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This work studies the damped double sine-Gordon equation driven by a biharmonic force, where a parameter
� controls the existence and the frequency of an internal mode. The role of internal oscillations of the kink
width in ratchet dynamics of kink is investigated within the framework of collective coordinate theories. It is
found that the ratchet velocity of the kink, when an internal mode appears in this system, decreases contrary to
what was expected. It is also shown that the kink exhibits a higher mobility in the double sine-Gordon without
internal mode, but with a quasilocalized first phonon mode.
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I. INTRODUCTION

The ratchet effect in point-particle systems is a well
known phenomenon �1� �see also �2–4��, in which a combi-
nation of periodic forces/noise and an asymmetric periodic
potential allows a particle �or a system of two particles with
internal degree of freedom �5�� to break some kind of sym-
metry so that a finite current may exist even when perturba-
tions acting on the system have zero average.

It is quite common in many phenomena such as scattering
and diffusion that solitons, nonlinear coherent excitations in
extended systems, also behave like particles. This fact makes
it possible to reduce the infinite number of degrees of free-
dom of extended systems to only one, i.e., the dynamics of
soliton may be described in terms of a so-called collective
coordinate �CC� �6�. The ratchet effect has been studied also
in extended systems, first in the overdamped and under-
damped asymmetric sine-Gordon �sG� equation �7,8� and
later on in the sG equation with localized and periodic inho-
mogeneities under the action of an ac force �9�. In all these
cases the point-particle description for the soliton captures
the ratchet phenomenology �at least qualitatively� by using
only one collective variable. The consideration of a soliton as
an extended object with a variable width, instead of a rigid
particle, is used to explain the ratchet mechanism and also to
improve analytical results �9,10�. However, to perform ex-
perimental realizations corresponding to such ratchet models
it is necessary to change the geometry of the Joshepson Junc-
tions �JJ�, first in order to induce spatial asymmetry and sec-
ond, in order to study the fluxon mobility as a function of
external parameters.

For this reason, a soliton ratchet has been proposed theo-
retically �11� and observed experimentally in JJ �12,13� �for
other experimental realizations of ratchets in JJ see �14��,
when, by using a biharmonic ac force, temporal symmetries
are broken instead of spatial ones. This system is modeled by

the damped and driven sG equation and has been extensively
analyzed in the framework of collective coordinate ap-
proaches �11,15,16�. Furthermore, the ratchet dynamics of a
kink in the damped and driven �4 equation was also inves-
tigated and compared with the sG case �16�. Both models
belong to the perturbed nonlinear Klein-Gordon systems;
however the �4 soliton has one internal mode �IM� related to
oscillations of the kink width; whereas in the sG soliton there
are none �17�, but a similar role can be played by certain
phonon modes �18�. In this regard, by using a collective
coordinate approach with two degrees of freedom, namely
the center of the soliton, X�t�, and its width, l�t�, it has been
shown that the deformations of the soliton play a crucial role
in the mechanism of this soliton ratchet �16� as well in the
sG as in the �4 model. Indeed, while the average of the
external ac force is always zero, a nonzero effective force,
modulated by the kink width, acts on the center of the kink
and a direct transport can be induced. The amplitude of this
effective force is also related with the topological charge and
the mass of the sG or �4 kinks, and so a �4 kink exhibits a
higher mobility. Therefore, it might be speculated that inter-
nal modes in extended systems supporting topological soli-
tons enhance the ratchet mobility of kinks. It is the purpose
of this work, however, to show that this is not the case.

In order to address this question we study the ratchet dy-
namic of a kink in the damped and driven double sine-
Gordon �dsG� equation

�tt − �xx = −
dU

d�
− ��t + f�t� ,

U��,�� = �1 − cos �� +
�

2
�1 − cos 2�� , �1�

with a T-periodic force given by

f�t� = �1 sin��t + �1� + �2 sin�2�t + �2� ,

where � is the damping coefficient, � is a parameter ����
�1 /2�; T=2� /�, and �1 and �2 and �1 and �2 represent the
amplitudes and the phases, respectively, of each harmonic. In
this model � controls the shape of the potential U�� ,��, the
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kink mass and the existence and frequency of an internal
mode, which appears only for positive values of �. We show
that a kink moves slower and slower when we increase �
from zero to 1/2. On the other hand, for ��0, i.e. in the case
of a nonintegrable model without IMs, the kink exhibits
higher mobility going from �=0 to −1 /2. Eq. �1� serves as a
model for low-dimensional magnetic systems �see �19� and
references therein�. It was also used to describe the defect
propagation in hydrogen-bonded molecular chains �20�.
Moreover, it is related to one-dimensional arrays of induc-
tively coupled superconducting quantum interference devices
�SQUIDs� �see �14�, where a single asymmetric element of
such an array was considered�. Apart from these specific ap-
plications, the study of the effects of internal modes is a very
important issue since these modes are quite common in non-
linear systems, either intrinsically or as a result of small per-
turbations �21�.

The rest of the paper is organized as follows. In Sec. II we
use two collective coordinate methods for finding the equa-
tions of motion fulfilled by collective variables and give an
approximate expression for the average ratchet velocity. In
the next section, by means of simulations we check the pre-
dictions of the CC approaches. In Sec. IV the main findings
of our work are briefly summarized and their implications for
other systems such as the Peyrard-Remoissenet �PR� poten-
tial �22� are also discussed. A numerical analysis of the spec-
trum of linear excitations around the static kink solution in
the dsG equation is provided in an Appendix.

II. COLLECTIVE COORDINATE APPROACHES

The aim of this section is to obtain an approximate ex-
pression for the average ratchet velocity of the kink center in
the dsG when ����1 /2. To this end, we use two different CC
approaches proposed in �23–26� �see �27� for a review�.

A. First ansatz: one collective coordinate.

It is well known that for ����1 /2 the kink solution of the
dsG equation is represented by

�1�x,t� = �− 2 arctan 	�x,t� , x − X�t� 
 0,

2� − 2 arctan 	�x,t� , x − X�t� � 0,
� �2�

where

	�x,t� ª �2� + 1�sinh� 2� + 1

1 − u2�t�
�x − X�t���−1

,

and X�t�=x0+ut, being u the constant velocity of the soliton.
Notice that for positive and negative values of � the potential
becomes broader and narrow, respectively �see Fig. 1�. As a
consequence, the width of the kink at rest changes depending
on the value of � �Fig. 2�. However, although the potential
can be deformed by changing �, no local extrema are found,
since ����1 /2.

We now assume that an approximate solution of Eq. �1� is
given by Eq. �2� where the center of the kink X�t� and its
velocity u�t� are unknown functions of time, related to each
other by the following expression

X�t� = x0 + 	
0

t

u���d� . �3�

Therefore, the ansatz Eq. �2� and �3� proposed in �24� takes
into account that small perturbations could affect the dynam-
ics of the kink center, such that its velocity is no longer
constant. Indeed, from Eqs. �1� and �2� by using the time
derivative of the momentum P�t�
−�−


+
dx�x�t, one obtains
the following evolution equations for the variables X�t� and
u�t�

du

dt
= −

q

M0���
f�t��1 − u2�3/2 − �u�1 − u2� ,

dX

dt
= u�t� , �4�

where q=2� represents the topological charge and
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FIG. 1. �Color online�. The potential U�� ,�� of the double sine-
Gordon Eq. �1� for three different values of �: �=0 �solid line�, �
=0.4 �dashed blue line�, and �=−0.4 �dot-dashed red line�.
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FIG. 2. l0 and M0 versus �.
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M0��� = 4��2� + 1 +
1

�2�
arctan h� 2�

2� + 1

 ,

is the mass of the kink at rest, which depends on �. Increas-
ing the value of � from −0.49 to 0.49, the mass of the kink is
increased. This means that in the point-particle representa-
tion the kink is lighter or heavier when � approaches −1 /2 or
1/2, respectively �see Fig. 2�. For �=0, M0=8 and then Eq.
�4� agrees with Eq. �3� of �28�, with the Eq. �11� of �11� and
with the Eqs. �4.8a� and �4.8b� of �23�, where the dynamics
of the damped sine-Gordon soliton under the action of an ac
force, a biharmonic force, and a constant force was studied,
respectively.

In order to solve Eq. �4�, notice that the introduction of
the variable

P�t� =
M0���u�t�
�1 − u2�t�

, �5�

transforms Eq. �4� into a linear equation for the momentum

dP

dt
= − �P − qf�t� , �6�

whose solution after t�1 /� is given by

P�t� = − ���a1 sin��t + �1 − �1� + a2 sin�2�t + �2 − �2�� ,

�7�

where we have introduced �
min��1 ,�2� as a rescaling pa-
rameter �15�, and

�1 = arctan��

�

, �2 = arctan�2�

�

 ,

a1 =
q

��2 + �2

�1

��
, and a2 =

q
��2 + 4�2

�2

��
.

From Eq. �5� one obtains

u�t� =
P�t�

M0����1 + P2/M0
2���

=
P�t�

M0���
−

P3�t�
2M0

3���
+

3

8

P5�t�
M0

5���

+ ¯ .

The leading term reads

�Ẋ�t�� = �u�t�� = −
1

2M0
3���

�P3�t�� ,

where the dot denotes the time derivative and hence,

�V� 
 �Ẋ�t�� =
3q3

8M0
3���

�1
2�2

��2 + �2���2 + 4�2

�sin�2�1 − �2 − 2�1 + �2� . �8�

For �=0 this equation agrees with the average ratchet veloc-
ity obtained in �11� for the damped and driven sine-Gordon
equation. From Eq. �8�, one can expect a sinusoidal behavior
in �=2�1−�2, a linear behavior in �2 and a quadratic depen-
dence on �1. These features can also be obtained by using
symmetry considerations and physical properties of the

ratchet effect induced by a biharmonic force �29�. Notice

that, since �Ẋ�t���1 /M0
3���, a decrease in the ratchet veloc-

ity is expected by changing � from −0.49 to 0.49, i.e. when
the internal mode appears for positive values of �, the kink
mobility is reduced due to the increase in the rest mass of the
dsG kink. However, similar to the sine-Gordon case, the ex-
pression �8� agrees only qualitatively with the direct numeri-
cal simulation of Eq. �1�.

B. Second ansatz: two collective coordinates

In our second approach we present two variables, namely
the center of the kink, X�t�, and its width, l�t�, through Rice’s
ansatz �26�, which amounts to specifying the kink solution as

�2�x,t� = �− 2 arctan ��x,t� , x − X�t� 
 0,

2� − 2 arctan ��x,t� , x − X�t� � 0.
� �9�

where

��x,t� = �2� + 1�sinh
x − X�t�

l�t�

−1

.

This ansatz is more general than the one assumed in the
previous subsection because l�t� is independent of X�t�. Us-
ing Eq. �9�, and the time variations in momentum and energy

H = 	
−


+
 ��t
2

2
+

�x
2

2
+ �1 − cos �� +

�

2
�1 − cos 2��
dx ,

it can be shown �in a similar fashion as in �16�� that the
momentum still satisfies Eq. �6� and the kink width fulfils the
following nonlinear ordinary differential equation

l̇2 − 2ll̈ − 2�ll̇ = �2l2�1 +
P2

M0
2���� −

1

����
, �10�

where

P�t� =
M0���l0���Ẋ

l�t�
, l0��� =

1
�2� + 1

,

���� =
1

�����l0���
, ���� =

I3

I1
,

being

I1 = 	
−


+
 cosh2 z

�2� + cosh2 z�2dz =
M0���

4�2� + 1�3/2 ,

I3 = 	
−


+
 z2 cosh2 z

�2� + cosh2 z�2dz .

From now on, the notation �=���� for the Rice fre-
quency, l0= l0��� and M0=M0��� for the width and the mass
of the kink at rest, respectively �see Fig. 2�, and �=���� is
used. We would like to remark that the frequency � of l�t�
for positive values of � practically coincides with the fre-
quency of the localized internal mode �see upper panel Fig.
3�, although for some positive values close to zero � pen-
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etrates in the phonon band. This behavior is even clearer for
negative values of �, where the Rice ansatz predicts an os-
cillations of the kink width with �, while from the linear
spectrum around a static kink it is known that the localized
IM, which appears for ��0, becomes a quasilocalized pho-
non mode when ��0 �see lower panel Fig. 3�, so � could be
interpreted as an effective frequency of the lower phonon
modes.

We now analyze Eq. �10� where the solution for P�t� is
represented by Eqs. �7� and �8�. Due to the term P2 on the
right-hand side of Eq. �10�, it is clear that l�t� is indirectly
driven by the harmonic forces with frequencies � and 2�. To
solve �approximately� this equation, we can expand l�t� in
powers of � around the unperturbed kink width l0

l�t� = l0 + �l1�t� + �2l2�t� + . . . . �11�

Substituting Eq. �11� into Eq. �10� we find a hierarchy of
equations for different orders of powers in �. The first one is
given by

l̈1�t� + �l̇1�t� + �2l1�t� = A1 + A2 cos�2�t + 2�1 − 2�1�

+ A3 cos�4�t + 2�2 − 2�2�

+ A4�cos��t + �2 − �1 − ��2 − �1��

− cos�3�t + �1 + �2 − ��2 + �1���
�12�

where

A1 = − A2 − A3, A2 =
�a1

2

4��M0
2

,

A3 =
�a2

2

4��M0
2
, A4 = −

�a1a2

2��M0
2

.

Notice on the right-hand side of Eq. �12� the presence of
harmonics with frequencies �, 2�, 3�, and 4�. Conse-
quently, all these frequencies appear in the expression for
l1�t� and they remain for t�1 /�, i.e., asymptotically we
have

l1�t� =
A1

�2 +
A2 sin�2�t + 2�1 − 2�1 + �̃2�

���2 − 4�2�2 + 4�2�2

+
A3 sin�4�t + 2�2 − 2�2 + �̃4�

���2 − 16�2�2 + 16�2�2

+
A4 sin��t + �2 − �1 − ��2 − �1� + �̃1�

���2 − �2�2 + �2�2

−
A4 sin�3�t + �1 + �2 − ��2 + �1� + �̃3�

���2 − 4�2�2 + �24�2
, �13�

where

�̃m = arctan��2 − m2�2

m��

 .

Similarly, one can find the harmonics corresponding to the
second and third-order corrections l2�t� and l3�t�. We can
now calculate the velocity averaged over one period T. To
this end, we use the previously defined expression for the

momentum, P�t�=M0l0Ẋ / l�t�. After transients have elapsed
and using Eq. �11� the average velocity of the kink can be
expressed in terms of the CC as

�Ẋ�t�� =
1

T
	

0

T P�t�l�t�
M0l0

dt

=
1

T
	

0

T P�t��l0 + �l1�t� + �2l2�t� + . . .�
M0l0

dt = �Ẋ0�t��

+ ��Ẋ1�t�� + �2�Ẋ2�t�� + . . . . �14�

Therefore, the average velocity can be analytically calcu-
lated taking into account the exact solution for the momen-
tum Eq. �6� and the first terms of the expansion for the kink

width. At order O��0�, �Ẋ0�t����P�t��=0 since the average
of the momentum is exactly zero as has been shown in �30�.
Accordingly, the net motion of the kink can only arise from
the contribution of higher order terms; hence, we proceed by
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FIG. 3. Upper panel: computed spectrum of the linearized dsG
equation versus �. �=0 is the Goldstone mode. Circles below the
dashed line, �ph=�2�+1, correspond to the internal mode. The
solid line is the curve ����. The other open circles represent the
lowest phonon modes. Lower panel: it is shown the second com-
puted eigenfunction related to the linear spectrum of the dsG equa-
tion. h2�x� �solid line� corresponds to the localized IM for �=0.05,
while �=0 �dotted line� and �=−0.05 �dashed line� are the first
quasilocalized phonon modes.
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computing the integral defining ��Ẋ1�t��. Inserting Eqs. �6� and �13� in Eq. �14�, straightforward calculations show that

�V� 
 ��Ẋ1� = − �1
2�2�1��,�,��sin��2 − 2�1 + �1��,�,��� , �15�

where �1 is the amplitude

�1��,�,�� =
q3�2

8M0
3��2 + �2���2 + 4�2

��4��2 − 4�2�2 + ��2 − �2�2 + 4��2 − �2���2 − 4�2� + 9�2�2

���2 − �2�2 + �2�2����2 − 4�2�2 + 4�2�2�
, �16�

and �1 is the phase

�1��,�,�� = 2�1 − �2 − arctan � ,

� =
2�����2 − 4�2�2 + 3�2�2 − ��2 − �2�2�

2��2 − �2����2 − 4�2�2 + 4�2�2� + ��2 − 4�2����2 − �2�2 + �2�2�
, �17�

which are functions not only of the dissipation coefficient
and the frequencies of the ac force, but also of � through �
�see the upper panel in Fig. 3 in which one observes that
���� undergoes a tiny change around one when � is
changed�. Notice also that for the first ansatz we obtained the
same expression �15� �see Eq. �8�� but seemingly with dif-
ferent amplitude and phase. Nevertheless, one can show that,
if ��� and ��1, then �1 and �1 tend to the amplitude and

the frequency, respectively, of �Ẋ�t�� given by Eq. �8�. It is
important to recall that for the CC approach to be valid, we
must require that the kink shape is not very much distorted,
and hence that �i�1 and ���ph, where �ph is the lower
phonon band edge which depends on � �upper panel in Fig.
3�.

From the above we realize that the approximate expres-
sion for the ratchet velocity is not improved by using the
Rice ansatz, compared to the ansatz with only one CC. How-
ever, the ratchet mechanism can be clarified. Indeed, by writ-
ing the equation that is now fullfiled by X�t�, in the form

Ẍ + �Ẋ −
Ẋl̇

l
= −

ql�t�
M0l0

f�t� ,

it is easy to see that the kink center is driven by an effective
force, which can not be zero on the average due to the oscil-
lations of l�t�. This expression has been obtained in �16�,
where the authors compared the mobility of sG and �4 kinks.
For sG q=2�, M0=8, and l0=1, and for �4 q=2, M0
=2�2 /3, and l0=�2. Since l�t� oscillates around l0, the am-
plitude of the effective force is modulated by q /M0, and
hence the �4 kink exhibits a higher ratchet velocity. How-
ever, in this case we cannot conclude anything about the role
of the internal mode for the ratchet mobility. In the dsG, for
positive values of � an internal mode appears, but while q
remains invariant M0 increases, and so the velocity decreases
instead of increasing. It is interesting to remark that by
changing � from 0 to −0.49, M0 decreases from 8 to 6.3 and
then a higher kink mobility is expected in spite of the non-
existence of an internal mode.

III. NUMERICAL SOLUTIONS OF THE CC EQUATIONS
AND SIMULATIONS OF THE PARTIAL

DIFFERENTIAL EQUATION

We compare the analytical results obtained in the previous
section with those of numerical simulations of Eq. �1� and
numerical solutions of Eq. �4�, obtained by using the 1-CC
theory, and Eqs. �6� and �10� obtained via the 2-CC ap-
proach. The numerical solutions and simulations were per-
formed by a fourth-order Runge-Kutta scheme with space
and time steps �x=0.1, �t=0.01, respectively, in the finite
length domain x� �−50,50� using as initial condition a static
dsG kink at x=0.

First, in Fig. 4 the sinusoidal dependence on the phase of
the second harmonic, predicted by both CC theories, is veri-
fied. Moreover, we observe that the maximum of the ratchet
velocity decreases when � goes from 0 to 0.49, while if �
approaches −1 /2 from 0, �V� is increased. From Eqs.
�15�–�17� it is expected that the zeros of �V� depend on �,
however this dependence is so weak that it is not visible on
the scale of Fig. 4, where for this set of parameters �1
�2�1−�2=0.88848.

In Fig. 5 we compare the simulations of the partial differ-
ential equation �PDE� with the numerical solutions of the CC
equations and with the formulas �8� and �15� predicted for
the ratchet velocity by using the 1-CC and 2-CC theories,
respectively. For the negative value �=−0.45 �see upper
panel� the numerical solutions of the 1-CC and 2-CC equa-
tions and the corresponding analytical results for the ratchet
velocity show only a qualitative agreement with the simula-
tion results. However, for the positive value �=0.45 �see
lower panel� one observes that the numerical solutions of the
CC equations and the simulation results are practically iden-
tical.

Another interesting feature from Fig. 5 is that the blue
circles agree with the dot-dashed ones, while the red squares
agree with the dashed ones. This means that the 2-CC theory
used in the previous section does not improve the results
obtained by the 1-CC theory, in contrast with other soliton
ratchets �9�. In this regard, it has recently been found for the
damped and driven sG equation with additive inhomogene-
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ities �31� that the ratchet velocity is only improved when the
oscillations of the background are taken into account.

Similar results are obtained for other values of �, i.e. for
fixed �� �−0.49;0.49� a sinusoidal dependence of �V� on �2
is found. Then, if we compute the maximum of this function,
and plot this value versus � �see Fig. 6�, we realize, first, that
the agreement between simulations and numerical solutions
of the CC equations is better for positive values of �; and,
second, that the ratchet mobility surprisingly does not in-
crease when the internal mode appears �i.e. when ��0�.
Moreover, the average velocity rises up to 1.76 times �the
prediction from the CC theories is 2� when � goes from 0 to
−0.49.

In order to improve our analytical results for negative �
we use a 3-CC theory developed in �31� for the perturbed sG
equation. So, first we assume that our ansatz is �3�x , t�
=�2�x , t�+��t�, where �2�x , t� is the Rice ansatz given by
Eq. �9� and ��t� represents the kink offset �up-and-down os-
cillations of the whole kink�. Second, we can apply the gen-
eralized traveling wave ansatz �GTWA� �see �31� for details�
and finally we obtain that X�t� and ��t� satisfy

Ẍ + �Ẋ −
Ẋl̇

l
= −

ql�t�
M0l0

sin��� ,

�̈ + ��̇ + sin��� = f�t� ,

where l�t� fulfills the Eq. �10�. The numerical solutions of the
3-CC equations yield a substantial improvement compared to

the 2-CC theory �Fig. 6�. However, when � approaches −1 /2
there is still a difference between simulations and numerical
solutions.

For positive � the rest width l0 is in the order of one and
depends only weakly on � �Fig. 2� and therefore the 2-CC
theory, which includes the width l�t� as a second collective
variable, works well here. However, for negative � and par-
ticularly for � approaching the value −0.5, the rest width
increases strongly with �. Here the kink really behaves like
an extended soft object and therefore the 2-CC theory agrees
only qualitatively with the simulations.
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FIG. 4. Simulations for Eq. �1�. Average velocity versus �2 for
different values of �. Upper panel: �=0 �solid line�, �=−0.2
�dashed line�, and �=−0.45 �dot-dashed line�. Lower panel: �=0
�solid line�, �=0.2 �dashed line�, and �=0.45 �dot-dashed line�.
Parameters of the simulations: �=0.05; �=0.1; �1=2 /30; �2

=1 /30; �1=0.
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FIG. 5. �Color online�. Average velocity versus �2. Simulations
of Eq. �1� �black solid lines�, numerical solutions of the 1-CC and
2-CC equations �blue circles and dot-dashed lines� and approximate
expressions �8� and �15� for �V� �red squares and dashed lines�.
Upper panel: �=−0.45. Lower panel: �=0.45. Other parameters as
in Fig. 4.
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Figs. 4 and 5.
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Moreover, for positive � the kink profile exhibits an up-
and-down oscillation of the whole kink while it is moving.
For this reason the inclusion in the third CC, which repre-
sents the kink offset, improves the results obtained from the
2-CC theory. However, for negative values of � the offset
does not only depend on time, but also on space. This means
that the phonons, which are not taken into account by our 2-
and 3-CC theories, are excited by the biharmonic force. In-
deed, notice that although f�t� oscillates with �=0.1 and
2�=0.2, in the spectrum of the first-order correction of the
kink width �Eq. �13�� appear not only these two frequencies
but also the frequencies 3�=0.3 and 4�=0.4, which are ei-
ther very close to the lower phonon band edge or even pen-
etrate into the phonon band when � approaches −0.5 �see
Fig. 3�.

IV. CONCLUSIONS

In this work we have studied the influence of the internal
mode �IM� on the kink ratchet mobility in the damped
double sine-Gordon �dsG� equation driven by a biharmonic
force. In this system a parameter � �����1 /2� controls the
existence and the frequency of the IM, which appears only
for ��0. It turns out that by using a 1-CC theory with the
kink center X�t� as a collective coordinate, the ratchet veloc-
ity �V��1 /M0

3��� �see Eq. �8��, where M0��� is the rest mass
of the kink, which grows from 6.3 to 9.2 when � changes
from −0.49 to +0.49, i.e., when the IM appears for positive
values of �, the kink mobility is reduced due to the inertial
effect on the dsG kink. In order to investigate the influence
of the IM on the ratchet velocity we have used the Rice
ansatz, which takes into account the kink width l�t� as an
additional CC, independent of X�t�. Within this approach we
have obtained an approximate expression for �V� �see Eq.
�15��, which shows the influence of the IM through ���� �the
Rice frequency in the dsG�. However, for ���ph and �
�1 this effect is practically negligible because of the tiny
change of � when � changes �see Fig. 3�. For the set of
parameters considered in Fig. 4, the relative change in the
amplitude �1 in Eq. �15� is �1�0.05,0.1,
−0.49� /�1�0.05,0.1,+0.49�=1.0066.

A direct comparison between the simulations of the PDE
and numerical solutions of the 1-CC Eq. �4� and the 2-CC
Eqs. �6� and �10� shows that the generic features of the soli-
ton ratchets observed and studied in other nonlinear driven
Klein-Gordon equations driven by the same biharmonic
force f�t� �16� also appear in the dsG. Indeed, the sinusoidal
dependence of the average velocity on the phase of the sec-
ond harmonic is verified, and a complex behavior of �V�
versus the damping coefficient has been found. It has been
obtained a better agreement between the simulations and nu-
merical solutions when the IM appears for positive values of
�, even using only 1-CC theory. In addition, it is found that
in contrast with other soliton ratchets �9� the 2-CC ansatz
does not improve the ratchet velocity. On the other hand, for
negative values of � we can improve the CC results by in-
cluding one more collective coordinate, the kink offset ��t�.
Nevertheless, when � approaches −1 /2 a difference of 14%
in the maximum of the average velocity obtained by means

of the simulations of Eq. �1� and numerical solutions of
3-CCs equations is observed.

In summary, although in the dsG the IM appears for posi-
tive � allowing the kink width to oscillate with the IM fre-
quency, simultaneously the kink becomes heavier, and so this
strong inertial effect reduces the ratchet velocity. When the
IM disappears and becomes a quasilocalized phonon mode
for negative �, the kink mobility is enhanced because the
kink is lighter but more distorted. Our study, which includes
positive and negative values of �, will be important in the
context of magnetic systems, where, depending on the values
of anisotropies and applied fields, all values of � are possible
�19�. We expect that the ratchet mobility of the dsG model
studied here has implications on the conductivity properties
of driven nonlinear chains modeled not only by the dsG, but
also by other nonlinear Klein-Gordon potentials such as for
instance the Peyrard-Remoissenet potential �22�, where there
is also a parameter that controls the existence of the IM and
the kink mass in the same way. Furthermore, a similar influ-
ence of internal mode on the gating ratchet mobility is ex-
pected when an additive and a parametric driving are used
instead of a biharmonic one in order to induce a ratchet ef-
fect �32�.
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V. APPENDIX: LINEAR SPECTRUM AROUND THE
STATIC KINK SOLUTION IN THE DSG

The stability of the kink solution in the dsG equation was
numerically studied in �19� and commented in �33� �see also
the references therein�. Notice, however that the factors in
the potential that was used in these references differ from
ours. These factors can be changed by scaling the time and
space variables, but in any case it is too difficult to compare
the Rice frequency obtained by the CC approach developed
in the previous section with the numerical results in �19� for
the internal mode of the dsG equation. For this reason we
perform here the linear stability analysis for the pure dsG
equation. We follow a standard procedure developed in �34�
for the sG equation. First one takes in Eq. �1� �=0 and
f�t�=0 in order to obtain the unperturbed dsG equation,
which is Lorentz invariant. Then, without loss of generality,
this equation is linearized around its exact static kink solu-
tion, �1�x� �take in Eq. �2� u=0 and X�t�=0�, i.e., it is as-
sumed that the solution of the unperturbed dsG is �1�x�
+��x , t�, where ���x , t���1 �34�. This leads us to the follow-
ing linear problem for ��x , t�

�tt − �xx + �cos��1� + 2� cos�2�1��� = 0,
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− 
 � x � + 
, �x��
� = 0, �18�

whose solution can be expressed as

��x,t� = exp�i�t�h�x�, hx��
� = 0. �19�

Second, by substituting Eq. �19� into Eq. �18� we finally
obtain that h�x� satisfies

hxx + ��2 − cos��1� − 2� cos�2�1��h = 0,

− 
 � x � + 
, hx��
� = 0. �20�

For the sG equation, i.e when �=0, this eigenvalue problem
can be exactly solved �34�. When ��0, this equation can be

numerically solved for any finite length of the system.
By using the QR algorithm we have solved numerically

Eq. �20�, fixing L=100, �x=0.1, and taking different values
of � between −0.5 and 0.5. We have obtained that for 0
��
0.49, the Eq. �20� has an internal mode with a fre-
quency �i below the spectrum of the phonon band �Fig. 3�.
For �=0 we have not found any internal mode as is expected
for integrable systems �35�, however for negative values of �
�−0.49
��0�, we have not found any internal mode, al-
though the system is not integrable �see Fig. 3�. This feature
of the linear spectrum around a kink solution is also ob-
served in other nonintegrable Klein-Gordon systems, as for
instance the PR model �22�.
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