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Microcolumn formation between electrodes in a narrow channel from metallic colloidal
suspension through induced-charge electrophoresis
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It is desirable to achieve the self-organization of a microcolumn between electrodes in a flow channel
because the microcolumn can be used as a biosensor with high sensitivity. A direct simulation of a dispersed
system of metallic particles in water is performed to show that a microcolumn between electrodes is formed by
the application of an ac electric field. By the multiphysics coupled simulation technique between fluidics and
electrostatics based on the boundary element method along with the double layer approximation, we find that
microcolumns are formed by the growth of clusters perpendicular to the electrodes under the condition that the
number density of particles is larger than the percolation threshold. Further, we propose a simple model that
efficiently explains the time dependence of the probability of the formation of a microcolumn by considering
standard collision theory and percolation theory. By this analysis, we can greatly contribute to developments in
studies on the self-organization of microcolumns and biosensors.
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I. INTRODUCTION

Patterned colloidal structures formed from dispersions of
particles have many potential applications [1], thus, they
have been researched extensively [2-5]. In particular, be-
cause of its high aspect ratio, micro- or nanocolumn or wire
between electrodes in a flow channel can be used as a bio-
sensor with high sensitivity. Trau et al. [2] reported the for-
mation of multicolloidal columns by generating electrohy-
drodynamic flow in a suspension of spherical BaTiO; by the
application of a dc electric field E;=50-200 kV/m. Further,
Hermanson et al. [3] reported the formation of microwires
from gold nanoparticle suspensions between gold electrodes
through dielectrophoresis by the application of an ac electric
field Ey=25 kV/m. Their methods are similar in the sense
that they formed microstructures between electrodes from
colloidal particle suspensions by the application of ac or dc
electric fields. In both these studies, it is pointed out that the
electro-osmotic flow plays a major role in the assembly pro-
cess; however, their findings are not directly predicted by
theory and to the best of our knowledge, a direct simulation
of a colloidal multiparticle system has not been performed.
Electrophoretic deposition, which can be used to form films
on an electrode from colloidal suspensions by the application
of dc electric fields, is known to be a related phenomenon
and has been studied extensively [4—6].

Recently, Bazant and Squires [7-9] showed that an
induced-charge electrokinetic phenomenon (ICEP), which
includes induced-charge electro-osmosis and electrophoresis,
is a key concept for understanding behaviors of metallic col-
loidal suspensions and flows around a metal post; e.g., it has
been found that conductors in an ionic solution with a broken
symmetry generate a large net flow velocity (of the order of
a few millimeters per second in an electric field of approxi-
mately 10* V/m) due to an ICEP [7-15]. An ICEP is differ-
ent from classical electro-osmosis and electrophoresis be-
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cause it is caused by the interaction between an electric field
and ions in an electric double layer formed by the polarizing
effect of the electric field. Moreover, it can be driven by ac
electric fields; therefore, problems due to a dc electric field
can be avoided. In this study, from this unified viewpoint,
i.e., ICEP, we focus on the self-assembly process of a micro-
column in a narrow channel from metallic colloidal suspen-
sions and elucidate the effect of application of an electric
field to a metallic dispersion system in water in a microflu-
idic channel.

II. THEORY

Figure 1 shows the schematic view of our simulation of
the self-assembly process of a microcolumn. As shown in
Fig. 1, we consider a dispersion system of circular metallic
particles of radius ¢ (=0.08w), with N (=18) number of par-
ticles between electrodes in a rectangular channel of length L
(=2.25w) and width w (=100 wm). To evaluate the probabil-
ity of the formation of a microcolumn, we generate random
positions at =0 ms by considering random number for
metal particles; i.e., we define regular lattice positions
(X;,Y;) and then consider irregular lattice positions (X;

>,
>

FIG. 1. Schematic view of metallic particle dispersion system
(in water) used for the simulation of microcolumns. 1: pair of elec-
trodes. Here, length L=2.25w and width w=100 wum.
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+0x;;,Y;+dy;;), where dx; and &y;; are uniform random
numbers in the ranges |&x;| <w/8-c and |dy;|<Ly/10-c,
respectively. Here, X;=(i+1/2)w/4 for i=0,1,2,3 if j
=0,2,4, X;=(i+1)w/4 for i=0,1,2 if j=1,3, and Y;=(j
+1/2)Ly/5+(L-Lgy)/2 for j=0,1,2,3,4. It should be noted
that we introduce a limitation length L, to obtain samples
that differ in number density under the same particle number
N since number density is defined as N/Lgw. Further, we
assume that particles aggregate in the direction of x if 7y
<2c+d, and |x;, | < (2c+d,)/2, where ry, is the distance be-
tween particles, dy=0.02w, and |xy,| is a distance in the x
direction. By considering this connection in the x direction,
we define an average cluster size of each sample arrange-
ment A as S, \=2_]sP,, where s is the cluster size, P,
=sn,/N is the probability that one particle belongs to the
cluster whose size is s, ng is the number of clusters whose
size is s, and N (=18) is the number of particles. Further, if
particles belonging to the same cluster come in contact with
upper and lower electrodes at the same time, we can con-
clude that percolation occurs between electrodes and at least
one microcolumn is formed between electrodes. We set G,
=1 when percolation occurs and G, =0 when no percolation
occurs.

By considering standard collision theory and percolation
theory [16], we propose a simple scaling model that explains
(SQEEQZ’{"SX, A/ N, and (G)EEQZII\’-‘GA/NS as follows:

(S =1+ (Sy™ = 1)(1 —e™m), (1)

1
(G)“P(Lo){l —m}, (2)

respectively, where 7; is a clustering time, 7, is a threshold
time of the formation of a microcolumn, 73 is a width of the
threshold, S7™* is the maximum value of (S,), P(Ly)
= 1/[e(L0‘L5h)/AL0+1] is the percolation probability between
electrodes, Lbh is the threshold of P, and AL is the width of
the threshold of P. Although Eq. (1) seems to be complex, it
is just the reaction equation of the first order with a time
constant 7; in a random system, except that it is modified so
that (S,) is one at the initial time and becomes S, at the
final time because of the physical limitation of the cluster in
our random system. Similarly, Eq. (2) is just the phenomeno-
logical equation that describes the phenomenon that (G)
glows at =7, with the ambiguity time 75, except that it is
designed so that (G) becomes the percolation probability P
at the final time. It should be noted that percolation theory
provides the probability to form clusterings that connect to
infinite or finite regions in various random systems and can
be used to explain a macroscopic conductance [16,17]. Thus,
Eq. (2) is an appropriate equation that describes our random
system as a first attempt. Basically, all the parameters are
determined so that numerical results fit into Egs. (1) and (2);
i.e., from simulations, we set 7,=47, ™=37, 73=0.67,
LYw=1.35 ALy/w=03, U"=Uy/7, and S™ =24
+1.8(Ly—2.2)%, where 7y=1/[4cUS(N/Lyw)] is a collision
time, 4c¢ is a collision cross section, N/Lyw is a number
density of the particles, Uo(zecEé/ ) is a standard represen-
tative velocity, and Ey(=V,/w) is a representative electric
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field between electrodes. It should be noted that we have
derived Egs. (1) and (2) by considering random collisions
between particles that move randomly with average velocity
US™. In the random system, it is reasonable that (S,) is sub-
ject to the reaction equation of 1 order with 7;=47,, since
clustering in the x direction occurs with the probability of
1/4. Note that clustering is apt to occur from a lower or upper
electrode owing to attractive forces between a particle and a
wall and attractive forces in the x direction between particles;
i.e., a cluster grows in the one x direction only when a par-
ticle collides with the particle that positions at the edge of the
cluster opposite to the wall. Of course, if particles collide
with each other in the y direction, clustering does not occur
because repulsive forces due to an induced-charge electro-
osmosis (ICEO) flow around particles work between par-
ticles. Further, it is reasonable that the stable value of {G) is
an ordinary percolation probability for a random configura-
tion problem of a finite number of particles in a finite size
under the condition that ALy, # 0 and (G) has a time thresh-
old that is strongly related to 7.

Numerically, we consider a two-dimensional (2D) quasi-
static Stokes flow without Brownian motion: i.e., we con-
sider the limit in which the Reynolds number Re tends to
zero and the Peclet number is infinite. We assume the posts
of the metal cylinder to be polarizable in an electrolytic so-
lution under a dc or ac electric field. The motion of the
surrounding fluid must satisfy Stokes equations modified by
the inclusion of an electrical stress. However, by using
matched asymptotic expansion [18], we can reduce them to
the classical Stokes equations as follows:

uVv-Vp=0, V .v=0, (3)

On §iV: v?=0"+ Q0 x x4+, 4)

J ; fdi+ FH) =, f xW X g+ T = 0,
S; j) S;(/)

)

where $*Y denotes the surface defined as the outer edge of
the double layer, UY) is the translational velocity, QY is the
rotational angular velocity, f¥) is the traction vector, and
F f’“’m and Tf’“’(/) are the total external force and torque, re-
spectively, on the j’s metal cylinder (j=1,2,...,N). Further,
x(==sin ¢ i+cos ¢ j) is the surface position of the j’s
metal parameterized by ¢, i and j are orthogonal unit vectors
in the Cartesian coordinate system, u (~1 mPas) is the
viscosity, v is the velocity, and p is the pressure. Under a
wide range of conditions, the local slip velocity vs(i) is given
by the Helmholtz-Smoluchowski formula

o)
. € .
o =— £ g0, ©)
o

where ng) is the tangential component of the electric field, €
(~80¢) is the dielectric permittivity of the solvent (typically
water), and ¢, is the vacuum permittivity. Here, a zeta-
potential ) around the j’s metal is generally defined as
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FIG. 2. Formation of micro-
column and ICEP flow fields of
metallic particle dispersion system
by a full coupled simulation.
Here, Ly/w=1.3, ¢/w=0.08, AP

=0, 7%=79.1 ms, Uy=2 mm/s,
U™=U,y/7, and Ey=18.8 kV/m.

V= ¢y)— qb}’j , Where ¢y) and ¢>§") are final and initial poten-
tials, respectively.

To consider a multiparticle problem under a bounded con-
dition, we solve the electric potential at every time step be-
fore calculating a flow field by the boundary element method
based on the following Laplace’s equation, V2¢=0. On one
hand, we use the Dirichlet boundary condition for the upper
and lower walls (electrodes); i.e., ¢p=+0.5V, at x=0, ¢=
-0.5V, at x=w, where V|, is an applied voltage across the
channel. On the other hand, we use the Neumann boundary
condition for the left and right walls; i.e., n-V¢$=0 at y=0
and L, where n is the surface-normal unit vector. In addition
to those boundary conditions, to obtain a final potential, we
also use the Neumann boundary condition (i.e., n-V$=0) on
the metal surface. Further, to obtain an initial potential, we
use the condition that j’s metal particles have an unknown
surface potential d)gj) and require the electrical neutral con-
dition that §;(r -V ¢)ds=0. Thus, we can numerically calcu-
late a flow field for a bounded domain. It should be noted
that we use the boundary condition that the velocity on the
wall of the channel is zero and that the pressures of the inlet
and outlet are P, and P,, respectively. (Here, P;=P,=0 and
AP=P,—P,;=0.) On the basis of Egs. (3)—(6), we calculate
the flow fields of the ICEP multiparticle system for a
bounded domain by the boundary element method.

Further, we consider a short-range repulsive velocity
u.,(r;) that prevents unphysical overlapping between par-
ticles; i.e., at every time step, we move particles from x?emre
to X ag xAMr=xPM y_ (r,) A2/ 10 until all the distances
ry become larger than 2c+d;, where d,=0.01w (<d,), At (
=1 ms) is a time interval of the numerical simulation,
U () =0 if ry>2c+d), v (ryp)==2Ux;/ry if ry<2c,
and u.(ri) =—2Uy exp[—(ry—2¢)/d Ixy/ ri if 2c=ry=2c
+d;. Here, x;=(x;,y;s). Note that unphysical overlapping

between particles occurs mainly because particles move rela-
tively large distances during Az. Thus, a small factor, such as
1/10, is needed to remove unphysical overlapping. To the
best of our knowledge, our developed simulator is the only
tool that can directly analyze ICEP multiparticle flow auto-
matically by considering hydrodynamic and electrostatic
wall-cylinder interactions.

III. RESULTS

Figure 2 shows an example of the formation of a micro-
column due to ICEP by a full couple simulation when
Lo/w=13, ¢/w=0.08, AP=0, 7(=Low/4aNU")=79.1 ms,
Up=2 mm/s, UN=U,/7, and E,=18.8 kV/m. Here, the
applied voltage V(,=1.88 V for w=100 um is reasonable
for an ICEP caused by an ac voltage. In fact, such strong
electric fields have been used in previous experiments
[2,3,10]. Metal particles that are placed at random positions
at t=0 ms generate a complex flow field, as shown in Fig.
2(a), and move in a complex manner due to an attractive
force parallel to the electric field and a repulsive force per-
pendicular to the electric field between particles. Figure 2(b)
shows an image of particles and flow fields at r=80 (
=~1.07y) ms. Because of the attractive force that is parallel to
the electric field, particles have a tendency to aggregate in
the direction of the electric field and form clusters. As shown
in Fig. 2(c), a microcolumn is formed first at r=195 (
=~2.57y) ms; i.e., there is no microcolumn formation in the
period <195 ms. There is a tendency that the system keeps
to form a microcolumn or multicolumns even though there is
movement as shown in Figs. 2(d)-2(f). It should be noted
that we cannot observe a remarkable flow toward the elec-
trodes and a deposition of particles on the electrodes.
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FIG. 3. Results of cluster-

ing analysis by a full coupled
simulation. Here, L/w=2.25, AP
=0, Up=2 mm/s, and E,
=18.8 kV/m. Lines show analyti-

cal results obtained by Egs. (1)
and (2). Symbols show numerical
results obtained by the boundary

AWN element method.
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Figure 3 shows the results of clustering analysis by a full
coupled simulation for N, (=20) initial arrangements when
L/w=2.25, Uy=2 mm/s, and E,=18.8 kV/m. Figure 3(a)
shows the time dependence of (S,). As shown in Fig. 3(a),
the time evolution of (S,) is described by Eq. (1), which is
similar to the reaction equation of 1 order, derived from ran-
dom collisions. Figures 3(b) and 3(c) show the time evolu-
tion of (G). As shown in Figs. 3(b) and 3(c), microcolumns
form and then stabilize; i.e., we cannot observe a decay of
(G). Figure 3(d) shows the dependence of P on Ly/w. Here,
P is defined as P=(G),_ 1900 ms- As shown in Fig. 3(d), mi-
crocolumns are well formed in the range L0<Lg‘(=1.35w),
although the width of the threshold of P is rather wide; i.e.,
ALy/w=0.3. Thus, at a specific initial arrangement of par-
ticles, the formation of microcolumn is not merely a coinci-
dence. Further, from Fig. 3, we can observe that the analyti-
cal results of (S,), (G), and P agree fairly well with the
numerical results.

IV. DISCUSSION

When ¢=8 wum, a root mean square of Brownian motion
is V6Dt=\kpTt/ muc=0.13 um (<8) even for r=100 ms,
where kg is the Boltzmann constant and T (=300 K) is a
temperature. Therefore, we can neglect Brownian motion
even though our proposed system is colloidal. Thus, we have
an idealized system of particles that is subject to whatever
external forcing we can impose. Further, the threshold value
of Ly/w for P is approximately 1.2—1.6, which corresponds
to ¢=0.38-0.29, where ¢ is the occupied ratio defined as
q=4c¢>N/Lyw. Since the threshold of bond percolation for a
2D triangular lattice problem is approximately 0.35, we think
that the current microcolumn is formed because of the per-
colation occurring when the percolation threshold is ex-

12 14 16 18 2 22

Lo/w

ceeded in the case of narrow channel. Thus, the formation
mechanism of our microcolumn is different from that of
other microcolumns that can be explained by the concentra-
tion of electric fields on the top of the growing tip of the
microcolumn. Furthermore, though our system is not driven
by dielectrophoresis, a lot of similarities may exist between
an electrorheological (ER) fluid [19] and a multiparticle sys-
tem of ICEP since the phenomenon of organizing particles in
a plane normal to electrodes is common. In an ER fluid, the
formation of chains and columns parallel to the field is ac-
companied by a dramatic increase in the apparent viscosity
of the suspension. Thus, we expect that an ICEP can be used
to create a new high-performance ER fluid in the future.
Further, the random configuration of particles in our system
will induce a nonuniform electric field and a nonuniform slip
velocity around particles. Thus, although it might not be in
the unified viewpoint of ICEP, if the phenomenon seen in the
relative motion of suspensoid and medium resulting from
polarization forces produced by an inhomogeneous electric
field is widely defined as “dielectrophoresis” [20], we may
need to say that a kind of “dielectric” effect also would be
automatically taken into account in our calculations through
the nonuniform slip velocities resulting from a nonuniform
electric field. Note that we assume that F**Y) and TV are
zero in Eq. (5) by considering that the electrostatic force is
screened by the existence of counter ions; i.e., we consider
that direct electrostatic interactions between particles do not
exist in perfectly polarizable solutions, as far as we use the
boundary condition that n-V¢$=0 on S;(’) to obtain a steady
electric field because the boundary condition means that
there is no net charge to interact with.

V. CONCLUSION

In conclusion, we have proposed the formation of micro-
columns between electrodes in a narrow channel through

016315-4



MICROCOLUMN FORMATION BETWEEN ELECTRODES IN A ...

an ICEP and percolation phenomena and numerically
examined their characteristics. By full coupled simulations,
we observe the following. (1) The formation of clusters
and a microcolumn in the direction of an applied electric
field proceed within the time that is approximately 4-5 7,
(=Low/ 2aNU8“). (2) A microcolumn is formed under the
condition that the occupied ratio of metal particles is larger
than approximately 0.35; this value approximately agrees
with the threshold of bond percolation on a 2D triangular
lattice. (3) The time dependence of the probability of the
formation of the microcolumn is characterized by a simple
scaling model that considers standard collision theory and

PHYSICAL REVIEW E 80, 016315 (2009)

percolation theory. (4) In a full coupled simulation that con-
siders precise boundary conditions, there is no remarkable
flow toward electrodes and the effective velocity becomes
slower than an ordinary characteristic velocity. We believe
that our method for the formation of microcolumns will
revolutionize the design concept of biosensors.
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