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Quantitative characterization of interaction between processes from time series is often required in different
fields of natural science including geophysics and biophysics. Typically, one estimates “short-term” influences,
e.g., the widely used Granger causality is defined via one-step-ahead predictions. Such an approach does not
reveal how strongly the “long-term” behavior of one process under study is affected by the others. To over-
come this problem, we introduce the concept of long-term causality, which extends the concept of Granger
causality. The long-term causality is estimated from data via empirical modeling and analysis of model dy-

namics under different conditions. Apart from mathematical examples, we apply both approaches to find out
how strongly the global surface temperature (GST) is affected by variations in carbon dioxide atmospheric
content, solar activity, and volcanic activity during the last 150 years. Influences of all the three factors on GST
are detected with the Granger causality. However, the long-term causality shows that the rise in GST during the
last decades can be explained only if the anthropogenic factor (CO,) is taken into account in a model.

DOLI: 10.1103/PhysRevE.80.016208

I. INTRODUCTION

The problem of detection and quantitative characteriza-
tion of couplings between complex processes from observed
time series arises in multiple fields including physics [1,2],
geophysics [3-11], and neurophysiology [12-30]. Numerous
investigations are devoted to synchronization which is an
effect of interaction observed in ensembles of nonlinear sys-
tems (e.g., [1,4,7,13,17,24,31,32]). In the last decade, a
closer attention is paid to the analysis of directional cou-
plings.

Apart from traditional cross-correlation functions, cross-
spectral analysis, and multivariate linear autoregressive mod-
els [3,9,11,23,30,33], various techniques are developed in the
framework of nonlinear dynamics. Thus, synchronization in-
dices quantify interdependence between simultaneous states
of the systems under investigation (e.g., [1,17,31]). Similar
asymmetric measures are based on mutual nonlinear predic-
tion [14,16], recurrence plots [34], and nearest-neighbors sta-
tistics [15,24,35,36]. However, these asymmetric measures
can reveal directional couplings (causal influences) only un-
der additional assumptions (e.g., [15,34]). Transfer entropy
[37] and Granger causality [33] are more appropriate and
“direct” approaches to detect an influence of a process y(z)
on a process x(7). Transfer entropy is based on the
information-theoretic formalism and defined via probability
density function for the nearest future of x(¢) conditioned to
the present states of x and y, (see also [6,38,39]). The widely
used Granger causality is based on linear [33] or nonlinear
[40,41] empirical models and defined via one-step-ahead
prediction improvement for the process x, which is achieved
if the process y is taken into account in a model.

Both approaches are successfully used to detect direc-
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tional couplings and quantify their short-term effects. How-
ever, it is often more important to learn how long-term char-
acteristics of a process x (e.g., its power spectrum, amplitude
of oscillations, trends, etc.) would change if a process y be-
haved in a certain way? Thus, in studying Parkinsonian
tremor, one develops deep brain stimulation techniques [42]
and reveals how the brain activity should be changed to pro-
vide a normal behavior of the limbs instead of their patho-
logical high-amplitude oscillations. Another example is the
question about the causes of contemporary global warming,
which is widely debated in climatology [6,11,43]. Has the
global surface temperature (GST) increased by three quarters
of a degree over the last century due to anthropogenic fac-
tors, natural factors, or their combination? Both problems
relate to the characterization of long-term effects of cou-
plings between the processes.

As a tool for such a characterization, we suggest an idea
of the long-term causality, which complements the Granger
causality concept. The paper is organized as follows. We
discuss the Granger causality estimation in Sec. I A and
troubles in its interpretation in Sec. II B. The long-term cau-
sality is described and illustrated in Sec. III. Influences of
three factors (solar activity, volcanic activity, and carbon di-
oxide atmospheric content) on the GST are analyzed with
both approaches in Sec. IV. We summarize in Sec. V.

II. GRANGER CAUSALITY

The problem is commonly formulated as follows. There
are time series from M processes {xk(t)}ﬁl, k=1,...,M,
where N is a time series length and sampling interval is set
equal to unity. It is necessary to reveal and characterize cou-
plings between the processes, i.e., to find out how they in-
fluence each other.

A. Description of the method

In case of two linear processes [20,33], one first con-
structs univariate autoregressive (AR) models
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where d is a model order, &, are Gaussian white noises with
variances o’2 We denote the vector of coefficients A;
={A;;,i=0,....d}, the sum of squared residual errors 37
—Et_dﬂ[xk(t) AkO 4 A x(t=i)]% and its minimal Value
sk—mmAk Ei The coefficients are estimated via the least-

squares routine: Ak=arg min A Ef. An unbiased estimator for
oék which represents the mean-squared prediction error of

—o1)» Where d+1 is
the number of estimated coefﬁ01ents in the model equation.
The model order d is selected large enough to provide un-
correlatedness of the residual errors. To determine the neces-
sary value of d automatically, one often uses criteria of
Akaike [44] or Schwartz [45].

Then, one similarly constructs a bivariate AR model,
d

xi (1) = a0+ > [a xi(t=0) + by px (= )] + (1), (2)
i=1

2
. . . . ~ S
the univariate model is given by 02— Nod—(@+1)’

where j,k=1,2, j # k, 1, are Gaussian white noises. Minimal
alues of the sums of squared residual errors are denoted s7 i)
and 52\1 for the first and second processes, respectively. Un-
biased estimators for the residual error variances are denoted
675, and 03“ Prediction improvement for the process x;
achieved with the model (2) as compared to the model (1)
characterlzes the influence of x; on x;, (j—k): G =07
\{/e note that the value of G,_; is an estimate obtained
from a time series. In a deﬁmtlon of a theoretical (true) pre-
diction improvement ;’i‘f}c one minimizes the expectation of
the squared prediction error instead of the emplrlcal sum Ek
to determine the values of model coefficients, i.e., one uses
ensemble averaging or averaging over an infinitely long re-
alization instead of averaging over a finite time series. Thus,
”“‘J =0 for uncoupled processes x; and x,, but the estimator
G]_,k can take on positive values just due to random fluctua-
tions. Therefore, one needs a criterion to decide whether an
obtained positive value of G;_,; implies the presence of the
influence j%k It can be shown that the quantity F

(N 361—1)(31( Jk/)
ST ‘d
with (d N-3d-1) degrees of freedom. Therefore, one can

conclude that G}; >0, i.e., the influence j—k exists, at a
significance level p if F;_; exceeds (1-p) quantile of the
respective F distribution. It is called the F test or Granger
and Sargent test (e.g., [38]).

If a time series is short, it is problematic to use high
values of d since a large number of estimated coefficients
can then lead to insignificant conclusions about coupling
presence. The difficulty can be overcome in part if one con-
structs a bivariate AR model in the form,

is distributed according to Fisher’s F law

dy d;_

xi(t) = ay o+ > ay xit— i) + > by pxi(t =i

i=1 i=1

A )+ &),
3)

where j,k=1,2, j#k, and one selects a separate univariate
model order d; for each process instead of a common d in
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Eq. (1), a separate value of d;_, and a separate trial delay
time A;_ . If at least some of the values d and d;_,; can be
made small then the number of estimated coefficients is re-
duced.

If one needs nonlinear models, the difficulty gets even
harder due to the “curse of dimensionality.” In a nonlinear
case, the procedure of coupling estimation remains the same
but the AR models involve nonlinear functions. For instance,
one may use univariate models,

x() = fil(t = 1), .. x(t = d) Ay + (1), (4)

where f;, is a polynomial of some order P;, and similar bi-
variate models. Apart from d; and d;_, it is important to
choose the form of nonlinear functions properly. Polynomials
[8], radial basis functions [40], and locally constant predic-
tors [41] have been used. Yet, there is no regular procedure
assuring an appropriate choice.

If the number of processes M >2, then the estimation of
the influence j— k can be performed in two ways:

(i) Bivariate analysis of x; and x; results in an estimator
which reflects both a direct influence and that mediated by
other observed processes.

(ii) Multivariate analysis takes into account all the M pro-
cesses and allows to distinguish between the influences of
different processes on x;. Namely, one computes the squared
prediction error for a multivariate AR model involving all the
processes except for x; and for a multivariate AR model in-
volving all the M processes including x;. If predictions are
more accurate in the latter case, one infers the presence of
the direct influence j—k.

To express prediction improvements in relative units, one
normalizes G;_, by the variance a'2 of the process x; or by

the variance 02 of the prediction error of a univariate model
(1). The quantity G, ./ 7 is used more often than G Hk/oz
Both quantities are not greater than 1 and one may hope to
give them a vivid interpretation. Thus, G;_/ 6’% is close to 1
if the influence j— k describes almost entirely the random
term & unexplained by the univariate model (1). G;_/ 02 is
close to 1 if, in addition, the univariate model (1) explalns a
negligible part of the variance of x;. However, these attempts
of interpretation are often insufficient to assess the impor-
tance of the influences as discussed below.

B. Difficulties of interpretation

The following examples illustrate that quantities based on
Gm‘ek can hardly be understood from the physical pomt of
view as the “strength” of the influence j—k or its “impor-
tance.”

The first example is a linear process x; driven by a delta-
correlated process x,,

xi(0) = ax;(t=1) +x,(t = 1),

x(1) = &), )

where a=+0.99 and &(¢) is Gaussian white noise. Due to the
closeness of a to unity, the process x; exhibits alternating
stochastic trends and a large autocorrelation time. The vari-
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X
model of x; is linear with d;=1 and gives a prediction error
variance o‘%=a’§ Since a'%p:O for a respective bivariate AR
model, the prediction improvement is G5, = o7. Normalized
characteristics are G5,/ a'il =1-a?=0.01 and Gy /a}=1.
The second example is a chaotic quadratic map driven by
zero-mean delta-correlated noise x, [46],

ance of x; is o'zlzoé/(l—az). An optimal univariate AR

x,(r) = )\—x%(t— 1) +x,(t=1),

x)(1) = (1), (6)

where A=1.85 and 0'?:0.000 1. The variance of x; computed
from a very long realization is oﬁl =1.36. An optimal univari-
ate AR model of x; is quadratic with d,=1. The values of 021
and G5, are equal to 025f Hence, G5/ afl <1 and

i /oj=1. An effect of x, on the basic statistical charac-
teristics of x; is rather weak since the quadratic map demon-
strates almost the same behavior at 0'2=0, e.g., its variance is
o; =1.32.

Thus, in both examples G5/ 0-32‘1 is very small while
G", | o% is large. According to the first quantity, one should
say that the influence 2—1 is quite weak in both cases.
According to the second quantity, one should infer that the
influence 2—1 is quite considerable and approximately
“equally strong” in both cases. However, in the first example
one would observe an equilibrium state of x; without the
influence 2— 1 instead of high-amplitude fluctuations with
long autocorrelations, i.e., the influence is fundamentally im-
portant. In the second example, the influence 2 — 1 leads just
to a relatively weak increase in x; amplitude.

The main features of the above behavior of x; (long au-
tocorrelations and self-sustained chaotic dynamics) are deter-
mined by the individual properties of x; such as the term
ax,(z—1) in Eq. (5) and nonlinearity in Eq. (6). Quantitative
contribution of the term x, to the equation for x; is small in
both cases. However, troubles are also encountered if a pro-
cess x; is individually white noise as illustrated with the third
example, where x; is driven by a process x, which exhibits
strong autocorrelations,

xi(D=x(t= 1)+ &),

x(1) = axy(1 = 1) + §(1), (7)

where @=v0.99 and &(f) are independent Gaussian white

noises with 0'21=02§2:0'2=0.01. Here, o§1=0é1+ 1[:222: 1.01
and the variance of x; without the influence of x, would be
o§1=0.01, i.e., 101 times as small. Further, 0%\2=0'§1=0~01~ A
univariate AR model for x; gives a small prediction error
already for d=1 since it manages to describe autocorrelations
in x; induced by x,. Based on Eq. (7) and an approximately
optimal univariate predictor given by {x;()|x;(t=1))
=~ ax(t—1) where (-) stands for expectation and the vertical
line means conditioning, a univariate model prediction error
can be estimated as
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FIG. 1. Three time realizations of the system (8) selected ran-
domly. Parameter values are obtained by fitting an AR model to
climatic data for GST and CO, [Figs. 2(a) and 2(d)]: a;0=-1,
a;1=0.5, aj,=a;3=0, a;4=0.2, £=0.003, a,(=-2.456, a,,
=1.225 6, 0(2,22—0.295 42, a2’3=0.285 82, C¥2’4=0.091 14, a2’5
=—0.298 49, o =0.01, and o, =0.076 6. Tnitial conditions are the
same for all realizations and also taken from the climatic data:
x(1)==-04, x;(2)=-0.5, x,(3)=-0.4, x;(4)=-0.2, x,(1)=285.8,
x5(2)=285.9, x,(3)=286.0, x,(4)=286.2, and x,(5)=286.3. The
quantities xy, x,, and ¢ are regarded dimensionless.

e(t) = ax) (1= 1) = [xa(t = 1) + &(1)]
=alx(t=2)+ & (1= D] =[xt = 1) + &(1)]
=[axy(1=2) = x(t = D]+ g (1= 1) - &(1)
==&Ht-1)+a&(t-1)-§()

. Its variance is o7 =o'52¢(2+a2) ~ 20’?. Hence, G5\~ 02‘5
=0.01 so that G’{fl/o‘il <1 and G5,/ 07=0.5. Despite the
influence 2 — 1 is rather strong and increases the variance of
x; by two orders of magnitude, the value of G5, normalized
in any way does not reflect this fact adequately. The reason is
that the driving from x, is implicitly taken into account in a
univariate model for x; so that the difference between
univariate and bivariate model predictions is quite small.
The fourth example relates to nonstationary processes,

4
xi()=ay o+ E ay ixi(t=10) + Byt = 1) + &(1),
i=1

5
(1) = ang+ 2 @ (1= 1) + &,(1), (8)
i=1

whose parameter values are selected so that their realizations
mimic climatic time series for GST (x;) and CO, atmo-
spheric content (x,) (Fig. 1). The driving process x, is non-
stationary [Fig. 1(b)]. The driven process x; would be sta-
tionary for B=0 but gets nonstationary due to the
nonstationary driving and also exhibits an increasing trend
[Fig. 1(a)].

However, if the governing Egs. (8) are not known a pri-
ori, one cannot confidently claim the presence of coupling
just looking at the plots of x,(¢) and x,(7). A trend similar to
that observed in Fig. 1(a) may well be demonstrated by a
stationary univariate AR process, e.g., by the process x; in
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Eq. (5) and even by the process x; in Eq. (8) with B8=0.
These stationary processes demonstrate irregular alternation
of intervals with increasing and decreasing trends which are
called stochastic trends.

To detect the presence of the influence, one can use the
Granger causality formalism with some peculiarities. Despite
that stationarity of the processes is usually implied to define
prediction improvement, one can define it in a similar way
for nonstationary AR processes with constant parameters and
stationary noises &, [e.g., for Egs. (8)]. First, for uncoupled
nonstationary processes of such a type, residual errors of
univariate and multivariate models are Gaussian and station-
ary since they represent the influence of stationary noises §&.
Thus, the F test is applicable to reject the hypothesis of un-
coupled processes exactly as in the stationary case. Second,
if the driving j— k is present, the meaning of the value G;_;
obtained as in Sec. Il A somewhat differs from that for the
stationary processes. In a nonstationary case, statistical prop-
erties of the prediction errors for any AR model are well
defined under fixed initial conditions for all the processes
under study. In particular, the mean-squared prediction error
0'2k for any univariate AR model depends on time since it is
determined to a certain extent by the influence from a non-
stationary process X;. In contrast, the variance a%‘ i is constant
since it represents a stationary noise &;. The difference a'2

o-i| at each time instant can be called a prediction improve-
ment. It depends on time: ;’_”fk—G"”‘k(t) The quantity G;_;
defined in Sec. II A is an estimator for (G"“e(t)>, averaged
over the observation interval of the length N under given
initial conditions. Hence, G;_,; systematically depends on the
observation interval and initial conditions. In particular, it
rises with expanding observation interval for the example
(8). Moreover, since o'2 and 0'2 depend on time for nonsta-
tionary processes, their estlmators 0'2 and o'2 should be also
interpreted as the quantities related to specific initial condi-
tions and observation interval.

For the example (8), we computed 6‘%‘2 and G,_,; for an
observation interval 1 =r=150 from an ensemble of 100
time series generated with the same initial conditions given
in the caption of Fig. 1. As a result, the influence 2—1 at a
significance level p=0.05 is detected in 80 of the 100 cases.
The influence 1—2 is detected (erroneously) in four cases,
i.e., less than 5% as expected for p=0.05. Thus, the Granger
causality estimation properly reveals unidirectional coupling
in the system (8).

An averaged value of é‘% appears equal to 0.0105. Thus,
taking into account that o%|2=0.010 0, we estimate G aver-
aged over 150 time steps for the given initial conditions as
(G5, (1)),~ 67— 07,=0.000 5>0. An averaged normalized
quantity G,_,,/ &f appears equal to 0.06. In other words, pre-
dictions of x; are improved due to the knowledge of the
process x, by about 6% as compared to a univariate model.
Looking at a single pair of time series like those presented in
Fig. 1, one may pose a question: is the rise in x; is caused by
the driving from x,? Indeed, x; increases by the value of
about 0.8 over 150 time steps which is several times greater
than the fluctuations of x; around its trend. Can such a sig-
nificant rise be induced by x, if the relative prediction im-
provement is only 0.06? It may seem quite probable that the
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increase in x; is just a stochastic trend due to its own dynam-
ics rather than due to the driving from x,. This question
cannot be answered with the aid of the Granger causality.

In general, both processes x; and x; may exhibit nontrivial
individual dynamics such as self-sustained oscillations, long
relaxation times, slow trends, etc. In practice, one may have
to deal with all the highlighted factors leading to difficulties
in the interpretation of G values. Above, we have shown
theoretical expressions for the prediction improvements or
their estimates from long time realizations or large en-
sembles. Hence, all the difficulties are not determined by
data deficit or other technical problems. They are inherent to
the Granger causality concept itself. Obviously, they inevita-
bly emerge in the coupling estimation from a short time se-
ries.

To summarize, our examples show that the prediction im-
provement can hardly be interpreted directly as the influence
strength or importance. It shows to what extent a forecast of
one process gets better if another process is taken into ac-
count in a model, i.e., it directly reflects just an effect of a
researcher’s prior knowledge about another process. Yet, our
consideration does not cancel the fact that the Granger cau-
sality estimation is a basic tool to detect causal influences.
Below, we just complement it with an approach allowing to
assess long-term effects of the influences.

III. LONG-TERM CAUSALITY

A. Description of the method

We propose to characterize the influence j— k by analyz-
ing changes in the dynamics of x; which would take place if
the process x; behaved in a certain way. To realize the idea,
we proceed as follows.

(i) A characteristic S(x;) of the process x; essential for a
problem under study is selected. One may be interested in
statistical properties such as the power within a certain fre-
quency band, dynamical properties such as the largest
Lyapunov exponent, or concrete values of x; such as its mean
value at a given time instant ¢, etc. Thus, for the analysis of
the global warming, the values of GST in recent years (e.g.,
in 2005) and their trend (e.g., in 1985-2005) are important.

(ii) An ensemble of time realizations x;(r) is generated
with a multivariate AR model like Eq. (3). Initial conditions
x (1), ...,x(dy) for each realization are the same. They are
set equal to the corresponding observed values of x;. All the
processes x;, i=1,...,M, i#k, are considered as external
influences so that their experimentally observed time series
x,(t) is used as inputs to the equation for x;,. We call these
conditions “original” and denote them C,.

(iii) Expectation of S(x;) is estimated via averaging over
the ensemble. It is denoted (S(x;)|Cy). If the model is ad-
equate, its realizations x;(f) are on average close to the ob-
served time series x,(¢) and the value of S(x;) estimated from
the observed data lies within the limits of probable values of
S(x;) estimated from the model realizations.

(iv) An ensemble of artificial time realizations x;(¢) satis-
fying a condition C(x;), which specifies the above-mentioned
hypothetical behavior of x;, is generated.
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(v) An ensemble of model time realizations x,(r) is gen-
erated similarly to the step (ii) with the only difference that
artificial time series x;(¢) obtained at the step (iv) rather than
the original data x;(#) are used as inputs to the AR model for
Xg-

(vi) Expectation of S(x;) over the second ensemble is
computed. We denote it (S(x;) | C(x;)).

(vii) Long-term effect of the influence j—k (a character-
istic of long-term causality) is defined as

Ej i =(S(xp)[Co) = (S(xp)| C(x)). )

It can be convenient also to normalize E; ., eg. e
=|E;_/{S(x) | Co)| for (S(xi) [ Co) # 0.

Both S(x;) and C(x;) can be chosen in different ways de-
pending on the problem under study [47]. Further, E;_; de-
pends on the empirical model used. The latter must be ad-
equate both under the condition C, and C(x;). This
requirement is satisfied if orbits of the vector process
{x1(®), ..., xp(1)} under C(x;) do not leave a state space do-
main where they “live” under C,. Otherwise, one should
have prior reasons to assume model adequacy under C(x;),
i.e., to extrapolate. For instance, one may assume global lin-
earity or low-order polynomial nonlinearity of the processes.

The suggested approach provides coupling characteristics
which make clear physical sense. It relies on the long-term
description and, hence, extends the Granger causality con-
cept based on the short-term predictions.

B. Illustrative examples

To illustrate the usefulness of the long-term causality, we
compute it for the examples presented in Sec. II B. We select
the variance of x; as the statistic of interest for the examples
(5)-(7): 8 (x1)=o§l. To assess the importance of the influence

2—1, we compare S(x;) under C, to S(x;) under the condi-
tion that the influence is absent, i.e., C(x,) can be formulated
as x,=0.

For the example (5), the long-term effect is E,
:<032c1 | C&—(o’il |x2:0>=<ﬁi?)—0= (1(_73;2) and the normalized
value e, ,;=1. These numbers are easily interpreted. The
nonzero variance of x; is fully determined by the driving
from x,, i.e., the coupling is fundamentally important to ob-
serve any dynamics of x; different from an equilibrium state.
For the example (6), E,_,;=1.36—1.32=0.04 and the relative
long-term effect is e, ,;=(1.36—1.32)/1.36=0.03. In other
words, the change in the variance of x; due to the influence
of x, is weak (only about 3%), showing that this driving is
not so important as in the previous example. Thus, the long-
term causality allows to distinguish clearly between the two
cases as distinct from the Granger causality.

For the example (7), E,_;=1.01-0.01=1 and e,_,
~0.99, i.e., 99% of the variance of x; is determined by the
driving from x,. At the same time, the values of G5"¢ nor-
malized in different ways are small or moderate, even though
the influence 2 — 1 determines almost the entire behavior of
x;. Thus, the long-term analysis appears again much more
appropriate to characterize the importance of the influence.

For the example (8), we define S(x;)=x,(150)—x,(1) and
C(x,) as x,(1)=x,(1)=285.8 for all 7. In such a way, we ad-
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dress the above question whether the trend in x; observed
over 150 time steps is induced by the influence of x,. Analy-
sis of ensembles consisting of 100 time series gives
(S(x1)| Cyy=0.8 and (S(x,)|x,(r)=285.8) = 0. Thus, the long-
term effect is estimated as E, ,;=0.8 and e¢,_,; =1, i.e., the
trend in x, is fully caused by the driving from x, despite the
normalized prediction improvement G5 /o7 is only 0.06
which may seem a small number.

To summarize, the long-term causality makes clear sense
and properly characterizes the importance of the influence
2—1 for all the above examples.

IV. APPLICATION TO CLIMATIC DATA
A. Problem and data

A key global problem is to determine the relative role of
natural and anthropogenic factors in climate variations. To
predict the future climate change induced by anthropogenic
forcing, one must learn how strongly different factors affect
global climate characteristics. Thus, an impact of solar activ-
ity variations on GST is quantified in [10,11,48] via the
analysis of reconstructions and measurement data. The au-
thors note a variable character of the solar activity influence
on GST and, in particular, its increase in the second half of
the 20th century. Investigations of a 3D global climate model
show that the solar activity can determine only a relatively
small portion of the global warming observed in the last
decades. Considerable influence of an anthropogenic factor
on GST is noted in Ref. [6]. However, the question about the
relative role of different factors is still not answered convinc-
ingly on the basis of the observational data analysis.

The data used in our investigation are plotted in Fig. 2.
They include annual values 7" of the mean GST anomaly in
18562005, i.e., the GST difference from the mean value
taken over the base period 1961-1990 [49]; reconstructions
and measurements of solar irradiance I in 1856-2005 [50];
volcanic activity V in 1856-1999 [51]; and carbon dioxide
atmospheric content n in 1856-2004 [52].

We construct univariate models for GST (Sec. IV B) and
analyze influences of different factors with bivariate models
(Secs. IV C-IV E) and multivariate models (Sec. IV F).
Since the main question is about the causes of the GST in-
crease, we use two appropriate characteristics as S(7): (i) the
value of T in 2005 denoted as T,ys; (i) angular coefficient
of a straight line approximating the temporal profile T(¢) over
the interval 1985-2005 in the least-squares sense (a charac-
teristic of the recent GST trend) denoted as a;ggs_spgs- For
the original GST data, these characteristics take on the values
T2005=0.502 K and &1935,200520.02 K/year.

Models are fitted to the intervals [1856—L] for different
values of L. Thereby, we select time intervals where the in-
fluence of each factor on the GST is most pronounced and
determine the smallest L allowing to detect this influence.
The largest possible L is equal to 2005 if the variable V is not
included into the analysis (Secs. IV B, IV C, and IV E). Oth-
erwise, the largest possible L is 1999 since the data for V(z)
are available only up to 1999 and optimal AR models for
GST involve the value of V without any time delay (Secs.
IV D and IV F).
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FIG. 2. The data used: (a) mean GST (its anomaly from the base
period 1961-1990); (b) solar constant (irradiance in the range from
infrared to ultraviolet wavelengths inclusively); (c) volcanic activity
(optical depth of volcanic aerosol, dimensionless as discussed in
[51]); (d) carbon dioxide atmospheric content in ppm.

B. Univariate models of GST variations

The mean-squared prediction error of a linear AR model
(1) fitted to the interval [1856—2005] saturates at d;=4 [Fig.
3(a)]. Incorporation of any nonlinear terms does not lead to
statistically significant improvement (not shown). Thus, an
optimal model reads as

G’/ a)
0.2
0.18
0.16 f
T
0 4 8 12 16 20
0.16 — Prob b) 0.8 J ACF c)
0.12 0.4
0.08 0 JiHiigtyt
0.04 -g-g
0 =U.
-0.16 0 0.16 0 4 8121620

residual value [K] time lag [year]

FIG. 3. Univariate modeling of GST (10): (a) normalized pre-
diction error variance (dimensionless) versus model order (dimen-
sionless); (b) histogram (dimensionless) of residual errors for dy
=4; (c) their autocorrelation function (dimensionless) with 95%
confidence interval estimates
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1880 1920 1960 2000
0.8 - T[K] t [ycars] b)
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FIG. 4. Behavior of the model (10) fitted to the interval [1856—
2005]: (a) three time realizations taken randomly from an ensemble
of 100 realizations; (b) mean values over the ensemble (the thin
line) and 95% intervals of the distributions (error bars) with the
superimposed original data for GST (the thick line). Initial condi-
tions are always set equal to the original GST values in 1856—1859.

dr

T(1) = ag+ 2, a;T(t—i) + &), (10)
i=1

where dr=4, ay=-0.01%0.10 K, a;=0.58*0.08, a,
=0.03%x0.09, a3=0.11%=0.09, and a4=0.29 =0.08. The in-
tervals denote “* standard deviation estimate” coming from
the least-squares routine. Prediction error variance is oé
=0.01 K2, while the sample variance of GST over the inter-
val [1856-2005] is 07=0.06 K2. In relative units o%/07
=0.17, i.e., 17% of the GST variance is not explained by the
model. Residual errors for the model with dy=4 look station-
ary (the plot is not shown) and do not exhibit signs of “heavy
tails” [Fig. 3(b)]. Their delta correlatedness holds true [Fig.
3(c)]. Thus, the conditions of the F-test applicability for the
Granger causality estimation are satisfied.

Time realizations of the optimal model (10) look very
similar to the original time series [Fig. 4(a)]. To compare
them quantitatively, Fig. 4(b) shows mean values and 95%
intervals of the distributions of the model values 7(f) com-
puted from an ensemble of 100 simulated time realizations.
The original time series does not come out of the intervals
most of the time, i.e., the model quality is sufficiently high.
However, this is violated for the GST values in 2001-2005.
Thus, one may suspect that the model (10) with constant
parameters and constant 02g is not completely adequate, e.g.,
it may not take into account some factors determining the
essential GST rise over the last years.

The hypothesis finds further confirmation under a stricter
test. We check whether a univariate model fitted to the inter-
val [1856—1985] can predict the GST rise over the next in-
terval [1985-2005]. The results of model fitting are similar
to that for the interval [1856-2005]. Coefficient estimates
differ slightly: ay=-0.01+=0.16 K, @,;=0.56*0.09, a,
=0.05%0.10, a3=0.02+0.10, and a4=0.29*0.09. Predic-
tion error variance is again aé:0.0l K? but the sample vari-
ance of GST is smaller 07=0.03 K. Therefore, the model
does not explain 34% of the GST variance. The original GST
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FIG. 5. Behavior of the model (10) fitted to the interval [1856—
1985]: mean values (thin line) and 95% intervals (error bars) with
the superimposed original data for GST (the thick line).

values over the last 16 years do not fall within the model
95% interval (Fig. 5). Thus, one may assume that something
has changed in the GST dynamics in the last two decades,
e.g., as a result of external influences.

This is analyzed below with bivariate and multivariate
models for GST. All the models are constructed with d;=4.
The values of d;_.7, dy_, d,,_., and A;_ 7, Ay_ 1, and A,_ 7
are selected to provide the largest prediction improvement
and qualitative similarity between the model behavior and
the original GST data.

C. GST models including solar activity

An optimal choice of parameters is d;_ ;=1 and A;_,;=0.
The influence /— T is most clearly seen when the interval
[1856—1985] is used for model fitting [Fig. 6(a)]. The opti-
mal model reads as

T(t)=ay+a,T(t—1)+a,T(t—4) + bI(t - 1) + 5(1),
(11)

where ay=-93.7*44.4 K, a;=0.52+0.09, a,=0.27 + 0.09,
and b;=0.07+0.03 K/(W/m?). G, .;/05=0.028 and its

0.06  Grrl%% 1
0.04 P
0.02 0.1
0
0.02 1+ ; . . . L 0.01

a) 1920 1960 2000
L [years]

1920 1960 2000
L [years]

FIG. 6. Bivariate modeling of the GST from different time in-
tervals [ 1856—L]: (a) model (11) with solar activity; (b) model (12)
with volcanic activity; (c) model (13) with CO, atmospheric con-
tent. The normalized values of the prediction improvement (the
thick lines) are indicated on the left y axes (dimensionless); signifi-
cance levels (the thin lines) on the right y axes (dimensionless). The
dashed lines show the level of p=0.05.
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FIG. 7. The original GST values (the thick line) and 95% inter-
vals for the bivariate models of GST: (a) a model (11) with solar
activity fitted to the interval [1856-1985]; a model (12) with vol-
canic activity fitted to the interval [1856-1999]; (c) a model (13)
with CO, atmospheric content fitted to the interval [1856-2005].

positivity is statistically significant at p <0.035. If a model is
fitted to the interval [1856-2005], one does not detect any
I—T influence significant at p<0.05. It may evidence that
the impact of other factors has increased in [1985-2005].
Simulations with the model (11) confirm this assumption in-
directly. Figure 7(a) shows an ensemble of simulated realiza-
tions under C,. The 95% intervals are narrower than for the
univariate model (Fig. 5), i.e., incorporation of the variable I
into the model allows better description of GST in 1856—
1985. However, the GST rise in 1985-2005 is not predicted
as well.

To assess the long-term effect of the solar activity trend,
we simulated an ensemble of time realizations of the model
(11) when a detrended signal I(¢) taken from [49] is used as
input. The result is visually indistinguishable from the plot
in Fig. 7(a) (not shown). Thus, the removal of the solar
activity trend does not affect the model GST values.
Quantitatively, one gets almost the same values
(Tho05] Co)==0.01+0.02 K and (T,ps|removed trend)
=0.01£0.02 K. Besides, angular coefficients are
close to zero in both cases:  {ajog5-2005| Co)
~(a935-2005| removed trend)=0.002 K/year, their positiv-
ity is not statistically significant at p<0.05. The original
trend &;9g5_0005=0.02 K/year is not explained by the bivari-
ate model (11). Despite the solar activity influence on the
GST is detected with the Granger causality, the long-term
causality analysis suggests that the solar activity is not the
cause of the GST rise in the last decades.

Incorporation of nonlinear terms into the model does not
improve predictions. Therefore, the linear models are opti-
mal. This is the case for all the considerations below as
well. Therefore, the results are presented only for the linear
models.

016208-7



DMITRY A. SMIRNOV AND IGOR I. MOKHOV

D. GST models including volcanic activity

Influence of the volcanic activity appears of the same or-
der of magnitude as that of the solar activity. An optimal
choice is dy_p=1 and Ay_ ;=-1, i.e., a model

T(t) =ag+a;T(t = 1) + a,T(t = 4) + b,V(t) + 5(r). (12)

The influence is detected most clearly from the entire inter-
val [1856-1999] of available data for V(r) [Fig. 6(b)].
Gy .7/ 02=0.029 for that interval and its positivity is statis-
tically significant at p<<0.03. Model coefficients are a
=0.25*0.14 K, 4,=0.55%0.08, a4=0.29*+0.08, and by
=-0.92x041 K.

However, even allowing for the volcanic activity in the
AR model, one predicts just big fluctuations of GST about
the mean value of (T999| Cy)=0.7 K [Fig. 7(b)]. There is no
trend in model GST values over the last 20 years:
(@1985-2000] Co)=0.001 K/year which does not differ from
zero significantly [53]. If a signal V(r)=0 is used as input
then the model predicts even greater values of GST:
(T1990| V(1)=0)=1.5 K. Thus, the long-term effect of volca-
nic eruptions consists in limiting the GST values. Volcanic
activity is relatively high in 1965-1995 [Fig. 2(c)] that
should lead to the decrease in GST. Therefore, to explain the
GST rise during the last decades as a result of the volcanic
activity influence is also impossible.

E. GST models including CO, concentration

An optimal choice is d,_ ;=1 and A,_,;=0. Apart from
the highly significant prediction improvement, the model be-
havior is qualitatively similar to the original data (in contrast
to d,_.r>1). This model reads as

T(t)=ag+a;T(t - 1) +a,T(t—4)+bn(t—1) + ).
(13)

Influence of CO, appears much more considerable than that
of other factors. It is detected most clearly from the entire
interval [1856-2005] [Fig. 6(c)]: G,_;/03=0.087 and its
positivity is significant at p <0.000 2; the model coefficients
are ay=—1.10=0.29 K, a;=0.46x0.08, a4=0.20%+0.08,
and 5,=0.003£0.001 K/ppm.

An ensemble of time realizations [Fig. 7(c)] shows that
the model (13) under the original conditions C, describes the
original data more accurately than the models with solar or
volcanic activity. Moreover, the model (13) fitted to a nar-
rower interval, e.g., [1856—1960], exhibits practically the
same realizations as in Fig. 7(c), i.e., correctly predicts the
GST rise despite the data over an interval [1960-2005] are
not used for the model fitting. The model (13) fitted to any
interval [1856—L] with L> 1935 produces almost the same
behavior. The plots are not shown since they are similar to
that for the multivariate AR model presented below.

The long-term effect of n(z) is estimated as follows. If a
signal n(f)=const=n(1856) is used as an input to the model
(13) fitted to the interval [1856—1985], one observes just
fluctuations of GST about the level of Tjgs¢ rather than
any trend. The long-term effect is (Taggs| Co)—{Ta00s|n(2)
=n(1856))=0.8 K, (19852005 | Co) —{@19852005| (1)

PHYSICAL REVIEW E 80, 016208 (2009)
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FIG. 8. Results of the multivariate modeling (14) versus the end
of the time interval L: the numerical values of prediction improve-
ment (the thick lines) are indicated on the left y axis (dimension-
less); significance levels (the thin lines) on the right y axis (dimen-
sionless). The dashed line shows the level of p=0.05.

=n(1856))=0.017-0=0.017 K/year. Thus, according to the
model (13), it is the rise in the CO, atmospheric content
which explains a major part of the recent GST increase.

F. Multivariate models of GST

Models are constructed with the above optimal param-
eters d1~>T=dV~>T=dn~>T=l7 AIHT=A11~>T=O’ and AVHT=_1’
i.e., in the form

Tt)=ay+a,T(t=1)+a,T(t—4) +bd(t - 1) + b, V(¢)
+bn(t—1)+ ). (14)

The total prediction improvement G,’V,,HT/O'S% versus L is
shown in Fig. 8. It is significant at p<<0.05 for 1960=L
=1999.

Figure 9 presents model coefficients corresponding to
different factors. Influences of all three factors can be seen
to a certain extent, e.g., for the interval [1856—1985]:
ay=—62*+45 K, a,;=045%0.09, a,=0.22%0.09, b,
=0.045+0.033 K/(W/m?), by=-0.77%0.45 K, and b,

0.1
0
-0.1
-0.2
-0.3

]
05
0
0.5
-1
15

1920 1960 2000
0.01

-0.01

-0.02

1920 1960 2000
L [years]

FIG. 9. Coefficients of multivariate model (14) versus the end of
the time interval L: (a) b; corresponds to the solar activity; (b) by
corresponds to the volcanic activity; (c) b, corresponds to the CO,
atmospheric content. Error bars indicate intervals of the * standard
deviation estimate. The dashed lines show the level of 0.
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FIG. 10. The original GST time series (the thick lines) and 95%
intervals for the model (14) fitted to the interval [1856—1985]: (a)
under the original conditions Cgy; (b) under the condition n(r)
=n(1856).

=0.002 5*=0.001 0 K/ppm. Then, G,,V!nHT/02§=O.O77 and
its positivity is statistically significant at p<<0.005, while
“bivariate” prediction improvements for the same interval
are G;_ 7/ 07=0.028, Gy_7/03=0.012, and G,/ 03=0.053.
Hence, the contribution of CO, to the GST dynamics is the
strongest one. It becomes even more obvious with the long-
term analysis.

The model (14) fitted to the interval [1856—1985] under
the condition C, exhibits realizations which are very close to
the original GST data [Fig. 10(a)]. In particular, it predicts
well the GST trend in the last years: (T5ys|Co)=0.52 K,
(@1985-2005| Co)=0.015 K/year. If a detrended signal I(f) or
zero volcanic activity is used as inputs, almost nothing
changes in the model behavior, i.e., the long-term effect of
these two factors is very weak. If a constant value of n(r) at
the level of 1856 is used as input, the model does not exhibit
the GST rise [Fig. 10(b)]. It gives (Tyos|n(t)=n(1856))
=-0.34 K and a zero trend {a;og5_2005|7(t)=n(1856)).

Thus, the incorporation of the variable n into the model
allows to explain the GST rise in the last years (in particular,
at least 75% of the original GST trend &og5-2005
=0.02 K/year) in contrast to the other two factors. This re-
sult is observed if any L>1940 is used for the model fitting.

To illustrate an impact of CO, over a shorter time scale,
the interval [1856—1960] is used to fit the model (14). With
this model, we check what happens if n stops to increase
right after 1960. The original data n(r) for 1= 1960 and arti-
ficial signal n(r)=n(1960) for r>1960 are used as input to
the model. Figure 11 shows that a model quantity 7 stops to

0.8 7 T[K]
0.4

0
-0.4
-0.8

1880 1920 1960 2000
t [years]

FIG. 11. The original GST data (the thick line) and 95% inter-
vals for the model (14) fitted to the interval [1856-1960] under the
condition n(f)=n(1960) for > 1960.

PHYSICAL REVIEW E 80, 016208 (2009)

1880 1920 1960 2000
t [years]

FIG. 12. The original GST data (the thick line) and 95% inter-
vals for the model (14) fitted to the interval [1856—1930] under the
original conditions C,.

rise approximately after 1960, i.e., the changes in n(¢) mani-
fest themselves through the dynamics of the GST quite
quickly.

The influence n— T cannot be detected from the intervals
with L <1940. For example, Fig. 12 shows realizations of
the model (14) fitted to the interval [1856—1930]. Using such
a short piece of data, one “misses” all the influences on GST.
Therefore, the corresponding model does not predict the
GST rise even under the original conditions C,.

In more detail, the long-term characteristics of the model
(14) fitted to the interval [1856—L] are presented in Fig. 13
versus L. The plots show quantitatively that L=1940 is the
least value necessary to reveal the influence n—T.

V. CONCLUSIONS

We have suggested the concept of the long-term causality
to characterize long-term effects of couplings between ob-
served processes. Our approach is based on the construction
of empirical models and analysis of their behavior under
various conditions. It complements the widely used Granger
causality which assesses short-term effects of coupling.

Although the Granger causality remains a basic tool to
detect causal influences, the proposed characteristics are
more appropriate to quantify the strength and importance of
those influences. With several mathematical examples, we

2 4 Thps [K] ! a)

|
-2 LIS I L |

1920 1960 2000

L [years]
0.06 9552005 [K/years] | b)

0.04
0.02

-0.02
-0.04 xxwxxx{xwxwlxwxw[xwxwxwxwx‘

1920 1960 2000
L [years]

FIG. 13. Long-term characteristics of the model (14) fitted to the
intervals [1856—L] versus L under the original conditions Cy: (a)
Ta00s; (b) aj985_2005- Error bars show 95% intervals of the distribu-
tions. Horizontal dashed lines show characteristics of the original
data. Vertical dashed lines indicate the value of L where the model
characteristics get close to the original ones.
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have shown that the Granger causality may not distinguish
between the situations where an external driving determines
the entire qualitative character of an observed process and
where it induces only weak quantitative perturbations. Fur-
thermore, the Granger causality often underestimates the im-
portance of an influence since a univariate model for a driven
process implicitly describes the driving process as well. The
long-term causality allows proper characterization of all
these situations under the assumption that an empirical
model structure is appropriate to describe the observed pro-
cess under various conditions.

Both Granger causality and long-term causality are used
to estimate an effect of solar activity, volcanic activity, and
carbon dioxide atmospheric content on the global surface
temperature. The Granger causality shows that the three fac-
tors determine about 10% of the quantity 02f which is a vari-
ance of the short-term GST fluctuations unexplained by
univariate models. The short-term impact of CO, is several
times stronger than the impacts of the other two factors. The

PHYSICAL REVIEW E 80, 016208 (2009)

long-term causality reveals that the CO, content is a deter-
minative factor of the GST rise in the last decades. Thus,
according to the empirical models, the increase in the CO,
concentration determines at least 75% of the GST trend in
1985-2005, while the other two factors are not the causes of
the global warming. In particular, if the CO, concentration
remained at the level of 1856 year, the GST would not rise
during the last century. In contrast, variations in solar and
volcanic activities would not lead to significant changes in
the GST trend. All the influences are detected reliably if the
data at least over the interval [1856—1940] are used for the
model fitting.
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