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Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study
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We study scaling laws characterizing the interdiffusive zone between two miscible fluids flowing side by
side in a Y-shape laminar micromixer using the lattice Boltzmann method. The lattice Boltzmann method
solves the coupled three-dimensional (3D) hydrodynamics and mass transfer equations and incorporates in-
trinsic features of 3D flows related to this problem. We observe the different power-law regimes occurring at
the center of the channel and close to the top/bottom wall. The extent of the interdiffusive zone scales as the
square root of the axial distance at the center of the channel. At the top/bottom wall, we find an exponent 1/3
at early stages of mixing as observed in the experiments of Ismagilov et al. [Appl. Phys. Lett. 76, 2376
(2000)]. At a larger distance from the entrance, the scaling exponent close to the walls changes to 1/2 [J.-B.
Salmon and A. Adjari, J. Appl. Phys. 101, 074902 (2007)]. Here, we focus on the effect of the finite aspect
ratio on diffusive broadening. Interestingly, we find the same scaling laws regardless of the channel’s aspect
ratio. However, the point at which the exponent 1/3 characterizing the broadening at the top/bottom wall
reverts to the normal diffusive behavior downstream strongly depends on the aspect ratio. We propose an
interpretation of this observation in terms of the shear rate at the side walls. A criterion for the range of aspect

ratios with non-negligible effect on diffusive broadening is also provided.
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I. INTRODUCTION

Microfluidic devices are becoming a means of performing
low cost and high-throughput chemical and biochemical
analyses on chip. The range of applications include measur-
ing dynamics of protein folding [1], kinetics of enzyme re-
actions [2], and surface patterning of cells and proteins [3].
Some of these applications generally involve cross-stream
interaction of two or more fluids flowing side by side in a
channel. However, such systems are characterized by the
laminar flow due to the small dimensions involved and, thus,
fluids flowing side by side can only mix or interact by mo-
lecular diffusion.

In pressure-driven flow through rectangular microchan-
nels, where the fluid motion through the channel is actuated
by pressure pumps, the channel velocity profile is approxi-
mately parabolic across the shortest dimension, as dictated
by the balance between the gradient of the applied pressure
and the viscous shear stress in combination with the no-slip
boundary condition at the walls. Due to the slow fluid motion
close to the walls, tracer particles are hardly advected by the
flow, thereby spending longer time at the walls. At the center
of the channel, on the other hand, the flow velocity is quite
high and tracer particles are transported more efficiently.
This results in a fairly wide distribution of the amount of
time spent by tracer particles in the channel: the so-called
residence time. As demonstrated experimentally [4,5], this
wide distribution of residence times gives rise to a nonuni-
form diffusive broadening across the channel. Ismagilov
et al. [5], for example, showed using confocal fluorescence
microscopy that in contrast to the center line of the channel,
where the extent (along y direction) of the interdiffusion
zone exhibits normal diffusive behavior J8~x"? (x
=distance from the inlet), it scales as one third power of the
axial distance 6~x!"® close to the top and bottom walls.
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These observations are shown to be in line with results of a
scaling analysis, which makes use of a certain similarity with
the general Lévéque problem [5,6].

Numerical solution of the advection-diffusion problem
[7-9] confirms the existence of the experimentally observed
scaling behavior with an exponent of 1/3 in the proximity of
the walls as compared to the exponent 1/2 at the center of the
channel. Furthermore, these calculations also show that the
exponent 1/3 can only be observed if the distance (along the
flow) from the entrance of the channel is not too large. At
sufficiently large distances from the inlet, on the other hand,
the exponent for diffusive broadening close to the walls ap-
proaches 1/2 and thus becomes identical to the scaling expo-
nent in the center of the channel. The crossover distance x is
identified as the distance at which the tracer concentration
along the shortest channel dimension (z direction) becomes
homogeneous (note that & is measured along the y direction).

The above-mentioned numerical approaches assume a
one-dimensional parabolic velocity profile and neglect any
dependence of the fluid velocity on the distance x from the
inlet as well as on the “neutral” direction y. The first assump-
tion is valid at axial distances x=W,H (W=width and H
=height of the channel), where the flow is fully developed.
The dependence on y, on the other hand, can only be ne-
glected if the width of the channel is large compared to the
height H, i.e., in the case of large aspect ratio, W/ H>1. In
the experiments [5], however, the fully developed fluid ve-
locity is rwo dimensional (2D), i.e., it depends both on y and
z due to the finite aspect ratios investigated (W/H=2-5)
[10,11]. Despite this fact, the agreement between theory and
experiment is quite good suggesting that the specific form of
the velocity profile does not play a crucial role as long as a
linear regime close to the walls and an approximately uni-
form flow at the channel center can be assumed.

In the present work, we are going to focus on this aspect
via a systematic study of the effect of the finite aspect ratio
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FIG. 1. Geometry of the micromixer with two inlets at 45°. The
origin of the coordinate system is at the middle of the entrance.
Measurements are taken after reaching a fully developed flow
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on the spreading dynamics of a tracer field entering the
Y-junction micromixer through one of the arms (see Fig. 1).
For this purpose, we solve, via the lattice Boltzmann (LB)
method [12], the full three dimensional advection-diffusion
problem for rectangular channels with various aspect ratios.
Our previous studies of wall roughness effects on the chaotic
mixing of passive tracers in a 2D channel showed the flex-
ibility of the LB method in dealing with advection-diffusion
problem in microchannels [13-15]. The present work ex-
tends this approach to 3D with a particular focus on various
scaling laws within the laminar flow regime using smooth
walls (no wall roughness effects).

In addition to a systematic study of the effects related to a
finite aspect ratio, our studies differ from numerical calcula-
tions of Salmon and Ajdari in that we do not make any
assumption about the shape of the velocity profile. Rather,
the velocity profile results from the solution of the Navier-
Stokes equations for the problem of interest. By doing this,
we remain as close as possible to real experiments and real-
ize a range of velocity profiles from practically parabolic to
those with strong deviations from parabolic dependence.

In the following section, we briefly introduce the simula-
tion scheme and also provide some benchmark tests for our
LB simulation by comparing our results with known analyti-
cal solutions for the spreading of a point source in a 3D
microchannel both with and without walls. Excellent agree-
ment with the analytical solutions is found. We then apply in
Sec. III the LB method to study the extent of the interdiffu-
sion zone between two fluids flowing side by side in a
Y-shape micromixer. We study the combined effect of Péclet
number (defined as the ratio Pe=UH/D, where U is the
maximum fluid velocity, H is the channel height, and D is
the diffusion coefficient of the tracer field) and channel’s
aspect ratio on the broadening. Our studies include both the
upstream zone where the nonuniform broadening along the y
direction occurs (with an extent 6~x!3 close to the walls
and 6~x!"? at the center of the channel) and downstream
region where diffusion has had enough time to homogenize
the concentration distribution along the vertical z direction
whereby leading to homogeneous broadening with a one-half
power law both at the walls and in the center of the channel.
A summary compiles our results.
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II. NUMERICAL METHOD AND ITS VALIDATION
A. Lattice Boltzmann method

The lattice Boltzmann method [12,16—-18] can be re-
garded as a mesoscopic particle-based numerical approach
allowing to solve fluid-dynamical equations in a certain ap-
proximation, which (within, e.g., the so-called diffusive scal-
ing, i.e., by choosing Ar=Ax?) becomes exact as the grid
resolution is progressively increased. The density of the fluid
at each lattice site is accounted for by a one-particle prob-
ability distribution f;(r,7), where r is the lattice site, 7 is the
time, and the subscript i represents one of the finite velocity
vectors e; at each lattice node. The number and direction of
the velocities are chosen such that the resulting lattice is
symmetric so as to easily reproduce the isotropy of the fluid
[19]. During each time step particles stream along each ve-
locity vector e; to a neighboring lattice site and collide lo-
cally, conserving mass and momentum in the process. The
LB equation describing propagation and collision of the par-
ticles is given by

filr+e.t+1) = fir,t) = Qfi(r.1), (1)

where (); is the collision operator.

The most widely used LB method is the lattice Bhatnagar-
Gross-Krook (BGK) model [12] which approximates the col-
lision operator by simplifying it to a single time relaxation
toward the local equilibrium distribution f;9. The lattice
BGK model is given as

ﬁq(rvt) _fi(r’t)
T s

filr+e,t+1)=fir.t)= (2)

where 7 is relaxation time and the equilibrium distribution
fi%is closely related to the low Mach number expansion of
the Maxwellian velocity distribution given as [20]

1 1 1
A, r)=wip| 1 + = (e;-u) + —(e;-u)* - —u*|. (3
fir=wp cf( i) 2cf( i) 20 3)

In Eq. (3), ¢, is the sound speed on the lattice and w; is a set
of weights normalized to unity. Near equilibrium and in the
limit of the small Knudsen number (=mean free path/
characteristic length of problem), the macroscopic Navier-
Stokes equation can be recovered using the Chapman-
Enskog multiscale analysis [21]. The relaxation time 7 is
then found to be related to the kinematic viscosity as v
=(27-1)/6.

The density p, velocity u, and pressure p are computed
from the distribution function using

N N
p=fi pu=2 fe; p=pcr. (4)
i=0 =0

The weights w; in the equilibrium distribution depend on the
number of velocities used for the lattice. In this work, we use
the D3Q15 model which has fifteen velocities with weights
w; given as
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2/9, ¢;=(0,0,0),i=0

1/9, e;=(%1,0,0),(0, +1,0),(0,0, = 1)

.= 5
Wi i=1.....6 )

172, e;=(*x1,*=1,+1),i=7,...,14.

The approach can be extended to simulate diffusing solute
by introducing passive tracers into the flow field. The tracers
are advected with the flow velocity u and follow similar
relaxation and propagation as the fluid medium. In this study,
the tracer field g; does not have any effect on the velocity
field (passive tracer limit). The LB equation governing
propagation and collision of the density (concentration) dis-
tribution of the passive tracers is given as

eq
g et 1) - gr =S80 g
Ta
with the equilibrium distribution function g{%(r,7)=w,C[1
+(e,~~u)/cf]. Here, C is the concentration distribution of the
tracers given as C=3% g,.

Using the Chapman-Enskog multiscale analysis, the
advection-diffusion equation can also be recovered in the
limit of low Mach number and near equilibrium situation.
The relaxation time 7, is then found to be related to the tracer
diffusion coefficient as D=(27,—1)/6.

B. Y-shape laminar micromixer

The fluid flow and solute transport of incompressible
Newtonian fluids in the Y-shape micromixer can be de-
scribed by the equations of conservation of mass, momen-
tum, and solute transport given as

V-u=0 (7)
p) 1 1
A - Vu=—-VP+Wu+-F, 8)
dJt p p
ac
E+(u~V)C=DV2C, 9)

where u is the fluid velocity, p is the density, P is the pres-
sure, v is the kinematic viscosity of the fluid, and F repre-
sents body forces (force density) acting on the fluid. In the
solute transport (9), C is the concentration of the solute and
D is the diffusion coefficient of the solute. At low Reynolds
numbers Re=UH/v<<1, where the inertial term on the left-
hand side of Eq. (8) is small compared with the viscous term
on the right, one can neglect the inertial term and assume a
Stokes flow along the channel. In the case considered here, a
steady flow driven by a constant force density F=pGe, (e, is
the unit vector in the x direction and G is the gravity), Eq. (8)
can be simplified further as

-G =W, (x,y,2). (10)

For a rectangular channel of width W and height H with a
fully developed flow [u,=u,(y,z)], Eq. (10) can be solved
via the method of separation of variables with a no-slip
boundary condition on the walls of the channel. One thus
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obtains the following result for the velocity field [22]:

G| (H?
u (3= (7_Z2>

s

3 W

(11)

Far away from the side walls and close to the center of the
channel (y=0), the fluid velocity follows the well-known
2D parabolic profile. In the Y-shape micromixer studied here,
the velocity profile at the two inlets is quite different from
that in the mixing channel. Assuming that the channel width
W is larger than its height W>H, it takes approximately a
distance on the order of W from the junction for a velocity
profile to become fully developed.

In the steady state, the mass transport of a solute of con-
centration C with a constant isotropic diffusion coefficient D
in a unidirectional and one-dimensional velocity field u
=[u,(z),0,0] can be describe by

ux(z)% :D< rL7 ﬁ)c. (12)

—S+ 5+
axt a9y 97

Given that the initial concentration at the junction, where
the two fluids meet, is C(x=0)=C,, and the characteristic
fluid velocity is U, Eq. (12) can be put into a nondimensional
form using a relevant characteristic length scale. A conve-
nient form is to use x"=x/(Pe H),y*=y/H and z"=z/H.
Equation (12) then becomes

1 & &P &2>
C.

" 972

- <P€2 ax*? - ay*?

The first term on the right-hand side of Eq. (13) represents
the contribution of the axial diffusion. It can be neglected if
two conditions are fulfilled. The first condition is that the
first term on the right-hand side must be small compared to
the other two terms, ie., ¢ C/dx*?/Pe’><PC/dy*?,
#C/3dz*2. Obviously, this happens when Pe> 1. The second
condition is that the axial convective term must be large
compared to the axial diffusive term, i.e., u,(z*)dC/dx*
> (2C/dx*?)/Pe”. In this case, using the order-of-magnitude
analysis, the regimes (x*,z*) where this condition is valid can
easily be identified to be x* < 1/[Peu,(z*)] [8].

Assuming the validity of both the conditions stated above,
Eq. (13) can be simplified to

.. aC &# P
uz )o"x* = (19)/*2 + ﬁz“)c' (14)

aC
x*

u(z") P

(13)

Salmon and Ajdari [8] performed a numerical integration
of Eq. (14) assuming a parabolic velocity profile across the
channel, i.e., u,=u,(0)[1-(2z/H)?]. The lattice Boltzmann
method, on the other hand, solves the full equation (12) in-
corporating all relevant 3D features such as the fact that, in
general, the fluid velocity is not parabolic and depends on all
the three coordinates x,y and z, i.e., u,=u(x,y,z) [23].
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C. Simulation details

All simulations reported in this work are conducted using
the D3Q15 LB model on a parallel machine. The lattice Bolt-
zmann code is written in c++ with message passing inter-
face routines that enable an exchange of information between
processes. The code is run on a symmetric multiprocessing
(SMP) 8 X2 core opteron 2.4 GHz. Typical channel dimen-
sions used vary in the range 40X 20X 1000-400 X 20
X 1000 as well as a channel of size 40X 40X 1000 (lattice
units), thereby allowing the study of aspect ratios between
1 and 20. A periodic boundary condition is implemented at
the inlet/outlet, while at the walls of the channel, a no-slip
boundary condition [18] is implemented. In the lattice Bolt-
zmann scheme, a no-slip condition corresponds to a situation
whereby populations streamed to the walls are simply re-
versed back along the directions where they came from.
Starting with the fluid at rest, a flow is imposed by the ap-
plication of a body force. Note that it takes a finite amount of
time (on the order of the momentum diffusion time 74
=H?/(8v) [14]) until steady state is reached with respect to
the fluid velocity, i.e., until the velocity field becomes inde-
pendent of time. In order to avoid this transient effects, we
wait a time of 5 X4 before injecting the tracer field. The
desired fluid velocity for a given channel of height H and
width W can be calculated a priori using Eq. (11).

After a stationary flow has been reached, we start to con-
tinuously inject passive tracers into the channel. This is sim-
ply achieved by setting at each time step the concentration of
the tracers at the inlet to 1 [i.e., C(x=0;1)=Cy=1 for all
times 7]. We then monitor the time evolution of the tracer
concentration field along the channel. The basic solute trans-
port equation simulated with the boundary conditions is thus

aC
E+(u~V)C=DV2C,

vC- n|at the boundaries = 0, (]5)

where n is the unit vector normal to the boundary. Compu-
tation of the extent of diffusive broadening of the concentra-
tion distribution at a given cross section is done after a time-
independent concentration profile has been reached at the
area of interest (corresponding to a dynamic balance between
the incoming and outgoing tracer populations). The modeled
diffusing analyte in this work has a diffusion coefficient of
D=0.5%10"" m?/s corresponding to 10™*Ax?/At, where we
have chosen the lattice units of Ax=3 um and Ar=600 ns.
The kinematic viscosity of the fluid was set to v
=0.1Ax%/ At corresponding to the viscosity of water (Vyqer
~107® m?/s at room temperature). The range of the Rey-
nolds number in our simulations falls within 0.1-10. The
parameters chosen are readily comparable with that of the
experiments.

D. Point source in a 3D channel

Before presenting in Sec. III the results of our simulations
on a laminar micromixer, we provide here a simple test of
our lattice Boltzmann approach. For this purpose, we com-
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pute the fundamental problem of diffusion of a point source
placed at point ry=(xy,y¢,z0) at time r=0 on a 3D square
lattice using the BGK model. Assuming a constant and iso-
tropic diffusion coefficient D, the system is described by the
well-known diffusion equation dC/dr=DAC (A=the Laplace
operator) with the initial condition C(r,0)=d(x—xy)d(y
—y0)8(z—z(). The fundamental solution or the Green’s func-
tion of this equation is well known to be [24]

1 ox (_ (x—xo)z—(y—yo)z—(z—z0)2>
(@mDr)y 2P 4Dt "

G(r’rO,t) =

(16)

In the presence of nonabsorbing impermeable walls
(equivalent to the no-flux boundary condition), the analytical
solution for the diffusion of a point source can be obtained
by using the principle of superposition and method of images
[25]. The positions (x;,y,,,z,) of the infinite number of im-
ages formed on each side of the box are obtained from the
real point source according to the relations x;=xy+kL,, y,,
=yo+mlL, and z,=z¢+nL.. The final result for the concentra-
tion profile in the presence of nonabsorbing walls is thus

[}

1
C(r,0) = (47TDI)3/2k,m§=_w
% (x_xk)z_ (y_ym)z_ (Z_Zn)z
XP\ T 4Dt '

(17)

Using a square lattice of dimension L,=80, Ly=80, L,=80,
and diffusion coefficient D=0.5 (lattice units), we perform
the lattice Boltzmann simulation with a simple bounce back
scheme [18] at the walls. Figure 2(a) compares the simula-
tion results for the concentration profile along the x direction
with the analytical solution obtained from Eq. (17). In the
same figure, we also plot the Gaussian function given by Eq.
(16), which represents the solution of the same problem in
the absence of the walls, thus, emphasizing the nontriviality
of the obtained solution in the presence of the walls. Our
simulation results are in agreement with the analytical results
obtained from Eq. (17) within an error of 0.2%. This agree-
ment shows that the LB model is able to capture the effect of
the wall correctly. It is straightforward to extend the situation
to the case of diffusion in a uniform steady unidirectional
velocity field u=(U,,0,0). The results for this situation are
shown in Fig. 2(b) for the case of an infinite system (no
walls). Here, the point source exhibits a normal diffusive
broadening (5~ "/?), while at the same time being advected
by the flow. The analytic curves shown in Fig. 2(b) are the
flow-advected version of Gaussian distributions given in Eq.
(16), where x—x is replaced by x—(xo+ Uyt). Noting that the
center of the Gaussian distribution along the flow direction
obeys (x)=Ujt, the normal diffusive broadening can also be
expressed as §oc /2o (x)!/2,

III. RESULTS AND DISCUSSION

For a Péclet number of Pe=1000 and Re=1, we plot in
Fig. 3, the cross-sectional image of the concentration field at
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FIG. 2. (Color online) Comparison of the lattice Boltzmann simulation with analytical results. (a) Diffusion of a point source within a
cubic box surrounded by nonabsorbing walls (equivalent to a no-flux boundary condition). (b) Diffusion of a single point source in a fluid
moving with a uniform velocity. The dashed line in (a) represents the solution of the same problem in an infinite system (no walls), thus,
underlying the nontrivial effect of the walls, fairly well captured by the LB method.

various axial positions x*=x/(H Pe) along the channel for
aspect ratios of W/H=2 and 5, respectively. First note that
the width of the interdiffusion zone increases with increasing
axial distance [compare panels (a)—(c)]. This is reminiscent
of the role played by time in the diffusion process. Indeed,
recalling that the tracer concentration at a height z is ad-
vected with the velocity u(z) and neglecting the effect of
shear for the moment, a rough correspondence between dif-
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FIG. 3. (Color online) Solute concentration C in y-z cross sec-
tions of a rectangular channel for aspect ratios W/ H=2 (left panels)
and 5 (right panels) at various reduced distances x* from the inlet.
From top to bottom: x*=10"2°, 10723, and 1012, For all cases
shown, the Péclet number is Pe=1000 and the height of the channel
is H=20 lattice units. The width of the channel is W=40 (left pan-
els) and W=100 (right panels) lattice units.

fusion time and the distance x from the inlet can be obtained
via #(x,z)=x/u(z). A larger distance from the inlet thus cor-
responds to a larger diffusion time.

A survey of Fig. 3 allows a second important observation,
namely, that the extent & of the interdiffusion zone increases
when going from the center of the channel toward the walls,
the so-called “butterfly effect” [see, e.g., panel (b)]. Again,
making use of the above estimate of diffusion time as
t(x,z)=x/u(z), a qualitative understanding of this behavior
can be gained by noting that u(z) is maximum at the center
of the channel (z=0) and decreases to zero at the walls (z
==+ H/2). Thus, at a given distance x from the inlet, the time
available for diffusion is larger in the proximity of the walls
as compared to the center of the channel.

Even though being able to describe some important quali-
tative features of diffusive broadening, the above argument is
too crude to capture the different scaling laws discussed
above (8xx'3 close to the walls as compared to S x"? at
the channel center). Indeed, an argument based only on an
estimate of the effective diffusion time would yield &
=\6Dr=v6Dx/u(z) <x"2. In other words, one would obtain
diffusive broadening with an exponent of 1/2 for all dis-
tances from the wall; the z dependence being reflected in an
effective diffusion coefficient D/u(z). An adequate descrip-
tion of experimental observation, therefore, requires taking
into account the effect of the nonuniformity of the flow on
the tracer distribution. Interestingly, assuming a linear veloc-
ity profile seems to be sufficient for a derivation of the ob-
served scaling exponent of 1/3 close to the walls [5,8]. The
exponent 1/2, on the other hand, results from the presence of
a quasiuniform flow in the central region of the channel.

A third important aspect in Fig. 3 is the effect of the
aspect ratio. A comparison of the left and right panels of Fig.
3 at a given distance from the inlet clearly shows that the
interdiffusion zone is broader in the case of the lower aspect
ratio. As a consequence, also the inhomogeneity of the tracer
concentration field along the z direction is more pronounced
when the aspect ratio is decreased. One could therefore ex-
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pect that a longer diffusion time is required in order to ho-
mogenize the concentration field across the vertical direc-
tion. Using the rough correspondence between time and axial
distance along the lines discussed above, the position at
which the concentration distribution across the z direction
becomes homogeneous should increase for smaller aspect ra-
tios. A comparison of panels (c) and (f) in Fig. 3 confirms
this expectation. Both these panels correspond to the same
distance from the inlet but different aspect ratios. While in
Fig. 3(f) (aspect ratio=5) the solute concentration is already
homogeneous along the z direction, it exhibits a significant
inhomogeneity in Fig. 3(c) (aspect ratio=2). An important
consequence of this feature will be worked out below.

In order to proceed with a more quantitative analysis, we
adopt a simple definition of the extent of interdiffusion zone
o as the width of the concentration profile at which the con-
centration is reduced to 20% of the maximum value at the
inlet. It is to be stressed that the results presented here are
insensitive to the specific definition of 6. Other definitions,
such as using the integral over the second moment of the
spatial ~ derivative of the concentration field &
=(fdyy?dC/dy)/(JdydC/dy), lead essentially to the same
conclusions. The present simple definition, however, is nu-
merically more robust since it does not require the computa-
tion of the numerical derivative of the concentration field at
discrete intervals.

As discussed in Sec. II, §~x!2 for the diffusion in a
uniform velocity field. In the case of the inhomogeneous
velocity profile considered here, the relation between the ex-
tent of the broadening & and the axial distance x takes the
more general form 6~ x?, where 7y is the exponent charac-
terizing the diffusive broadening. It is shown in Ref. [8] that
v, in general, depends both on x and z. In order to examine
this property within our simulations, we survey in Fig. 4 the
change in 6 downstream along the x direction. The local
slope of the (log-log) plots gives the scaling exponent 7.

Within each panel in Fig. 4, the extent & of the interdif-
fusion zone is shown versus the axial distance both for the
center of the channel (z/H=0) as well as in the proximity of
one of the walls (z/H=0.45). The following features can be
observed in the two left panels shown in Fig. 4, correspond-
ing to a Péclet number of Pe=1000. At small distances from
the inlet, 5~ x!"? at the center of the channel while 8~ x'/3
close to the wall. However, increasing the lattice resolution
of our simulation domain in the z direction and correspond-
ingly the Péclet number reveals another short regime, where
8~ x'"? across the entire cross section of the channel. This
regime, as shown in Fig. 4 for a Péclet number of Pe
=10000, occurs earlier in the flow at the entrance of the
channel and changes to the 1/3 regime over a short-time
interval.

The transition of this 1/2 regime to the 1/3 regime can be
understood using an analytical argument similar to the
Lévéque analysis by assuming a linear velocity profile very
close to the top/bottom wall [8]. Qualitatively, this crossover
represents the enhancement in diffusive broadening arising
from a homogeneous shear rate. Since, in the case of the
Poiseuille flow studied here, the shear rate is practically zero
in the center of the channel, the effect appears only close to
the walls, where the velocity profile is approximately linear.

PHYSICAL REVIEW E 80, 016304 (2009)

FIG. 4. (Color online) Plot of log(8/H) versus log(x*) for aspect
ratios of 2 (upper panels) and 5 (lower panels) at Péclet numbers of
Pe=1000 (left panels) and Pe=10000 (right panels). The local slope
of the lines gives the scaling exponents. The x axis is nondimen-
sionalized via x*=x/(H Pe). The channel height is H=20 (left pan-
els) and H=200 (right panels). The channel widths are chosen such
that the aspect ratio is W/H=2 in the case of upper panels and
W/H=5 in the case of lower panels [W=40 (top left), W=400 (top
right), W=100 (bottom left), and W=1000 (bottom right)]. In all the
panels shown, the vertical dashed line indicates x*=1/8 as obtained
from a dimensional estimate of the distance for vertical homogeni-
zation of the solute concentration.

At larger distances from the inlet, on the other hand, the
scaling exponent close to the wall gradually increases toward
the value of the exponent at the center of the channel, the
latter being very close to 1/2. This latter behavior can be
understood by assuming that the crossover from an exponent
of y=1/3 to y=1/2 corresponds to a homogeneous tracer
distribution along the z axis. A criterion for vertical homog-
enization via diffusion is obtained from 2Dt,=(H/2)? which,
using the maximum fluid velocity U to estimate the cross-
over time t.,=x./U, yields the crossover distance x,
=H?U/(8D)=H Pe/8. In terms of the reduced distance, this
relation translates to x;=1/8 [8].

The above estimate of x, does not take into account the
effect of aspect ratio. In fact, as discussed above, the vertical
homogenization takes place at larger axial distances when
the aspect ratio is decreased [compare panels (f) and (c) in
Fig. 3]. In order to investigate this issue, data in Fig. 4 are
plotted for two different aspect ratios of W/H=2 (upper pan-
els) and W/H=5 (lower panels). Indeed, a comparison of the
panels (a) and (b) [as well as (c) and (d)] in Fig. 4 suggests
that x. increases when the aspect ratio is decreased. The left
and right panels in Fig. 4 differ in the Péclet number inves-
tigated. This is to underline the fact that the observed trend
with regard to the aspect ratio is not related to the specific
choice of the Péclet number.

In order to quantify the effect of the aspect ratio further,
we determine for two aspect ratios of W/ H=2 and W/H=5
the values of the exponent vy for each position x and position
z along the channel by performing a running fit on the curves
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FIG. 5. Plot of the scaling exponent y (appearing in §%x*?) in the log(x*)—z* plane for aspect ratios of (a) 5 and (b) 2. In (c) the
difference, y(b)—7y(a), is shown. The exponent 7 is obtained by local fits to the log-log plot in Fig. 4.

in Fig. 4 as proposed in [8]. The results are shown in Fig. 5.
The dotted black lines in Fig. 5(a) indicate the concentration
boundary layer which grows with the axial distance at a rate
7*~x*13 [8]. The growth of the concentration boundary
layer results from the diffusive flux of solute from the top/
bottom wall to the center of the channel. The white area of
the plot corresponds to the high exponent region of the chan-
nel. Our resolution is limited by the small number of points
in the z* direction. The difference between the exponents
obtained for the two investigated aspect ratios is shown in
Fig. 5(c), confirming the retarded crossover to the normal
diffusive behavior in the case of the smaller aspect ratio.

In a more systematic study, we varied the aspect ratio
from 1 to 20 and determined the crossover distance x.. The
left panel of Fig. 6 illustrates the behavior of the thus ob-
tained crossover point within the range of aspect ratios in-
vestigated and for different Péclet numbers of Pe=500, 1000,
and 10000. In line with the results presented above, we ob-
serve an increase in the crossover point as the aspect ratio
decreases. The right panel of Fig. 6 depicts a nondimension-
alized version of the same data. Interestingly, the data for

2000 T
E, 1500 A—4A Pe = 10000
ol +—¢ Pe =1000
§ i ®—e Pe =500
<
Z 1000 _
o
o)
> B m
2
Z N
5 500} =
0 _.H‘gé’—%,.:,
0 5 10 15 20

Aspect ratio W/H

different Péclet numbers collapse onto a master curve in the
limit of high aspect ratios. This is an important observation
since it suggests that, in this limit, the effect of Péclet num-
ber is indeed a mere rescaling of time or axial distance.

In an attempt to better understand the reason for the de-
pendence of x, on the aspect ratio, we plot in Fig. 7(a) the
fluid velocity u, as well as its spatial derivative I',=du,/ oz,
as a function of the transverse coordinate y for aspect ratios
of W/H=2 and W/H=5. The plot is done for a distance of 2
lattice units from the bottom wall. For the aspect ratio of 5,
there is a wide range of y values for which both u, and I, are
roughly constant, thus, justifying the assumption that
u(y,z)=u,(z) (independent of y). This assumption, how-
ever, fails at the smaller aspect ratio shown. The data shown
in the right panel of Fig. 7 further underline the importance
of taking into account the dependence of the fluid velocity
both on z and on y when the aspect ratio is small.

The data shown in Fig. 7 suggest that the increase in x, is
probably due to the side wall shear effect on the solute dis-
tribution. At a lower aspect ratio, the shear rate I', decreases
strongly close to the side wall. An estimate from Fig. 7(a)

0.2
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>
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FIG. 6. (Color online) Left: plot of the crossover point x, versus the aspect ratio for different Péclet numbers as indicated. Right: the same
data as in the left panel rescaled via xi:xc/ (H Pe). The horizontal solid line marks the value of xj: 1/8 obtained from an estimate of the time
necessary for vertical homogenization in a channel with infinite aspect ratio (W/H — o): 2Dt.=H?/4. Using the crossover distance x, and
the midchannel fluid velocity U to estimate the crossover time #,=x./ U, one obtains x,=H>U/(8D) and hence x;=1/8 (recall our definition

of the Péclet number Pe=HU/D). This estimate is improved significantly by taking 7, =x./ U, where U is the average fluid velocity across

the channel (dashed horizontal line).
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FIG. 7. (Color online) (a) Velocity u, and shear rate I",= du,/ dz versus y for aspect ratios of W/H=2 and 5. The distance from the bottom
wall is equal to z=H/10 (=2 lattice units) for all the data shown. For the aspect ratio of 5, there is a wide range of y values for which both
u, and I, are roughly constant, thus, justifying the assumption u,(y,z) = u,(z). This assumption, however, fails at the smaller aspect ratio
shown. In this case, there is practically no y-independent region. Vertical dashed lines mark y=0 and y=3H/4 for which velocity profiles
along the vertical (z) direction are depicted in the adjacent panel. (b) Velocity versus z for y=0 and y=3H/4 for aspect ratios of W/H=2 and
5. In the case of an aspect ratio of 5, the velocity profile is identical for both values of y. This is in accordance with the panel (a) where u,
hardly varies in the y range delimited by the two vertical dashed lines. At a lower aspect ratio of 2, on the other hand, the effect of the side
wall is quite significant. The Péclet number is Pe=1000 in all the cases shown.

shows that for an aspect ratio of 2, the I', at position y
=3H/4 is about 40% less than that at the center of the chan-
nel (y=0). Therefore, solute diffusing toward the side walls
samples a strongly decreasing shear rate. Given that the ex-
tent of broadening & at the top/bottom wall takes the form
8~ (xD/T,)"3 [5], the interdiffusion becomes faster when
approaching the side walls, whereby enhancing the inhomo-
geneity of diffusion (the so-called “butterfly effect”) which is
already present at an infinite aspect ratio. This is exactly
what we observe in the concentration profile images shown
in Fig. 3.

In general, solute diffusing toward the side walls from the
center of the channel samples constant velocity gradient I',
up to a distance H from the side wall. The time spent by
solute before sampling a substantial decrease in the velocity
gradient is, therefore, ¢, ~ (W/2—H)?/2D. For W> H, this
time scale is greater than the time scale to diffuse from the
top/bottom wall to the center of the channel denoted as 7y
~(H/2)?/2D. Thus, at a high aspect ratio, solute concentra-
tion becomes homogeneous along the vertical direction long
before the side walls are “felt.” Consequently, the crossover
point x. becomes independent of the aspect ratio. In the case
where ty=ty, on the other hand, one cannot neglect the
additional enhancement of inhomogeneity of diffusive broad-
ening due to the side wall effect. This leads to W=3H for
the effect of the aspect ratio being significant. As a survey of
x, in Fig. 6(b) reveals, this simple estimate (which is based
on a dimensional argument only) lies within a factor of two
of the result obtained within our computer simulations.

IV. SUMMARY

We study the effect of a finite aspect ratio on the trans-
verse diffusive transport of miscible solutes flowing in a
pressure-driven microchannel using the lattice Boltzmann

method. The lattice Boltzmann method incorporates the es-
sential 3D features such as the nonparabolicity of the veloc-
ity profile and the velocity gradient due to the side walls. We
observe the previously reported [5,7-9] different exponents
characterizing the extent of the broadening both at the early
stage of mixing of the two fluids and at the later stage down-
stream. Interestingly, we observe the same scaling laws re-
gardless of the channel aspect ratio. However, the extent of
diffusive broadening and the position x, at which the broad-
ening becomes uniform and finally reverts to the 1/2 behav-
ior vary remarkably with the channel aspect ratio. The Péclet
number, on the other hand, is found to play the role of a scale
factor in x, in a way that x, =x./(H Pe) is independent of the
aspect ratio. This is inline with the general structure of the
advection-diffusion equation, upon neglecting of the axial
diffusion.

A qualitative understanding of the effect of the aspect
ratio is provided invoking the influence of the shear stress in
the proximity of the side walls on diffusive broadening. This
is based on the idea that the side wall shear stress is non-
negligible in a region of width H close to the side walls. The
corresponding effect on inhomogeneous diffusive broadening
will be felt if the solutes at the center of the channel have
enough time to reach this region before vertical homogeni-
zation takes place. This allows to derive a simple criterion to
decide whether a given aspect ratio is “large” or “small.”
Within a factor of two, this estimate correctly reproduces the
behavior observed within our lattice Boltzmann computer
simulations.
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