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The dynamical instability of rough hard-disk fluids in two dimensions is characterized through the Lyapunov
spectrum and the Kolmogorov-Sinai entropy hKS for a wide range of densities and moments of inertia I. For
small I the spectrum separates into translation-dominated and rotation-dominated parts. With increasing I the
rotation-dominated part is gradually filled in at the expense of translation until such a separation becomes
meaningless. At any density, the rate of phase-space mixing, given by hKS, becomes less and less effective the
more the rotation affects the dynamics. However, the degree of dynamical chaos, measured by the maximum
Lyapunov exponent, is only enhanced by the rotational degrees of freedom for high-density gases but is
diminished for lower densities. Surprisingly, no traces of Lyapunov modes were found in the spectrum for
larger moments of inertia. The spatial localization of the perturbation vector associated with the maximum
exponent however persists for any I.
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I. INTRODUCTION

The phase-space trajectory of a many-body system with
convex particles is Lyapunov unstable �1,2�, which means
that it is extremely sensitive to small �infinitesimal� pertur-
bations of the initial conditions. If all possible perturbation
vectors are represented as an infinitesimal hypersphere cen-
tered on and comoving with a phase point; at later times this
object is deformed under the action of the linearized flow.
The main axes exponentially grow or shrink with time. The
time-averaged rates are referred to as Lyapunov exponents,
and the sorted set of exponents, ��l , l=1, . . . ,D�, as
Lyapunov spectrum. Here, D is the phase-space dimension.
The relation of the Lyapunov spectrum to more familiar fluid
properties has motivated much work over the last two de-
cades. If, for example, the density of a soft-potential Weeks-
Chandler-Anderson fluid �3� is isothermally increased from
the fluid to the solid phase, the Kolmogorov-Sinai �KS� �dy-
namical� entropy, which is equal to the sum of all positive
Lyapunov exponents �4�, exhibits a maximum at a density
that is about 20% smaller than the liquid-line density at the
fluid-to-solid phase transition. This result, which has been
verified for two- �5,6� and three-dimensional �7,8� systems,
is somewhat surprising. It implies that in soft-potential sys-
tems most efficient phase-space mixing and information gen-
eration about the initial state does not occur at the transition
itself but at a slightly smaller density. This sheds new light
on our understanding of the onset of phase transitions. An-
other example concerns stationary nonequilibrium systems
with time-reversible equations of motion. In this case, the
Lyapunov spectrum may be directly linked with the transport
coefficients and the rate of entropy production �1,9�.

Systematic studies of simple atomic fluids, such as hard-
sphere and soft-sphere models, have revealed some interest-

ing features. In particular, trajectory perturbations related to
the largest �in absolute value� Lyapunov exponents are
strongly localized in physical space �10–12�. This means that
at any instant of time only a very small fraction of all par-
ticles contributes to the fastest dynamical events responsible
for the largest rates of perturbation growth �or decay�. This
localization also persists in the thermodynamic limit. A simi-
lar localization property for the maximum-exponent pertur-
bations was found for one-dimensional distributed systems
with space-time chaos �13�. On the other hand, perturbation
vectors associated with the smallest �in absolute value� ex-
ponents may be delocalized and exhibit wavelike patterns in
space. These so-called Lyapunov modes were first observed
for systems of hard dumbbells �14,15� and hard disks
�16–18�, and are a consequence of the basic symmetries,
namely, invariance with respect to time and space transla-
tions �depending on the boundary conditions�. Due to expo-
nent degeneracies, they are recognized by a steplike appear-
ance of the Lyapunov spectrum for small �in absolute value�
exponents. For soft-potential systems, however, sophisticated
Fourier transform techniques are required to demonstrate the
presence of Lyapunov modes �5,19�.

The study of Lyapunov exponents has also been extended
to simple molecular systems such as soft �20,21� and hard
dumbbells �14,15� in two dimensions. In this case the dy-
namics is affected by qualitatively different degrees of free-
dom, translation and rotation, which both have a pronounced
effect on the spectrum.

In this paper we turn to a related model, which also in-
corporates the idea of the coupling of translational degrees of
freedom to some internal energy, which affects the dynamics,
namely, rough hard disks in two dimensions. The three-
dimensional version of this model, rough hard spheres, was
first introduced by Bryan �22� in 1894, and was consecu-
tively treated by Pidduck �23� and, in particular, by Chapman
and Cowling �24�, who worked out explicit formulas for the
transport coefficients in terms of kinetic theory. It is an ex-
tension of the familiar smooth hard-sphere model, with an-
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gular momentum added to each sphere due to roughness.
Roughness is introduced by the requirement that a collision
between two particles reverses the relative surface velocity at
the point of contact of the collision partners, exchanging
both linear and angular momentums in the process. This defi-
nition corresponds to the maximum possible roughness be-
tween two particles. This model was extensively studied by
O’Dell and Berne with respect to various models of molecu-
lar rotational relaxation �25�. They also investigated the dy-
namical properties of models with partial roughness in be-
tween that of the smooth and the maximum rough sphere
models �26,27�, in particular the hydrodynamic long-time be-
havior of various correlation functions �28�.

Here we are concerned with the two-dimensional version
of this model with maximum roughness, N identical rough
hard disk in a box with periodic boundaries. The paper is
organized as follows: in Sec. II we describe the model and
derive the collision map for colliding particles and the re-
spective linearized map for the dynamics in tangent space.
All simulation results are presented in Sec. III. We conclude
with a discussion of the results in Sec. IV.

II. ROUGH HARD-SPHERE AND HARD-DISK MODELS

A. Phase-space dynamics

We consider the three-dimensional �d=3� rough hard-
sphere model first. It consists of N identical hard spheres of
diameter �, mass m, and moment of inertia I, which are
located at positions q� i, and which move with �linear� veloci-
ties v� i and rotate with angular velocities �� i, i� �1, . . . ,N�.
Due to the isotropy of the spheres, the particle orientation is
not required in the following, and the state vector is given by

�� = ��q� i�,�v� i�,��� i�� . �1�

The phase-space dynamics is characterized by force-free
“streaming,” interrupted by instantaneous pairwise colli-
sions, at which momentum and angular momentum are trans-
ferred between the colliding particles such that the relative
surface velocity g� at the point of contact of the two particles
is reversed. Their positions are not affected by the collisions.

The equations of motion for the streaming between binary
collisions is written as a system of first-order differential
equations,

��̇ = F� ��� �:��q�̇ i = v� i�,�v�̇ i = 0��,���̇ i = 0��� , �2�

where i=1, . . . ,N. It has an obvious solution.
At a collision between two particles i and j, the collision

map

�� � = M� ��� � �3�

is introduced, which relates the precollision state �� to the
postcollision state �� �. With the following definitions,

q� = q� j − q� i; n� =
1

�
q� ; v� = v� j − v� i; �� = �� j + �� i, �4�

the relative surface velocity at the point of contact of i and j
becomes

g� = v� +
�

2
n� � �� . �5�

Here, n� denotes a unit vector along the line of centers from i
to j at the instant of collision, and v� is the respective relative
velocity. Maximum roughness requires that

g�� = − g� , �6�

where the prime, here and below, refers to the state immedi-
ately after the collision. Together with the conservation laws
for energy, linear momentum, and angular momentum, this
part of the collision map relevant for the collision between
particles i and j becomes �24�

q� i� = q� i,

q� j� = q� j ,

v� i� = v� i + �g� + 	n��n� · v�� ,

v� j� = v� j − �g� − 	n��n� · v�� ,

�� i� = �� i + �2	/��n� � g� ,

�� j� = �� j + �2	/��n� � g� . �7�

Here, 	 and � are constants, which depend on the moment of
inertia I around a diameter of the sphere:


 =
4I

m�2 ; � =




 + 1
; 	 =

1


 + 1
. �8�

The dimensionless parameter � controls the coupling be-
tween translational and rotational degrees of freedom. In the
limit I→0, the translational and rotational degrees of free-
dom decouple and the rough hard-sphere model reduces to
the conventional smooth hard-sphere model without rough-
ness �29�, if all angular velocity vectors are discarded.

B. Tangent-space dynamics

A perturbed trajectory is separated from the reference tra-
jectory by an offset vector

��� = ���q�i�,��v�i�,���� i�� , �9�

which evolves during the streaming phase according to the
linearized equations of motion

���̇ =
�F�

���
· ���:���q�̇i = �v�i�,��v�̇i = 0��,����̇ i = 0��� , �10�

i=1, . . . ,N. It is trivially solved.
The linearization of the collision map �Eq. �3�� is obtained

from Ref. �29�:

���� =
�M�

���
· ��� + � �M�

���
· F� ��� � − F� �M� ��� �����c. �11�

Here, ��c is the �infinitesimal� time shift between the colli-
sion of the reference trajectory and of the perturbed trajec-

JACOBUS A. VAN MEEL AND HARALD A. POSCH PHYSICAL REVIEW E 80, 016206 �2009�

016206-2



tory, which may be positive or negative. Similarly, we denote
by �q�c the shift in configuration space of the collision points
of these two trajectories. If, as before, i and j are the collid-
ing particles, these quantities are computed from �30�

��c = −
�q� · n�

v� · n�
; �q�c = �q� + v���c, �12�

where we use a notation for the perturbed quantities, which
is analogous to the previous notation in phase space �see Eq.
�4��:

�q� = �q� j − �q� i; �v� = �v� j − �v� i; ��� = ��� j + ��� i.

�13�

Since �q�c=��n�, we also find from Eq. �5�:

�g� = �v� +
1

2
��q�c � �� + q� � ��� � . �14�

With this notation, we obtain for that part of linearized map
�11� belonging to the collision of i and j:

�q� i� = �q� i − ��g� +
	

�2q��q� · v�����c,

�q� j� = �q� j + ��g� +
	

�2q��q� · v�����c,

�v� i� = �v� i + ��g� +
	

�2 ��q�c�q� · v�� + q��v� · �q�c� + q��q� · �v��� ,

�v� j� = �v� j − ��g� −
	

�2 ��q�c�q� · v�� + q��v� · �q�c� + q��q� · �v��� ,

��� i� = ��� i +
2	

�2 ��q�c � g� + q� � �g�� ,

��� j� = ��� j +
2	

�2 ��q�c � g� + q� � �g�� . �15�

If the moment of inertia vanishes ��→0 and 	→1�, the
linearized collision map of the smooth hard-sphere fluid is
recovered �30� if the angular velocity perturbations are dis-
carded.

C. Computer simulations of hard disks in two dimensions

For the remainder of this work we restrict ourselves to the
case of planar rough disks on the xy plane, d=2. All the
equations above remain valid in this case, if all position and
velocity vectors are placed in the xy plane, and all angular
velocity vectors �� i are perpendicular to this plane with a
single nonvanishing z component �i. Discarding all superflu-
ous components, we are left with D=5N components for the
state vector �� and for any perturbation vector ���.

Depending on the mass distribution of the disks and,
hence, their moment of inertia I with respect to a perpendicu-
lar axis through the center, the coupling parameter 
 may

take values between zero and one: 
=0 applies, if all the
mass is located in the center, 
=1 /2 corresponds to a uni-
form mass distribution, and 
=1 is obtained if all the mass is
concentrated on the perimeter of the disk.

For our numerical work we use reduced units, for which
the disk diameter �, its mass m, and the Boltzmann constant
k are set to unity. The time-averaged translational kinetic
energy per particle, 	K
 /N=�im	v� i ·v� i
 / �2N� is taken as the
unit of energy. Thus the temperature is one, T=1, as in our
previous work on smooth hard disks, which facilitates com-
parison �29�. We have ascertained that the translational and
rotational temperatures agree. The unit of time is
�m�2N / 	K
�1/2. Lyapunov exponents and the Kolmogorov-
Sinai entropy are measured in units of �kT /m�2. The num-
ber density is defined as 
=N�2 /V, where N is the total
number of disks, and V denotes the area of the simulation
box with extensions Lx , Ly. For fluid phases we take a
square box, Lx=Ly, where the particles are initially put on a
square lattice with random velocities and random angular
velocities. For solid phases the aspect ratio Ly /Lx=�3 /2 is
used, which is compatible with the triangular close-packed
lattice and does not differ much from a square. By initially
putting the particles on a triangular lattice with random ve-
locities and angular velocities, high-density systems up to the
close-packed density 
0=1.1547 may be studied in this way.
Periodic boundary conditions are used throughout. The only
free parameters are the number density 
 and the moment of
inertia I �respective of the coupling parameter 
=4I�.

To evolve the system, an event-driven algorithm similar to
that of Rapaport �31� was used. Proper care was taken to
avoid missing glancing collisions. The conservation of en-
ergy and linear momentum was carefully verified. The total
angular momentum is not conserved due to the periodic
boundaries. For the computation of the 5N Lyapunov expo-
nents, the classical algorithm of Benettin et al. �32� and Shi-
mada et al. �33�, properly modified for the instantaneous
elastic rough collisions encountered here, was used. Simul-
taneously with the reference trajectory �� �t�, 5N replica of
perturbation vectors, ����l��t�, l=1, ¯ ,5N, with orthonormal
initial conditions were evolved and periodically reorthonor-
malized with a Gram-Schmidt procedure �29,30�.

III. RESULTS

A. Lyapunov spectra

In this section we discuss the Lyapunov spectra of rough-
disk fluids and solids. A full spectrum consists of the ordered
set of Lyapunov exponents, �1��2� ¯ ��D, where D is
the phase-space dimension. For a symplectic system as in
our case, the Lyapunov exponents always appear in pairs
with a vanishing pair sum �34�. Therefore, the Lyapunov
spectrum consists of a positive and a negative branch, and is
symmetric, �l=−�D+1−l, if plotted as a function of the index
l. Therefore, we may restrict ourselves to the positive branch
of the spectrum, 1� l�D /2, for which �l�0, which consid-
erably reduces the computational effort. Examples for full
spectra will be given below �see the left panel of Fig. 8�.

Another important property concerns the vanishing expo-
nents, which are a consequence of the fundamental continu-
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ous symmetries that leave the Lagrangian and, hence, the
motion equations invariant. According to Nöther’s theorem,
each such symmetry corresponds to a constant of the motion
�35� and, in addition, generates two symplectic-conjugate
vector fields in phase space, along which perturbations do
not stretch or shrink and, therefore, give rise to two vanish-
ing exponents �2�. For example, invariance with respect to
time translation gives rise to energy conservation and to two
vanishing exponents. Similarly, invariance with respect to
uniform translation in space gives rise to momentum conser-
vation and four more vanishing exponents. However, isot-
ropy of space and, hence, angular-momentum conservation
applies locally for each collision but not globally due to the
periodic boundary conditions. Altogether only six Lyapunov
exponents vanish in our case, as is also confirmed by the
simulations.

Although a spectrum only consists of discrete points in-
dexed by the integer l—or by the reduced index

l̄=2l /D—most of the time in the figures below it is repre-
sented by a smooth line drawn through these points to en-
hance the clarity.

To assess the influence of translation-rotation coupling on
the Lyapunov spectra, we show in Fig. 1 results for a rather
dilute gas, 
=0.1, of N=400 rough disks at a temperature
T=1. The various curves belong to different moments of
inertia I and are specified by their coupling parameters 

=4I. The system is fairly large, and the results are close to
the thermodynamic limit �29�. The phase space has D
=2000 dimensions. In the left panel of Fig. 1 the positive
branches of the full spectra are shown, where the normalized

index l̄= l / �D /2� is used �1� l�D /2=1000� on the abscissa.

Most noticeable is the transition region near l̄0= �2N
−3� / �D /2�=0.797, which separates the spectra into a

translation-dominated regime for l̄� l̄0 and a rotation-

dominated regime for l̄0� l̄� ��5N−6� /D�. A magnification
of the transition region is shown in the right panel of Fig. 1,
where the un-normalized index l is used on the horizontal

axis. Analogous spectra for a rather dense gas, 
=0.7, are
shown in Fig. 2.

For very small 
 translation and rotation are effectively
decoupled and the dynamics is almost identical to that of a
smooth hard-disk gas. For 400 particles the positive expo-
nents �1 , . . . ,�797 agree with the positive exponents of the
smooth hard disks and, hence, are translation dominated,
whereas the �very small but positive� exponents
�798, . . . ,�997 are due to the angular velocity perturbations
and are only present in the rough-disk case. The three re-
maining exponents, �998, . . . ,�1000, vanish due to the con-
served quantities. Note that this is only the positive branch of
the full spectrum.

The maximum Lyapunov exponent �1 is generally taken
as an indicator and a measure for dynamical chaos. Similarly,
the Kolmogorov-Sinai �or dynamical� entropy hKS is a mea-
sure of phase-space mixing �36�. Due to the exponential in-
stability, a number of initially close phase points are eventu-
ally uniformly distributed over the energy surface. The
characteristic time for this mixing process is the mixing time
1 /hKS �37,38�. Since, according to Pesin �4�, hKS is equal to
the sum of the positive exponents, it is directly accessible
through the Lyapunov spectrum. In the left panel of Fig. 3
the maximum exponent as a function of 
 is shown for vari-
ous densities. An analogous plot for the KS entropy per par-
ticle, hKS /N, is provided in the right panel of the same figure.
If 
 is increased, �1 decreases weakly for right densities, 

�0.7, and increases for large densities. The KS entropy al-
ways decreases with 
, even for large densities. This means
that mixing becomes less effective the more the rotational
degrees of freedom affect the translational dynamics. Simi-
larly, chaos is slightly reduced with increasing 
, at least for
low-density gases.

To demonstrate the density dependence, we show in the
left panel of Fig. 4 the Lyapunov spectra for various densities
of a 400-particle gas of hard disks with a very small moment
of inertia for which 
=0.004. Analogous spectra with a large
moment of inertia corresponding to 
=0.4 are provided in
the right panel of the same figure. All exponents increase
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FIG. 1. �Color online� Lyapunov spectra for a system of N=400 rough hard disks at a low density 
=0.1. The various curves are for
different moments of inertia I, where the keys refer to the coupling parameter 
=4I. The uniform mass distribution corresponds to 
=0.5.

Left panel: positive branches of the spectra. The reduced index l̄ is used on the abscissa. Right panel: magnification of the transition region
between translation- and rotation-dominated exponents. The un-normalized index l is used on the abscissa.
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with the density, in particular �1, as is shown in more detail
in Fig. 5, where the maximum exponent—for various 
—is
plotted as a function of 
. In some sense, �1 behaves similar
to the potential-generated contribution to the pressure P �39�.
For low densities, both �P /
kT�−1 and �1 are proportional
to the single-particle collision frequency �2. Figure 5 re-
sembles the respective phase diagram for the pressure. The
conspicuous gap in the spectra marks the two-phase region
for the fluid-solid transition. As mentioned in the previous
section, the data beyond the solid line were obtained with a
nonsquare simulation box �aspect ratio �3 /2� while the data
below the fluid line with a square simulation box. This
choice of aspect ratios merely facilitates the setting up of the
initial conditions for the solid-state simulations and does not
have any significance for the results. The gap disappears
completely if �1 is plotted as a function of the single-particle
collision frequency �2 �not shown�, which is easily obtained
from the simulation. This has been noted already for the

smooth hard-disk system �
=0� �29� and is also true for all

�0. This means that the statistical distributions for the pa-
rameters characterizing the collisions �such as the impact pa-
rameter� do not noticeably differ for the disordered fluid and
the coexisting crystal.

Based on kinetic theory, a density expansion for �1 of the
smooth hard-disk model �
=0� becomes

�1 = A�2�− ln 
 − B + O�1/ln 
�� , �16�

where

�2 = 2�1/2
��kT/m�g��� �17�

is the single-particle collision frequency. The pair distribu-
tion function at contact, g���, converges to unity in the low-
density limit. Estimates for the constants A and B have been
computed by van Zon and van Beijeren, A=1.473, B=2.48
�40,41�, which represent the numerical data well for very
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small densities 
�10−3. Expressions such as Eq. �16� with
different constants are expected to hold also for the rough
disks when 
�0.

Whereas all of the results so far are for systems contain-
ing 400 particles, the dependence of the KS entropy on the
single-particle collision frequency �2 is demonstrated in Fig.
6 for a system with only N=64 disks �to reduce the compu-
tational cost�. This number is still large enough to be repre-
sentative for large systems. As was found for the maximum
Lyapunov exponent, the phase transition �near �2
20� does
not specifically show up in hKS when viewed as a function of
�2 instead of 
. If 
 approaches the close-packed density

0=1.1547, both �1 and hKS diverge due to the divergence of
�2. For very low densities and smooth hard disks �
=0�, a
kinetic-theory based density expansion for the KS entropy
similar to that in Eq. �16� becomes �40,42�

hKS/N = A��2�− ln 
 + B� + O�
�� . �18�

Estimates for the constants A� , B� have been obtained by
van Zon et al. �40� and most recently by de Wijn �43�, A�

=0.5, B�=1.47�0.11, which describe the numerical data
well for 
�10−3. Again we expect a similar representation to
hold also for 
�0. Still, it seems surprising that the KS
entropy is reduced so much by the introduction of an internal
degree of freedom �rotation�, which effectively acts as an
energy storage in between collisions.

An interesting steplike structure is observed for very
small 
 in Fig. 2 and in the left panel of Fig. 4. These steps
are a remnant of the degeneracy of exponents due to the
existence of Lyapunov modes for smooth �
�0� hard-disk
systems �16,18�. Lyapunov modes are periodic spatial pertur-
bations associated with the small positive exponents with
indices l� l0=2N−3 �and with the conjugately paired nega-
tive exponents�. The corresponding perturbation vectors may
be represented as periodic vector fields coherently spread out
over the simulation box and with well defined wave vectors.
They may be understood as Goldstone modes of a system
with continuous symmetries �44�—translation invariance in
space and time—which give rise to conservation of energy
and linear momentum �35�, and in addition to the six vanish-
ing exponents �2�. Note that angular momentum is globally
not conserved according to the periodic boundaries and does
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not contribute. Figure 2 shows that the exponent degeneracy
and, hence, the Lyapunov modes are still rather well devel-
oped for 
=0.004 corresponding to a moment of inertia I
=0.001. This is independent of the density as is shown in the
left panel of Fig. 4. However, if 
 is increased, the steps
quickly disappear and Lyapunov modes do not seem to exist
anymore. This is most clearly demonstrated in Fig. 2. It is
not clear to us why this happens in view of the fact that
modes are readily found for two-dimensional hard-dumbbell
fluids. Fourier transformation techniques will be required to
settle this point.

For rough hard disks the angular velocity subspace of the
full phase space has N dimensions and contributes N expo-
nents to the full spectrum. For small 
 these exponents are
different from zero but small. Half of them belong to the
positive branch �to which we restrict ourselves without loss
of generality� and are located in the index interval 2N−2
� l� �5N /2�−3, sandwiched between the translation-
dominated regime, l�2N−3, and the three vanishing expo-
nents still attributed to the positive branch, �5N /2�−2� l
�5N /2. We refer to this regime as rotation dominated. If 

is increased, the exponents in this regime are increased, and
the exponents in the translation-dominated regime become
smaller until the spectrum becomes very uniform as, for ex-
ample, in the right panel of Fig. 4, and the separation into
translation- and rotation-dominated regimes becomes mean-
ingless. Such a system we call fully coupled. Translation and
rotation contribute indistinguishably to the mixing process in
phase space.

B. Localization of tangent-space perturbations

The maximum �minimum� Lyapunov exponent is the rate
constant for the fastest growth �decay� of a phase-space per-
turbation and is dominated by the fastest dynamical events
and binary collisions. It is not too surprising that the associ-
ated tangent-vector components are significantly different
from zero for only a few strongly interacting particles at any
instant of time. Thus, the respective perturbations are
strongly localized in physical space. It has been shown that
for both hard and soft disk respective sphere systems the
localization persists in the thermodynamic limit, such that
the fraction of tangent-vector components contributing to the
generation of �1 follows a power law �N−� , ��0, and con-
verges to zero for N→� �5,11,15,45�. The localization be-
comes gradually worse for larger indices l�1 until it ceases
to exist and �almost� all particles collectively contribute to
the coherent Lyapunov modes mentioned in the previous sec-
tion. Similar observations for spatially extended systems
have been made by various authors �12,17,46–49�.

To demonstrate the localization property of the rough
hard-disk system, we define the contribution of an individual
disk i to the perturbation vector ����l� belonging to �l as the
square of the projection of ����l� onto the subspace of this
disk,

�i
�l� = ��q�i

�l��2 + ��v�i
�l��2 + ���i

�l��2.

Because ����l� is normalized in the Gram-Schmidt step of the
algorithm, one has �i

N�i
�l�=1 for all l, and �i

�l� may be inter-

preted as a kind of �normalized� action probability of i for
the perturbation l. It should be noted that for the definition of
�i

�l� the Euclidean norm is used and that all localization mea-
sures depend on this choice. Qualitatively, this is sufficient to
demonstrate localization.

In the top panel of Fig. 7, �i
�1� for l=1 is plotted as a

scalar field ��1��q��, where the surface is interpolated over
regular grid points covering the whole simulation box. There
exist one big and a few smaller competing active zones,
which move around randomly such that the system remains
homogeneous when viewed over a long time. This should be
contrasted with the middle panel, where an analogous plot
�with the same scale� is shown for the delocalized tangent

vector with an index l=200 �l̄=0.556�. For this comparison,
the system contains 144 rough disks with 
=0.5 at a density

=0.5.
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FIG. 7. �Color online� Top: instantaneous view of the action
probability �i

�1� for the maximally localized tangent vector, plotted
as a scalar field over the simulation box. For the grid interpolation
a weight function w�r��r−2 is used, where r is the distance of a
particle to the grid point. The system consists of N=144 rough hard
disks with 
=0.5 at a density 
=0.5. Middle: as in the top panel,
but for �i

�200�, which belongs to a delocalized vector with normal-

ized index l̄=0.556. Bottom: localization width WTM
�l� �see Eq. �19��

for N=144 disks with 
 indicated by the labels. The density 


=0.5. The reduced index l̄= l / �D /2� is used on the abscissa, and
D=5N.
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A number of localization measures have been introduced
to assess the localization of ����l�, not only for l=1 �15� but
for all l �12,17�. The most common is due to Taniguchi and
Morriss �12�, who define a “localization width”

WTM
�l� = exp�S�l��/N , �19�

which is based on the Shannon entropy for the “probability”
distribution �i

�l�:

S�l� =�− �
i=1

N

�i
�l� ln �i

�l�� .

Here, 	¯ 
 denotes a time average. WTM
�l� is bounded accord-

ing to 1 /N�WTM
�l� �1, where the lower and upper bounds

apply for complete localization and delocalization, respec-
tively. In the bottom panel of Fig. 7 we plot WTM

�l� for the
144-disk system used before. The value of 
 is indicated by
the labels. This localization spectrum changes surprisingly
little when 
 is increased from zero to one. The only major
difference is for the rotation-dominated regime. For the
smooth disks, 
=0, the points for WTM

�l� are irrelevant in this

regime, 0.8� l̄�1.2, and are not shown. Note that only data
for the positive branch of the Lyapunov spectrum are shown,

l̄�1.
Alternatively, an even simpler definition may be used,

which involves the Fermi entropy �sometimes also referred
to as the quadratic entropy� �50�,

SF
�l� =��

i=1

N

�i
�l��1 − �i

�l��� . �20�

It has the desired property: SF
�l� vanishes if only a single par-

ticle is responsible for the phase-space growth �extreme lo-
calization�, it is �N−1� /N
1 if all particles contribute iden-
tically �complete coherent delocalization�, and it is in
between otherwise. This measure might be particularly use-
ful, whenever localization is even more complete than in the
case presented here, but it distinguishes poorly between
much delocalized states.

At this point, a critical remark is in order. The localization
spectrum in the bottom panel of Fig. 7 is shown for the
positive branch of the Lyapunov spectrum only. It should be
completely symmetrical with respect to the conjugate nega-
tive branch, S�l�=S�D+1−l�, due to the time-reversible phase-
space structure: a time-reversal operation converts the stable
manifold into the unstable manifold and vice versa. For the
smooth hard-disk case, 
=0, this symmetry is observed with
high numerical precision �51,52�. However, for 
�0 the
spectra are slightly asymmetric �not shown�. The reason for
this asymmetry is subtle. The perturbation vectors ����l� we
use in this work are orthonormal. They span the correct sub-
spaces of the tangent space required for the computation of
the Lyapunov exponents according to the standard algorithm
�18,32,33� but they are not covariant: that means, they do not
strictly follow the linearized dynamics in tangent space but
are regularly reorthonormalized by the Gram-Schmidt proce-
dure. As a consequence, they are not invariant under time
reversal. The last property, however, is required for a com-

plete symmetry of the localization spectrum, such that the
expanding vector ����l� in the time-forward direction becomes
the contracting vector ����D+1−l� in the time-backward direc-
tion. If proper covariant Lyapunov vectors �53� are used in-
stead of the Gram-Schmidt vectors, the symmetry is reestab-
lished for 
�0. Details will be communicated in a
forthcoming publication �52�.

C. Convergence times in tangent space

For the Lyapunov exponents to converge, the orthonormal
set of tangent vectors needs to reach its proper orientation in
tangent space starting from an arbitrary initial orientation.
The convergence time varies with the number of particles
and with the index l. For smooth particle systems it was
shown in Ref. �54� that the vector associated with the maxi-
mum exponent aligns with a convergence time proportional
to N�, where � lies between 0.4 �for smooth hard disks� and
0.9 �for soft repulsive interaction potentials�. For higher in-
dices the convergence is an even slower collective phenom-
enon. In this section the methods of Ref. �54� are adapted to
determine the system-size dependence of the convergence
times of rough disks not only for l=1 but for all tangent
vectors.

We consider M randomly oriented orthonormal sets
of tangent vectors, �m= ����m

�l�� , l=1, . . . ,D, where m
=1, . . . ,M. Each set spans the full D-dimensional tangent
space and acts as an initial condition for the computation of
a full Lyapunov spectrum for the same reference trajectory.
All spectra eventually converge. Any two tangent vectors
giving rise to the same Lyapunov exponent but belonging to
different initial sets � need to become parallel or antiparallel
in the course of time, such that their dot product approaches
�1. To measure the convergence time for a given l, we av-
erage over all such possible products,

�l�t� =
2

M�M − 1� �
m=1

M−1

�
m�=m+1

M

����m
�l� · ���m�

�l� � . �21�

�l�t� increases with time from �0 to unity, where the initial
value ��0
0.06 for N=36� is independent of l due to the
random orientation of the sets � and converges to zero for
N→�. The time for which �l�t� crosses a threshold � for the
first time is taken as a measure of the convergence time �l. In
the following we take �=0.9. Any other choice for this
threshold only results in times that differ by a constant factor.

Before continuing the discussion, we note that the
Lyapunov spectrum exists in the thermodynamic limit. This
has been shown for smooth hard disks and hard spheres �29�,
and means that for N→�, at constant density, the Lyapunov
spectra quickly converge to a limiting curve when plotted as

a function of the reduced index l̄= l / �D /2�. For the rough
hard disks this is demonstrated in the left panel of Fig. 8. The
spectra there are for 16–256 particles at a density 
=0.7, and
for 
=0.4. Full spectra with their positive and negative
branches are shown, which are related by the conjugate pair-
ing symmetry as was mentioned in Sec. II. Thus, the deriva-
tive of the spectrum with respect to the normalized index
exists in the many-particle limit,
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d��l̄�

dl̄
= lim

N→�

�l̄+�l̄ − �l̄

�l̄
. �22�

It has been argued in Ref. �54� that for 
=0 the decay time
for the correlation function �1�t� concerning the maximum
exponent is determined by 1 / ��1−�2� and, hence, by the
inverse “slope” of the spectrum at l=1. These arguments also
apply to all the other exponents such that one expects

�l =
A

��l+1 − �l�
�23�

to hold, where A is a fitting parameter that, for the choice
�=0.9, becomes 2.85. Rewriting this expression in terms of

the reduced index l̄= l / �5N /2� gives

�l =
A

����l̄�/�l̄��l̄



5NA

2
� d��l̄�

dl̄
�−1

, �24�

where we have replaced the finite differences by the respec-
tive differentials. Since the limiting spectral slope �Eq. �22��
is independent of N, the convergence time for any l is ex-
pected to be proportional to the particle number N.

Our results for �l /N are depicted in the right panel of Fig.
8, where experimental results for N=36 and N=72 rough
disks are shown by the points. Both systems have a density

=0.7, and 
=0.4. Clearly the points for different N collapse
onto a single curve proving the proportionality of �l to N. If
�l is computed from the slope of the Lyapunov spectrum
according to Eqs. �23� and �24�, the smooth lines are ob-
tained. Their agreement with the simulation points supports
our assertion in Eq. �23�.

The symmetry obviously exhibited by the convergence
time, �l=�D+1−l, is surprising in view of the fact that the
algorithm treats successive vectors successively: the orienta-

tion of the second vector is affected by that of the first, the
orientation of the third vector by that of the first and second,
and so on.

IV. CONCLUSIONS

In this paper we investigate rough hard-disk systems, ar-
guably the simplest models of a molecular fluid with trans-
lational and rotational degrees of freedom. The rotation of
the particles may be viewed as a mechanism to store internal
energy, which is returned to the translational degrees of mo-
tion with some delay. We compute Lyapunov spectra and
study the effect of rotation-translation coupling on the dy-
namical stability of such systems.

If the moment of inertia I of the disks vanishes, the trans-
lational dynamics is completely decoupled from the rota-
tional degrees of freedom, and the results for the smooth
hard-disk system are reproduced. If I respective of the more
relevant coupling parameter 
=4I is increased, the Lyapunov
spectrum changes drastically with the rotation-dominated
parts of the spectrum being gradually filled in, until a sepa-
ration into translation- and rotation-dominated parts becomes
meaningless.

The maximum exponent, �1, which is taken as an indica-
tor for dynamical chaos, increases with increasing 
 for large
enough densities �
�0.7�, but decreases for smaller densi-
ties. At the same time, the Kolmogorov-Sinai entropy hKS
always decreases. The latter, which is the sum of all positive
exponents, gives the rate of mixing in phase space, which
becomes less and less effective the more important the rota-
tion is for the dynamics. We encounter the unexpected situ-
ation that for large densities dynamical chaos may increase
with 
 whereas at the same time phase-space mixing takes
longer. This should be contrasted to the behavior of a system
of hard dumbbells �15�. For a uniform mass distribution of
the dumbbells �corresponding to 
=0.5 for the rough disks�,
both �1 and hKS increase with the molecular anisotropy, and
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FIG. 8. �Color online� Left panel: full Lyapunov spectra of rough hard-disk systems for various system sizes N, plotted as a function of

the normalized exponent l̄= l / �5N /2�. All systems have a density 
=0.7, and 
=0.4. The spectra quickly converge to a smooth limit
spectrum for N→�. Right panel: Lyapunov vector convergence times, divided by N, for two system sizes, N=36 and N=72 as indicated by
the keys. The points are direct simulation results while the smooth lines were computed from the Lyapunov spectrum via Eq. �23�, where
A=2.85.
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the mixing time decreases. From this point of view, the
rough-disk model seems artificial.

Another surprise is the seeming lack of Lyapunov modes
for the rough disks with nonvanishing 
, given the fact that
modes were readily found for hard-dumbbell systems �15�.
As for soft interaction potential systems, Fourier transforma-
tion methods may still give evidence for modes. This point
deserves further investigation. However, the localization in
physical space of the perturbation vectors associated with the
maximum exponent is as expected.

The localization spectrum shown in the bottom panel of
Fig. 7 is an application of a projection of the tangent vectors
onto the phase space of individual disks. Due to the time-
reversal symmetry of the evolution equations, such projec-
tions should show definite symmetries with respect to the
positive and negative �not included in Fig. 7� branches of the
Lyapunov spectrum. However, more often than not, these
symmetries are numerically not recovered by the classical
algorithm. The explanation lies in the fact that Gram-

Schmidt-orthonormalized tangent vectors span the proper
subspaces for the computation of the exponents but are not
covariant with the tangent flow �53�. If covariant vectors are
used, these spurious asymmetries disappear �52�.

Up to now little is known about the mechanism governing
the convergence of tangent vectors toward their proper direc-
tions. For the rough hard-disk systems it is shown that the
convergence time for all l vary linearly with the system size,
N. Furthermore, they are related to the slope of the spectrum
at a particular l. This view is suggested by the existence of
the thermodynamic limit of the spectrum.
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