PHYSICAL REVIEW E 80, 016204 (2009)

Dependence of entanglement dynamics on the global classical dynamical regime
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We analyze the connections between the dynamical generation of continuous variable entanglement and the

underlying classical trajectories in pairs of coupled oscillators. In the quantization of a periodic cycle, we find
periodic entanglement which has twice the frequency of the corresponding classical motion. Such frequency
doubling continues to hold true in the entanglement dynamics for a second model that exhibits a two-frequency
orbit in the classical domain. In addition, the periodicity and the quasiperiodicity of the entanglement are found
to be independent of the local classical dynamical behavior. Finally, in our third model, the entanglement
production rate is found to be (i) higher in the chaotic regime and (ii) insensitive toward the choice of regular

or chaotic initial condition in the mixed regime. In summary, we have illustrated through our sample models
that the generation of dynamical pattern of entanglement can depend completely on the global classical
dynamical regime without being influenced by the local classical behavior.
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I. INTRODUCTION

There has been extensive research revealing the corre-
spondence between quantum and classical mechanics. No-
table examples include the manifestation of chaos in the
energy-level distribution of atomic systems, as well as the
wave patterns associated with those levels. Interestingly,
such correspondence can also exist within the entanglement
of coupled quantum systems, whose research is especially
fascinating at the regime where transition to chaos occurs.
The investigation typically involves an examination into the
maximal mean value and the production rate of entanglement
based on nonlinear models such as the four-dimensional
standard map [1], coupled kicked tops [2-8], interacting
spins system [9,10] and the Jaynes-Cummings model [11],
which are typical examples of finite-dimensional systems. In
these studies, classical chaos is found to induce a stronger
entanglement [1,11], with the entanglement production rate
linked to the Lyapunov exponent [4]. In addition, they have
shown that increased chaos leads to an eventual saturation of
the entanglement production rate [7]. In contrast, less work
has been done on entanglement in infinite-dimensional sys-
tems (also known as continuous variable entanglement) and
their correspondence to classical chaos. Recently, Zhang and
Jie [12] investigated the production of continuous variable
entanglement through the quantization of classical tori and
the mixed trajectories. They have found good quantum-
classical correspondence. This has stimulated us to explore
the quantum-classical correspondence in a similar context,
with an additional situation of a purely chaotic regime which
has yet to be explored within infinite-dimensional systems.
Furthermore, we believe that interesting quantum-classical
correspondence arises not only in the regime that transits to
chaos, but it can also occur within the regime of regular
systems. In fact, detailed studies on the dynamics of en-
tanglement when the corresponding classical system is regu-
lar have been lacking. For example, there is no investigation
yet on the quantum-classical correspondence for a system
that displays periodic entanglement. Although quasiperiodic
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classical dynamics has been shown to correspond to en-
tanglement dynamics with either quasiperiodicity or satura-
tion, the underlying classical dynamics for a system that ex-
hibits quasiperiodic entanglement dynamics is still not clear.
Indeed, an interesting question that we want to answer is can
a periodic classical trajectory give rise to a quasiperiodic
entanglement dynamics upon quantization?

In this paper, the initial states |¢(0)) are chosen to be the
coherent states |a;) ® |a,). This serves as the connection be-
tween the quantum and the classical domains [12]. The cen-
ter of the coherent state is located precisely on a point
(x1,p; X2, p») in the classical phase space. Note that a;=(x;
+ip;)/ V2. The dynamics of the quantum system is investi-
gated both numerically and analytically. For numerical simu-
lation, it is convenient to choose as basis vectors the product
states |n;) ®|n,), in which |n;) and |n,) are the eigenvectors
of the harmonic oscillator, and we shall truncate this basis at
the size M. With this basis, the Schrodinger equation be-
comes

M M

d
iﬁ;f(ml,mzlw(t)h E 2 <m1sm2|H|nl,”2><”1,”2|¢(l)>,

n;=0 ny=0
(1

where H is the Hamiltonian of the two-coupled oscillator
system of interest and {m, ,m,|H|n,,n,) is a four-dimensional
matrix [13]. The entanglement of the time-evolved state is
quantified by the von Neumann entropy (S,y) of the reduced
density matrix (p,),

Sun(t) == Tr{p;(t)In p, (1)}, (2)

which one can compute by means of the dynamical two-step
approach [14] for faster converging results. In addition, we
shall introduce the quantity &, which is closely related to the
entanglement. According to the criterion developed by Duan
et al. [15], as long as the parameter
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FIG. 1. (Color online) Dynamics of quantum entanglement (solid curve) and &(r) (dashed curve) in two-mode magnon system with

coupling strengths (a) A=0.1, (b) A=0.5, (¢c) A=0.8, and (d) \=1.1.

E=(Au)*+ (Av)?-2<0, (3)

the quantum state is entangled. Note that u=x;+x, and
v=p;—p, are the two Einstein-Podolsky-Rosen-type opera-
tors, while Au and Av are the corresponding quantum fluc-
tuations. Analytical solutions of the quantum fluctuation in
the linear models will be worked out by means of the
Heisenberg equation of motion,

d 1
Eajzi[ajsH:L (4)

with a; being the annihilation operators.

Our paper involves a study on three conservative Hamil-
tonian systems and is organized as follows. In Sec. II, we
show the transition of a classical fixed point from a center to
a saddle point in a two-mode magnon system. The response
of the quantized system to this transition is then investigated
by means of the dynamical generation of quantum entangle-
ment and fluctuation. In Sec. III, we proceed to exploring the
correspondence of periodic and quasiperiodic classical tra-
jectories in a two-coupled harmonic-oscillator system with
the entanglement dynamics of their quantized counterparts.
In Sec. IV, we investigate the change in entanglement dy-
namics as the corresponding classical dynamics transits from
the regular to the chaotic regime through a coupled quartic-
oscillator model. For the models discussed in these sections,
we aim to seek for the correspondence, if any, between the
classical trajectories within different global dynamical re-
gimes and the continuous variable entanglement dynamics of
the quantized system. Note that our main focus is on the

dynamics rather than the production rate of quantum en-
tanglement. Finally, in Sec. V, we conclude our paper.

II. TWO-MODE MAGNON SYSTEM

The Hamiltonian of our first model is given by

2 2
1 1

=2y —mwixt + P2, —mid + Nxi1x, = pipa)s
2m 2 2m 2

)

where p; and p, are the kinetic momenta, x; and x, are the
oscillators’ positions, and A is the coupling constant. We
have assumed that m=wy=1, and A=0. In the classical re-
gime, A=1 is the transition point where the fixed point at the
origin transits from a center to a saddle—i.e., trajectories
cycle with a frequency of w=11-\? around the origin when
A <1 but evolve either toward or away from the origin when
A>1.

The second quantization of Eq. (5) gives the following
Hamiltonian:

H= ﬁ(al{al + %) + ﬁ(a;az + %) + )\ﬁ(aJ{a; +a,ay), (6)

which models the two-mode magnons excited by an external
field [16]. Note that x;= \«"h(aj-+aj)/ V2 and pj=\c"ﬁ(a;
-a;)/ (72i). For the quantized system, we determine the en-
tanglement dynamics numerically from several initial coher-
ent states for A=0.1, 0.5, and 0.8 with a basis size of M
=50. The resultant entanglement dynamics is found to de-
pend only on the coupling strength A but not on the initial
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coherent state. Figures 1(a)—1(c) show that the entanglement
dynamics is periodic when A\ < 1. Interestingly, the periods of
entanglement dynamics are exactly half the periods of the
corresponding classical motions. This frequency-doubling
phenomenon in the quantization of the classical periodic or-
bit has been reported earlier by Satchell and Sarben [17] for
quantum moment in a dissipative system. Our result here and
in the next section shows that this phenomenon remains true
in a conservative system.

By increasing N\, we observe an increase in the maximum
attainable entanglement. This means that the stronger the in-
teraction between the two modes, the more they become en-
tangled. Figure 1(d) shows the entropy dynamics at different
basis sizes in the saddle regime, where we simulate the en-
tanglement dynamics with A=1.1. As time goes on, we ob-
serve that the number of basis required to approximate the
time-evolved state increases rapidly. It seems that the strong
interaction between the two modes has induced a rapid
growth in the entropy as the quantized system crosses the
A=1 transition point.

Next, we determine the time-dependent equation of the
ladder operators a;(t) and a;(t) for j=1,2 by means of the
Heisenberg formulation of quantum mechanics,

d(a; —i —iN\[a;
E(cg):(n\ i)(ai)’ "

whose solutions are given by

a,(1) = [cosh(fct) - isinh(m)]al(m _ 2 nh()al, (8)
K K

aZ(t) = [cosh(m‘) + isinh(xt)]a;(O) + %sinh(m‘)al, 9)

where k=\V\>—1. The time dependence of & is given by
&0 = 2(aja) = (a}Xay) +(abay) - (ab)az) +(aja3)
—{aXa}) +(a1ay) = (a;Xar)), (10)

where (O) in Eq. (10) means {(a,, @,|O(1)| @, a,). Substitut-
ing Egs. (8) and (9) and their conjugates into Eq. (10), we
obtain

AN

§(t)=|)\2_1|(>\—1)Isinh(tv>x2—1)|2. (11)
For A <1, we have
2\ —
&1 = {cos(2t\1 =A%) -1}, (12)
A+1

which is always less than the lower bound—zero. According
to Duan’s criterion, the violation of the lower bound serves
as a sufficient condition for entanglement. This analysis
through Duan’s criterion corresponds to our numerical quan-
tification based on the von Neumann entropy. First, the sum
of quantum fluctuations is independent of the chosen initial
coherent state (|a;)® |a,)) as shown in Egs. (11) and (12),
just like our conjecture on the entropy dynamics. This can be
observed from the value of &(z), which depends only on A.
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Thus, the entanglement dynamics of the two-mode magnon
system is independent of the local classical behavior. Next,
the periodic &(f) has a frequency of 241—\2, which is ex-
actly twice the corresponding classical frequency. It is im-
portant to note that &(r) is always greater than zero when A
>1. As a sufficient but not a necessary criterion, Duan’s
criterion can no longer determine whether the state is en-
tangled or separable in the A>1 regime. Nonetheless, the
analytical result for &(f) does show a transition point at A
=1. Indeed, &(z) diverges to infinity for A=1, in direct cor-
respondence to the fact that the entanglement between the
two oscillators grows rapidly in time. Finally, these results
illustrate the good quantum-classical correspondence in the
bifurcation behavior [18] of the two-mode magnon system,
which exemplifies the manner in which entanglement dy-
namics can depend on the global classical dynamical regime.

III. COUPLED HARMONIC OSCILLATORS

The Hamiltonian of our second model involves two har-
monic oscillators coupled in a bilinear fashion,

2 2
H=&+lmw§x%+ Py lmcu(z}x§+)\)c1xz. (13)
2m 2 2m 2

Physical realizations of such systems include vibrating mol-
ecules and modes of the electromagnetic field [19,20]. Again,
we have set m=wy=1. Furthermore, we have restricted A
< 1. In general, the classical trajectories yield two-frequency
(wy,=V1=N\) periodic or quasiperiodic orbits, provided the
initial conditions are not in the eigenspace of either one of
the frequencies. For instance, when A=11/61, the classical
trajectory has a rational ratio of frequency and is hence pe-
riodic. On the other hand, when A=0.19, the classical trajec-
tory consists of two incommensurate frequencies and is qua-
siperiodic. The Poincaré sections for these two cases are
shown in Figs. 2(a) and 2(c). Note that the crosses represent
one-frequency periodic orbits when the initial conditions lie
in the eigenspace, while the sets of points and the closed
curves correspond to two-frequency periodic and quasiperi-
odic orbits, respectively.

The second-quantized form of Eq. (13) is given as fol-
lows:

1 1 N
H= ﬁ(aifal + 5) + ﬁ(a;az + 5) + T(alf +a))(al+ay).

(14)

Figures 2(b) and 2(d) show the numerical results of the en-
tropy dynamics for A=11/61=0.18 and 0.19, respectively.
Although the value of the maximum entropy for these two
cases are closed to each other, the entanglement possesses
very different dynamics—periodic for the former and quasi-
periodic for the latter within the time of 407.

We next solve the Heisenberg equation of motion for this
two-coupled harmonic-oscillator system as follows:
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FIG. 2. (Color online) Poincaré surface of section and entanglement dynamics of the coupled harmonic-oscillator system: A=11/61 for
(a) and (b), while A=0.19 for (c) and (d). Insets in (b) and (d) show the corresponding dynamics of &(z).

A A
-1 0 —-iz -iz
a A A a
; o i i i ;
i a; _ 2 a; (15)
dt a )\ )\ . a
+ —i— —-i- - 0 +
aj 2 al
A A
i— i— 0 i
2 2

and obtain

ay(t) = (= Ay + By — Ay + By)a;(0) - (C; + Cy)a](0)
+(=A;+ B +A;—By)ay(0) - (C, - Cz)a;(O),

(16)

ab(1) == (C} = Cy)a,(0) + (B} = A} - B + A3)aj(0)

= (C} + Cy)ay(0) + (B} — A} + B, — A})a}(0),
(17)

where
_ 2
A= (w1,-1) gt
’ 80)1’2

_ 2i(w = D@, + 1)
12=

sin(w »1).

80)],2

This solution enables us to determine the dynamics of the
sum of quantum fluctuations which gives

2
&) =— Lo > 1[1 —cos(2w,1)] + %(w% ~ D[1 =cos(2w,1)].

2
(18)

Interestingly, the analytical result is in accordance with
our numerical result—there is also a two-frequency dynam-
ics in the sum of quantum fluctuations. The two frequencies,
Q,=2V1+\ and Q,=2V1-\, are twice the corresponding
classical frequencies w; and w,, respectively, which is again
the frequency-doubling scenario that we have obtained in our
first model. Furthermore, the dynamics, which is either peri-
odic or quasiperiodic, depends on the ratio of the two fre-
quencies ,/€),, instead of the local dynamical behavior of
the underlying classical trajectories. This is because both the
entanglement and the sum of quantum fluctuations depend
only on the coupling strength and not on the chosen initial
coherent state. Thus, the entanglement dynamics of the
coupled harmonic oscillators is dependent solely on the glo-
bal classical behavior. The most dramatic effect of this global
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FIG. 3. Classical phase portrait for the coupled quartic-oscillator
system with coupling constant A=0.4.

dependence is observed for the quasiperiodic entanglement
dynamics of Fig. 2(d), which corresponds to the classical
periodic orbit indicated by a cross in Fig. 2(c). This indicates
that a periodic classical trajectory can give rise to a quasip-
eriodic entanglement dynamics upon quantization, answering
the question posed in Sec. I. Indeed, similar counterintuitive
influence of the global classical dynamical regime applies to
the one-frequency periodic orbit (indicated by a cross) in
Fig. 2(a), which corresponds to a two-frequency periodic en-
tanglement dynamics as illustrated in Fig. 2(b).

IV. COUPLED QUARTIC OSCILLATORS

The classical dynamics of the coupled quartic-oscillator
system based on the following Hamiltonian:

H=%(p%+p%)+3x‘11+x‘2‘—)\x%x% (19)

has been found to range from regular behavior to completely
chaotic behavior through the variation in the coupling con-
stant \. It is observed that the system becomes more chaotic
as the coupling becomes larger. For instance, the phase space
is a mixture of classical tori and chaotic sea when A=0.8 but
becomes purely chaotic when A=2.7. Figures 3-5 show the
respective phase portraits of classically regular, mixed, and
chaotic dynamics for this system. Note that good quantum-
classical correspondence has been found in the study of the
quantum energy-level distribution of this system [21].

In order to treat the quantum and the classical regimes
with care, we adopt the parameter R=7%/A to quantify the
“quantumness” of the system [22]. Note that A=|a|*+|a|?
is the action of the system with a; and «, being the coordi-
nates of the coherent state. When R> 1, the system is in the
quantum regime. On the other hand, when R <1, the system
is in the semiclassical regime. The semiclassical regime can
be approached in either of the two ways: A—0 or A —oe.
The latter case corresponds to the high-energy approximation
in the semiclassical theory. The former case is the one
adopted in this paper.
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FIG. 4. Classical phase portrait for the coupled quartic-oscillator
system with coupling constant A=0.8. Note that the marked points
indicate the coherent states employed as initial conditions in the
dynamical evolution.

By first considering the quantum regime with R>1, we
simulate the entropy dynamics of the quantized system of
Eq. (19) at A=0.4, 0.8, and 2.7. The results are shown in Fig.
6. Next, we treat the system semiclassically with R <0.1, for
which we again simulate the entropy dynamics of the quan-
tized system of Eq. (19) at A=0.4, 0.8, and 2.7. The results
are shown in Fig. 7. Compared to the quantum treatment, the
entropy of entanglement is much larger in the semiclassical
regime. Nevertheless, similar phenomena are observed to oc-
cur in the two regimes. First, in both treatments, the en-
tanglement production rate is the highest for the case of pure
chaos, lower for the mixed case, and the lowest for the regu-
lar case, in correspondence to the finite-dimensional systems
[11,1]. Second, the frequency of the oscillation becomes
higher as A becomes larger. Finally, identical results are ob-
tained in the mixed case even though the entanglement dy-
namics is simulated numerically from different initial coher-
ent states. This indicates that the entanglement dynamics is
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FIG. 5. Classical phase portrait for the coupled quartic-oscillator
system with coupling constant A=2.7.
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A=2.7 in the quantum regime.
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insensitive toward the choice of regular or chaotic initial
condition in the mixed case for a fixed energy. In other
words, the behavior of the entanglement dynamics in this
model depends entirely on the global classical dynamical
regime and not on the local classical behavior. This is quite a
surprising result, which is different from those obtained by
Zhang and Jie [12] for an infinite-dimensional system and
Novaes [10] for a finite-dimensional system. They have both
observed a local influence of the classical regular and chaotic
dynamics on the corresponding entanglement dynamical pat-
tern. In Fig. 8, we have reproduced the dependence of the
entanglement production on the classical tori observed by
Zhang and Jie to show the obvious difference from our case.

Il
180 200

V. CONCLUSION

We have explored the link between classical trajectories
and continuous variable entanglement dynamics in three
pairs of two-coupled oscillator system. In the first model, the
quantization of periodic orbits yields periodic entanglement,
whereas the quantization of saddle produces a rapid growth
of entropy, with the transition occurring at A=1 for both the
classical and the quantum regimes. For the second model, the
quantization of periodic orbits in the case of commensurate
frequencies has led to periodic entanglement dynamics,
while the quantization of both the periodic orbit and the qua-
siperiodic tori in the case of incommensurate frequencies has
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coupled quartic-oscillator system
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45F
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FIG. 8. (Color online) Entanglement dynam-
1 ics simulated from seven initial coherent states
for a harmonic-oscillator pair coupled by biqua-
dratic potential (see [12]). Note that the von Neu-
mann entropy shown here has been multiplied by
a factor of 1/In 2, so that the definition of von
4 Neumann entropy is the same as that used in [12].

0.5

o

250 300 350
t

0 50 100 150 200
led to quasiperiodic entanglement dynamics. Interestingly,
the dynamical feature of the entanglement dynamics is solely
parametrized by the two independent frequencies of the clas-
sical system. In the third model, the quantization of either the
regular, the mixed, or the chaotic regime of a coupled quartic
oscillators yield entanglement dynamics that are again inde-
pendent of the classical initial conditions, just like the first
two models. This is unexpected as entanglement is generally
known to depend on local dynamical behavior [10] and
structure of the classical phase space [23], as well as non-

classical features such as the type of initial states [8] and

400 450

their spectral widths [24], for nonlinear systems. In conclu-
sion, we have found that entanglement dynamics can be de-
pendent on the global classical dynamical regime but inde-
pendent of the local classical behavior in both integrable and
nonintegrable models. With entanglement being an important
resource in quantum communication and computation, we
would expect these “nonlocal” models to generate an encod-
ing subspace [25] that is stable against any errors in the
preparation of the initial separable coherent states. Such a
feature will be physically significant in the design of robust
quantum information processing protocols.
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