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Dynamical origins for non-Gaussian vorticity distributions in turbulent flows
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We present results on the connection between the vorticity equation and the shape and evolution of the
single-point vorticity probability density function. The statistical framework for these observations is based on
the classical hierarchy of evolution equations for the probability density functions by Lundgren, Novikov, and
Monin combined with conditional averaging of the unclosed terms. The numerical evaluation of these condi-
tional averages provides insights into the intimate relation of dynamical effects such as vortex stretching and

vorticity diffusion and non-Gaussian vorticity statistics.

DOI: 10.1103/PhysRevE.80.016316

I. INTRODUCTION

One of the main goals of theoretical turbulence research
is to develop a statistical nonequilibrium theory of turbu-
lence from first principles. While this goal has not been
achieved so far, many phenomenological theories exist, ex-
plaining a variety of phenomena of turbulent flows. For ex-
ample, the classical K41 [1] theory manages to predict the
observed energy spectrum, fails however to correctly predict
more sophisticated statistical quantities. When striving for a
statistical description of turbulence one is confronted with
the fact that many turbulent observables display non-
Gaussian statistics. For example, the probability density
functions (PDFs) of the vorticity, the velocity gradient tensor
or the Lagrangian acceleration exhibit heavy tails compared
to a Gaussian PDF, showing that extreme events are orders
of magnitudes more probable than in a Gaussian random
field. In case of the vorticity this has been emphasized by
Novikov more than four decades ago [2], demonstrating that
the investigation of probability density functions is of par-
ticular use to characterize the statistics of turbulent flows
[2-4]. Considering more than one spatial or temporal point
as in case of Lagrangian or Eulerian velocity increments, the
situation gets even more complicated. The PDFs then do not
evolve self-similar in scale, but exhibit a scale-dependent
shape. This fact, which is often referred to as intermittency,
is accounted for in various phenomenological theories such
as for example K62, the multifractal model [5], and a more
recent approach focusing on Markovian properties of the ve-
locity increment statistics [6]. Recently, there has been much
effort in explaining possible mechanisms that lead to these
non-Gaussian statistics. Based on works by Cantwell [7],
Chevillard and Meneveau proposed a model for the stochas-
tic evolution of the velocity gradient tensor, which compares
well to numerical results [8]. Furthermore, Li and Meneveau
suggested a simple dynamical model inspired by the Navier-
Stokes equation, which shows remarkable similarities to sta-
tistics from real turbulence data [9,10]. While these phenom-
enological approaches give valuable insights and a rich
characterization of the statistical properties of turbulence,
they are not directly derived from the equation of motion of
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a fluid, i.e., the Navier-Stokes (or equivalently the vorticity)
equation.

The above-mentioned classical works, however, make ef-
forts to derive a statistical theory of turbulence from first
principles. For example, Lundgren [3] and Monin [4] inde-
pendently derived an evolution equation for the turbulent
velocity with the help of PDF methods. Focusing on the
vorticity, similar results were obtained by Novikov [2,11],
almost at the same time. Extensions to turbulent combustion
and many other applications were proposed by Pope [12].
Mathematically all these approaches have to face the famous
closure problem of turbulence, which is inherent to the
highly nonlinear and nonlocal character of the equations of
motion. In Lundgren’s work this problem results in an infi-
nite hierarchy of evolution equations, involving an ever in-
creasing number of velocities at different spatial points. In
some of the works by Novikov a formal closure is achieved
by introducing conditional averages, which enter the statisti-
cal equations as unknown functions.

It is mainly due to experimental efforts and direct nume-
rical simulations of turbulence that today we know that tur-
bulent flows are governed by coherent structures. In fully
developed homogeneous isotropic three-dimensional turbu-
lence, these structures appear as filamentary vortex tubes.
Each of these tubes generates a swirling velocity field. The
ensemble of vortices present in a turbulent fluid then inter-
acts in a nonlinear manner, leading to the complex spa-
tiotemporal structure of turbulent flows. In the interaction of
these structures, some basic dynamical mechanisms can be
identified: advection, vortex stretching, and viscous diffusion
of vorticity.

It is a scope of the present work to establish a link be-
tween these dynamical aspects of turbulence and the non-
Gaussian vorticity probability density functions. While the
non-Gaussianity of the vorticity PDF is an established fact
for a long time, we here put emphasis on revealing the quan-
tities which determine the shape and evolution of the PDF.
To this end, we present an evolution equation for the turbu-
lent vorticity PDF in the spirit of Lundgren, Monin, and
Novikov. The appearing conditional averages are evaluated
with the help of highly resolved direct numerical simulations
of the vorticity equation. The results help to highlight the
connections between turbulent dynamics, coherent struc-
tures, and non-Gaussian statistics.
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II. KINETIC THEORY FOR THE TURBULENT
VORTICITY

The temporal evolution of the vorticity w(x,7) is gov-
erned by the vorticity equation,

Jw
E+u-Vw=S-w+VAw+F, (1)

where u(x,t) denotes the velocity field and Siizé[%(x,t)
+%(x,t)] denotes the rate-of-strain tensor. As we want to
focus on incompressible fluids, the velocity field can be ob-
tained from the vorticity field via Biot-Savart’s law. v de-
notes the kinematic viscosity and F(x,7) is an external forc-
ing necessary to achieve a statistically stationary state.
Starting from the fine-grained PDF f(ﬂ;x,t):é[m(x,t)
—Q] [w(x,) represents a realization of the vorticity field,
whereas ) denotes the sample-space variable] standard PDF
methods yield a kinetic equation for the turbulent vorticity
PDF f(Q;x,t):(f(Q;x,t)) [2-4,11,12], which we will elu-
cidate in the following. Similar derivations can be found in
the literature [2-4]; it is however worthwhile following the
basic steps in detail. Taking the temporal derivative of the
fine-grained PDF one obtains

%5(w(x,t) -0)=-Vg- {(Z—‘;é(w(x,t) - Q)}. (2)

The advective term may be treated similarly, and hence we
have

%f+V~{uf}=—VQ~{<aa—(:)+u~Vw>f}, (3)

=—Vo {5 o+ vAw+F)f}. (4)

Here, incompressibility and Eq. (1) have been used. One
now has the option to express the unclosed terms of this
equation in terms of a coupling to the two-point PDF, as
demonstrated in [2,3]. Determining an evolution equation for
the two-point PDF then results in a coupling to the three-
point PDF and so on. A second possibility is to express the
unclosed terms in Eq. (3) in terms of conditional averages.

Averaging Eq. (3) and using, e.g., (uf)=(u|Q)f yields
(%f+V~{(u|Q)f}=—VQ-{<S o+ vAw+ F|Q)f}.

(5)

The right-hand side of this kinetic equation for the vorticity
PDF reveals the different dynamical influences: the average
vortex stretching term, vorticity diffusion, and the forcing
conditioned on the sample-space vorticity. Taking into ac-
count homogeneity, the advective term vanishes, as both the
conditional average as well as the PDF do not depend on the
spatial coordinate. It is argued in [11] that the conditional
average of the forcing times the vorticity decays rapidly with
increasing Reynolds number. Given a sufficiently high Rey-
nolds number, the large-scale forcing should not affect the
smallest scales of the flow. As the coherent structures live on
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these scales, a negligible influence of the forcing is physi-
cally sound; numerical support for this approximation has
also been given in [13]. Hence we will neglect the influence
of the forcing in our following considerations. With these
simplifications the kinetic equation reads

aitf?vﬂ.{(s.mmwm)f}. ()

In order to achieve a statistically stationary state, the
right-hand side of this equation has to vanish. This is only
possible by a statistical cancellation of the appearing terms.
In the following we will, in addition to homogeneity, con-
sider isotropic turbulence. This imposes further constraints
on the statistical quantities. It follows that (vAw|Q)~ Q.
With (S-w|Q)=(S|Q)-Q, the conditioned rate-of-strain
tensor can accordingly be written down as

0,Q;

(S;j|€2) = g(Q) ;- 3h(ﬂ)#, (7)
with two scalar functions 4 and g only depending on the
absolute value of the sample-space vorticity. The trace of this
conditionally averaged tensor has to vanish, which yields g
=h. It is easy to show that € is an eigenvector of (S;;|€2),
(8,1 2)Q,;=-2¢(0)Q); with the eigenvalue \;=-2¢(Q). The
remaining eigenvalues can directly be determined due to the
trace condition and isotropy, N, 3=g(€2). It can be shown in a
straightforward calculation that g({}) is related to the (nor-
malized) rate of enstrophy production,

¢ =- %< S n>. ®)

Now as (S| Q)-Q and (vAw|Q) both point into  direction,
a cancellation of the two terms on the right-hand side of Eq.
(6) is possible in a statistical sense. While these observations
show which dynamical effects statistically have to cancel,
these equations do not suffice to directly calculate the vortic-
ity PDF. This can be achieved by taking into account homo-
geneity of the flow. Calculating the Laplacian of the vorticity

PDF yields

& J | Fo; &+ dw; 9

LA SN (/] P VI LA P
ﬁxi &Qj 0”xi ﬁQJO"Qk &xi é’x[

)

An appealing equation arises, when combining the Kinetic
Eq. (6) with homogeneity relation (9). For homogeneous tur-
bulent flows, the temporal evolution of the vorticity PDF can
then be described by

d d & dw; Jw;

—f=e —(S: 0| OV = —— —’—l) Q)7

arf aQ,-< i)l aﬂiaﬂj< V(axkaxk ‘ >f
(10)

where the terms on the right-hand side are related to the
production and dissipation of vorticity (or enstrophy). Fur-
ther information on the PDF is obtained by studying the
nonstationary case of Eq. (6) with the method of character-
istics. The ordinary differential equation for the characteris-
tics reads
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TABLE I. Major simulation parameters. Number of collocation points N, Reynolds number based on the
Taylor microscale R\, root-mean-square velocity u,,. Kinematic viscosity v, integral length scale L, large-
eddy turnover time 7, Kolmogorov length scale 7, and Kolmogorov time scale 7,,. ky,7 characterizes the

spatial resolution of the smallest scales.

N R}\ Urms v T 7 7-7] kmaxn
512 164 0.082 0.0001 2.19 26.7 0.0079 0.63 1.6
Q=(S-w+vA w|Q), (11) forcing. The time-stepping scheme is a third-order Runge-

with the solution describing the temporal evolution of the
sample-space vorticity.

For the comparison with our numerical simulation we
consider the theory for the PDF of a single component of the
vorticity, say, f({),;7). Equation (6) then reduces to

d d
Ef= - (9_QX{<(S ‘o + vAw) | Q) S} (12)

The statistical evolution of the sample-space vorticity (), is
accordingly given by

Qx = <(S : w)x + Vwa|Qx>’ (13)

i.e., by the sum of the conditionally averaged vortex stretch-
ing term and the conditionally averaged vorticity diffusion.
In case of a single component, homogeneity implies

d &
0=- E<wa|ﬂx>f+ E((wa)zmxﬁ, (14)
which suffices to determine the functional form of the vor-
ticity PDF for homogeneous (and not necessarily stationary)
flows [14]. Inserting this into Eq. (12) gives

J J & s
Ef: - &_S—Lc((s : w)x|Qx>f_ (9_(1)26<V(wa) |Qx>f’ (]5)

which yields the stationary solution

N O ,M>
f(Qx) = <V(wa)2|QX>CXp<_ f_oo de<V(wa)2|Q;> s

(16)

with a normalization constant A. This shows that in a sta-
tionary homogeneous flow the vorticity PDF is determined
by the dynamical effect of vortex stretching and the vorticity
gradient (which is related to the dissipation of vorticity). In
the following, we numerically evaluate the conditionally av-
eraged vortex stretching term ((S-w),|(,), vorticity diffu-
sion (vAw,|Q,), and squared vorticity gradient
(v(Vw,)?| Q).

III. NUMERICAL EVALUATION

The turbulent fields under consideration in the present
work are generated by a standard dealiased Fourier-pseudo-
spectral code [15,16] for the vorticity equation. The integra-
tion domain is a triply periodic box of box length 2. To
obtain a statistically stationary flow we apply a large-scale

Kutta scheme [17].

For the present work, we conduct two different types of
simulations. For an estimation of the conditional averages
determining the stationary PDF a run in the statistically sta-
tionary regime is performed; Table I sums up the major
simulation parameters. In order to gain deeper insights into
the formation of the PDF a second nonstationary run with
comparable simulation parameters is performed. The initial
condition of this run exhibits a Gaussian vorticity distribu-
tion and the same energy spectrum as the statistically station-
ary simulation. The field evolves under the dynamics of the
vorticity equation and during the relaxation to the statisti-
cally stationary state the non-Gaussian vorticity PDF
emerges.

Regarding the stationary situation, Fig. 1 shows the nu-
merically evaluated conditional averages of Egs. (15) and
(12). The conditionally averaged vortex stretching term is
positively correlated with the vorticity component, while the
conditionally averaged vorticity diffusion shows strong anti-
correlations. These tendencies can be physically understood;
in presence of strong vorticity the vortex stretching term
causes a (self-)amplification of vorticity, the diffusive term
then tends to deplete this vorticity.

Checking the validity of Eq. (16) with our numerical data,
the comparison of the directly estimated and reconstructed
vorticity PDF is depicted in Fig. 2. A good agreement over
seven orders of magnitude is given. As Eq. (15) yields a
Gaussian in case of ((S-w),|Q)~Q, and (M(Vw,)?|Q,)

conditional average

FIG. 1. (Color online) (a) Conditional averages of the vortex
stretching term {(S- w),|(,), (b) the vorticity diffusion (vAw,|Q,),
and the sum of both terms. The sum (approximately) vanishes, as
required for statistical stationarity. The squared vorticity gradient
(c) (W(Vw,)?|€,) exhibits a strong dependence on ().
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FIG. 2. (Color online) Logarithmic plot of the vorticity PDF
estimated directly from our data and the reconstructed PDF accord-
ing to Eq. (15). The agreement over several orders of magnitude is
excellent; slight deviations are visible in the far tails of the PDF.

~ const., the highly non-Gaussian shape of the vorticity PDF
can be tracked down to the strong (). dependence of
((vV w,)?|Q,). Further motivation for the functional form of
the conditional averages can be given when examining the
basic structures present in the flow. As the visualizations in
Fig. 3 suggest, the flow consists of elongated vortex tubes,
which can be modeled with Burgers vortices [18]. A Burgers
vortex exhibits a vorticity field according to

FIG. 3. (Color online) Volume rendering of the absolute value of
vorticity above a fixed threshold for different stages of the nonsta-
tionary simulation (from top left to bottom right: initial condition,
0.117 (200 time steps), 0.387 (600 time steps), and 3.537 (6000

time steps). Volume
www.vapor.ucar.edu.

rendering produced with VAPOR,
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FIG. 4. (Color online) Temporal evolution of the vorticity PDFs
from a Gaussian initial condition. Pronounced tails emerge during
the course of the simulation.

Ta 2

w=o0(re,=—e " Ve, (17)
41y

characterized by the strain parameter a and circulation I". For

this structure the vortex stretching term and the squared vor-

ticity gradient are readily calculated to

S - w=aw (18)
and
g \2 242
(sz)z = (;w) = mwz. (19)

That means, for fixed a, I', and v, the vortex stretching term
is a linear function of the vorticity, whereas the squared vor-
ticity gradient turns out to be a quadratic function of the
vorticity. Thinking of turbulence as an ensemble of Burgers-
like vortices, this picture already captures the main features
of the conditional averages shown in Fig. 1. Deviations from
this simple argument are possible due to the fact that the
circulation of a vortex tube in a turbulent flow is not inde-
pendent of the surrounding strain field and that straight vor-
tex tubes are not the only structures present.

While helping to explain the non-Gaussian nature of the
turbulent vorticity, the above considerations give no direct
information on how the dynamical processes of vortex
stretching and vorticity diffusion go along with the formation
of the characteristic shape of the PDF. To elucidate this issue,
we turn to the nonstationary simulation starting with a vor-
ticity field exhibiting a Gaussian distribution. Under the tem-
poral evolution of the vorticity Eq. (1) strong spatiotemporal
correlations in form of, e.g., vortex tubes are generated and
the initial Gaussian distribution relaxes to the non-Gaussian
PDF observed for the statistically stationary regime, as illus-
trated in Fig. 4. The temporal evolution of the vorticity field
is visualized in Fig. 3. The initial condition with the Gauss-
ian PDF appears unstructured, but already at 0.117 the emer-
gence of small vorticity worms can be observed. In the
course of the simulation these structures grow stronger, after
0.387 thin vortex tubes can be observed. Interestingly these
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FIG. 5. (Color online) Illustration of the deformation of the PDF
for the nonstationary simulation. Upper figure: The vorticity PDF
for 0.117 is already non-Gaussian, yet has not developed strong
tails. Lower figures: conditional sum {(S - )+ vAw,|Q,) shown for
two different y ranges. The inner region of the vorticity PDF is
quenched together due to dominant vorticity diffusion while the
outer regions are stretched toward higher vorticity values due to
dominant vortex stretching.

tubes tend to cluster, as can be seen in the snapshot taken at
3.53T.

The temporal evolution of the sum of the conditional av-
erages of Eq. (12) is evaluated for the nonstationary situa-
tion. An example for 0.117 is depicted in the lower part of
Fig. 5. As expected, the sum of both averages does not can-
cel like in the statistically stationary run. While the initial
condition is diffusion dominated as the vortex stretching has
not started generating structures, the formation of two dis-
tinct regions (separated by the zero crossings of the condi-
tional sum) may be observed in the course of the simulation.
Low absolute values of the vorticity are dominated by the
conditional vorticity diffusion while larger absolute values
are amplified due to a dominant vortex stretching. This subtle
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detail remains as the PDF is approaching stationarity; how-
ever the two terms tend to cancel more and more. After
reaching the statistically stationary state the statistical bal-
ance of the conditional averages is recovered. How the un-
balanced conditional sum affects the formation of the PDF
may be interpreted with the method of characteristics from
Fig. 5. The inner diffusively dominated region is quenched
toward zero vorticity, while the outer vortex stretching domi-
nated regions are stretched toward larger absolute values of
vorticity. The emerging physical picture fits well to the com-
mon understanding of turbulent flows. The stretching of the
PDF toward larger absolute values of vorticity corresponds
to the amplification of vortex filaments due to vortex stretch-
ing. The lower-valued vorticity, which corresponds to more
unstructured regions of the flow, is depleted by the diffusive
term. Hence the formation of the non-Gaussian vorticity PDF
hereby is related to the interplay of the two physical mecha-
nisms of vortex stretching and vorticity diffusion.

IV. SUMMARY

To summarize, we reported on theoretical and numerical
results on the link between the vorticity equation, coherent
structures, and the non-Gaussian distribution of vorticity.
Based on classical works by Lundgren, Novikov, and Monin
an investigation of the kinetic equation of the one-point vor-
ticity PDF reveals that the conditional averages of vortex
stretching and vorticity diffusion determine the temporal
evolution and shape of the vorticity PDF. A closed expres-
sion for the stationary vorticity PDF was found in terms of
the conditional averages of vortex stretching and the squared
vorticity gradient. Numerical simulations confirm this rela-
tion with a high degree of precision. Further investigations of
a nonstationary flow reveal that during the transition to the
stationary state, two distinct regions of the vorticity PDF can
be found: the inner region of this PDF is quenched due to
dominant vorticity diffusion while the development of the fat
tails can be associated with the stretching of strong vortices.

Hence this work highlights a direct connection between
basic dynamical features of turbulence and their statistical
consequences. These results encourage studying turbulent
flows in terms of coherent structures as a main source for
non-Gaussian statistics.
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