the energy spectrum that is caused by this technique. Errors
for propagating a wave function over a finite time interval
scale proportionally to 
t2 because the Cayley form �58�
neglects terms proportional to 
t3. At fixed 
t, errors for
���x , t� are about two orders of magnitude smaller than for
��x , t� due to the reduction in temporal oscillations by the
spectrum-guided integration in the energy domain. Conse-
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FIG. 3. Numerical errors �60a� and �60b� as a function of the
temporal step width 
t for the motion of a Gaussian wave packet in
a harmonic potential. The figure shows the maximal deviation of the
modulus �circles� and the phase �squares� of the numerically calcu-
lated wave function at time t=� �half period of the harmonic oscil-
lator� from the exact solution. Open symbols correspond to ��x , t�;
full symbols correspond to ���x , t�. The wave function was initially
given by a Gaussian wave packet �29� of width 
=1 and initial
momentum p=8. The inset shows the discrete energy spectra of
��x , t� and ���x , t�; cn denotes the expansion coefficient related to
the nth eigenfunction.
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quently, if a fixed accuracy for propagating a wave function
over a given time interval is demanded then the gauge trans-
formed wave function requires a smaller number of time
steps than the original wave function.

The Shannon sampling theorem states that the higher the
energy of a system, the smaller the step size 
t that a nu-
merical algorithm requires. Spectrum-guided integration
translates a wave function into a system with zero mean en-
ergy. Therefore, the step size for the new wave function is
limited only by the width of the energy distribution. Figure 4
shows how numerical errors scale as a function of the mean
energy 
E� of ��x , t� if the width of the energy distribution is
fixed. Here, we have simulated a wave packet in a harmonic
potential �30� with the initial condition

��x,0� =
	6

3
��n−1�x�/2 + �n�x� + �n+1�x�/2� , �61�

where �n�x� denotes a normalized eigenfunction of the har-
monic oscillator with energy E=n+1 /2. Numerical errors
for simulating ��x , t� scale quadratically in 
E�=n+1 /2.
The quadratic scaling behavior is a result of neglecting
third-order terms in the Cayley form �58�. However, if the
spectrum-guided integration with the gauge function g�x , t�
= �n+1 /2�t is applied errors are independent of the energy

E�. Spectrum-guided integration in the energy domain is
particularly useful if the width of the energy distribution is
small compared to the mean energy.

This scenario arises frequently in relativistic wave equa-
tions, e.g., the Dirac equation �3�, due to the relativistic rest
mass energy. Figure 5 shows data analogous to Fig. 3 for the
simulation of a free one-dimensional Dirac wave packet with
initial momentum p=25 from t=0 to t=0.04 �in dimension-
less units�. The Shannon sampling theorem requires a tem-
poral step width 
t that is smaller than the inverse energy of
the system. This means an accurate numerical propagation of
��x , t� requires 
t�1 /	c4+ p2c2�5�10−5. Our numerical

results in Fig. 5 confirm this upper bound on 
t. However,
the spectrum-guided integration in the momentum domain
allows to increase the temporal step width by several orders
of magnitude. Here, spectrum-guided integration was real-
ized by a gauge function g�x , t�= t	c4+ p2c2.

Spectrum-guided integration in the momentum domain af-
fects numerical errors in a similar way as the spectrum-
guided integration in the energy domain does. However, it
allows for larger spatial step widths if a fixed degree of ac-
curacy is required. This is illustrated, once more, by the
simulation of a Gaussian wave packet in a harmonic poten-
tial by the implicit scheme �59� applying a second-order ac-
curate finite difference formula to approximate spatial de-

rivatives in D̂+. Therefore, global errors �60a� and �60b� scale
quadratically in 
x2. The gauge function of the spectrum-
guided integration in the momentum domain for this system
is given by Eqs. �38�. It reduces errors by about an order of
magnitude for the parameters as chosen here, see Fig. 6.

2. Accelerated frames of reference

The effect of a wave-function’s transformation into an
accelerated frame of reference on numerical algorithms is
exemplified by solving the Schrödinger equation �50� nu-
merically for a particle in a harmonically oscillating homo-
geneous electric field �35�. We propagated this system in
the laboratory frame, in the Kramers-Henneberger frame,
as well as in the center-of-mass frame applying a Crank-
Nicolson code with the same temporal and spatial step sizes

t=0.001 and 
x=0.01. For the parameter set and the initial
condition we have chosen here, we found that the propaga-
tion of the wave function is carried out most accurately in the
center-of-mass frame �Eqs. �54��. In fact, in the center-of-
mass frame, the numerical error is reduced by more than
three orders of magnitude compared to a calculation in the
laboratory frame or the Kramers-Henneberger frame �51�, as
shown in Fig. 7.

C. Computational performance

We demonstrated in the previous sections how canonical
transforms can be utilized to allow larger temporal and spa-
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tial step sizes in the numerical solution of quantum mechani-
cal wave equations. In Sec. III we motivated the desire for
large temporal and spatial steps by a possible reduction in the
overall computational cost. However, it is not self-evident
that an increase in temporal and spatial step sizes will actu-
ally reduce the overall computational cost. For example, on
one hand, spectrum-guided integration in the energy domain
allows to increase the temporal step size and reduces the
number temporal steps that is required to cover a given time
interval. On the other hand, spectrum-guided integration re-
quires a modification of the electromagnetic potentials and
changes thereby the Hamiltonian. This affects the condition

of the matrix D̂+ and the computational cost �number of it-
erations� of solving Eqs. �59� to a sufficient level of accuracy
by iterative methods.

In fact, we observe that for the same values of 
t and 
x
the iterative solution of the linear system �Eqs. �59�� �to the
same degree of precision� requires often more iterations for
the system obtained from a canonical transform than the
original system. Nevertheless, the overall computational cost
may be reduced considerably by canonical transforms, as
illustrated in Fig. 8. This figure shows the CPU time that is
required to simulate the motion of a free two-dimensional
Gaussian wave packet with a high initial momentum p0
=40 over a time interval of length 0.025. Different levels of
accuracy are obtained by varying the temporal step width. In
dimensionless units, the free motion is governed by the
Schrödinger equation

i
���x,t�

�t
= −

1

2

�2��x,t�
�x2 �62�

and if relativistic effects are taken into account by the Dirac
equation

i
���x,t�

�t
= c� · �− i�

���x,t�
�x

� + c2���x,t� . �63�

A gauge transform with the gauge function of the spectrum-
guided integration in the energy domain

g�x,t� = �tp0
2/2 for the Schrödinger equation

t	c4 + c2p0
2 for the Dirac equation

�
�64�

leads to wave equations for ���x , t� that are much better
suited for the numerical propagation than the original ones.
In the case of the Schrödinger equation, spectrum-guided
integration has reduced the computing time by about an or-
der of magnitude and for the Dirac equation by almost two
orders of magnitude as shown in Fig. 8.
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Further numerical experiments not shown here confirm
that both spectrum-guided integration in the momentum do-
main and transformations into accelerated frames of refer-
ence reduce the CPU time similarly to spectrum-guided in-
tegration in the energy domain. The precise amount of
computing time reduction depends on the kind of physical
problem under investigation and to some degree on imple-
mentation details of the implicit scheme �59�, e.g., how par-
tial differences are approximated and what kind of iterative
solver is applied. The simulation results in Fig. 8 have been
obtained by a two-dimensional pseudospectral code for the
Schrödinger equation and by a two-dimensional fourth-order
finite difference scheme in the case of the Dirac equation.

We also benchmarked our Dirac solver to another state-
of-the-art Dirac solver that is based on the split operator
method �47�. The split operator method has a computational
advantage over the implicit scheme �59� because, as an ex-
plicit method, it does not require the solution of a linear
system in each time step. However, it does not take advan-
tage of spectrum-guided integration in the energy domain
�see Sec. VII D�. Our simulation experiments yield that the
combination of spectrum-guided integration in the energy
domain and the implicit scheme �59� outperform the split
operator method by about an order of magnitude.

D. Algorithmic considerations

In Sec. V we introduced the spectrum-guided integration
as a technique that is able to boost the performance of nu-
merical integration methods for quantum mechanical wave
equations without taking into account any algorithmic spe-
cific considerations. For the implicit propagation scheme
�59�, we demonstrated in Secs. VII B and VII C the benefits
of spectrum-guided integration and we believe that the
spectrum-guided integration assists many other propagation
schemes in a similar way. However, propagation schemes
based on operator splitting techniques may not benefit from
spectrum-guided integration in the energy domain.

Splitting techniques, as, for example, alternating-
direction-implicit-like methods �5,48� and the split operator
method �9�, approximate the time evolution operator �15b�
by a product of n operators Ûi, such that the short-time evo-
lution is given by

��x,t + 
t� = ÛĤ��x,t� � Ûn ¯ Û2Û1��x,t� . �65�

The overall numerical error of the product operator

Ûn¯ Û2Û1 is the sum of the individual errors of the respec-

tive operators Ûi. The larger the phase change induced by the

application of Ûi, the larger the numerical error that is asso-
ciated with this operator.

Spectrum-guided integration in the energy domain is de-
signed to make the phase change between the wave functions
at times t and t+
t small. However, phase changes between

intermediate products, e.g., Û1��x , t� and Û2Û1��x , t�, may
be large even if the overall phase change generated by

Ûn¯ Û2Û1 is small. Consequently, the overall numerical er-

ror generated by the successive application of Ûi may be
large and, therefore, splitting techniques are not able to take
advantage of spectrum-guided integration in the energy do-

main if intermediate operators Ûi cause large phase shifts.
Note that spectrum-guided integration in the momentum do-
main does not suffer from these kinds of algorithm specific
limitations of splitting methods.

VIII. CONCLUSIONS

As a consequence of the Shannon sampling theorem, the
performance of algorithms for the numerical solution of
quantum mechanical wave equations is fundamentally lim-
ited by the wave-function’s energy spectrum as well as its
momentum spectrum. If the wave function is �approxi-
mately� band limited in the momentum domain to p̃ and

�approximately� band limited in the energy domain to Ẽ then
the distance between spatial grid points as well as the dis-
tance between temporal grid points are limited to 
x

��� / p̃ and 
t��� / Ẽ, respectively. However, the energy
and momentum spectra depend on the Hilbert-space repre-
sentation of the quantum mechanical system. Canonical
transforms provide transitions between different Hilbert
spaces. Therefore, finding a canonical transform that leads to
a representation where the wave function has a low energy
band limit and a low momentum band limit is the key to the
efficient numerical solution of quantum mechanical wave
equations.

In this contribution, we have proposed techniques to re-
duce a wave-function’s energy band limit and its momentum
band limit. We introduced spectrum-guided integration and
considered the transition into accelerated frames of refer-
ence. Spectrum-guided integration as well as the transition
into a system’s rest frame allow to expand the distance be-
tween time-spatial grid points and boost the performance of
algorithms for the numerical solution of wave equations by
up to several orders of magnitude. Both transformations are
very generic approaches and do not rely on special features
of a quantum mechanical system; these techniques may be
applied to any quantum wave equation in Schrödinger form.
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