
Parameter and state estimation of experimental chaotic systems using synchronization

John C. Quinn,1,* Paul H. Bryant,2,† Daniel R. Creveling,3,‡ Sallee R. Klein,1 and Henry D. I. Abarbanel1,2,4,§

1Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
2Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093, USA

3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA

�Received 7 April 2009; published 6 July 2009�

We examine the use of synchronization as a mechanism for extracting parameter and state information from
experimental systems. We focus on important aspects of this problem that have received little attention previ-
ously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an
example system. We explore the impact of model imperfection on the ability to extract valid information from
an experimental system. We compare two optimization methods: an initial value method and a constrained
method. Each of these involves coupling the model equations to the experimental data in order to regularize the
chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent
coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed �or
manually adjusted� coupling. For the case of an optimized time-dependent coupling function u�t� we find a
robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong
correlation with the location in phase space and appears to depend on noise, imperfections of the model, and
the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the
optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this
result with that obtained using simulated data may provide one measure of model imperfection. The con-
strained method with time-dependent coupling appears to have benefits in synchronizing long data sets with
minimal impact, while the initial value method with time-independent coupling tends to be substantially faster,
more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental
data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive
Lyapunov exponent. The methods we explored are easily extended to driven systems such as neurons with
time-dependent injected current. They are expected to be of value in nonchaotic systems as well. Software is
available on request.
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I. INTRODUCTION

Physical models of nonlinear systems formulated as dif-
ferential equations or as discrete time maps typically have
unknown parameters representing our lack of detailed
knowledge or our conjectures about how the dynamics oper-
ates in these systems. Further, forecasting the future of such
systems requires the knowledge both of these parameters as
well as the knowledge of the full state of the system at the
time a forecast begins. Unfortunately, in interesting complex
dynamics as diverse as weather forecasting to prediction of
networks of biological neurons, we cannot measure the full
states of the system and we must rely on an accurate param-
eter and state estimation procedure that allows reliable infer-
ence both of the parameters and of the full states of the
dynamical systems from observations of some subset of the
dynamical variables.

We make use of the phenomenon of chaos synchroniza-
tion �1–6�. This idea can be applied to the problem of pa-
rameter estimation by treating the measured data as the

driver system and implementing the model or response sys-
tem numerically. The receiver system is coupled to the driver
system �7–19�. The fixed parameters and the initial condi-
tions in the model/response system are adjusted to find the
set of parameters which yields the smallest synchronization
error of the two systems. Sufficiently strong coupling can
often mitigate the effects of a positive Lyapunov exponent in
the response system. It also tends to dramatically reduce the
difficulty in finding a path through the parameter space from
the initial guess to the optimal values. This can often mean
the difference between success and failure because when the
number of parameters is relatively large, it becomes a prac-
tical impossibility to fully explore that space.

In this paper we examine as a “test system” a seemingly
simple experimental system, the electronic Colpitts oscilla-
tor. This system has the dual advantage of being easy to
study while still exhibiting difficulties in modeling that are
commonplace in more complex systems such as networks of
neurons. It is often assumed that a perfect model for a system
is available, but in reality no model is perfect and often the
seemingly small imperfections of a model can have a sub-
stantial impact on our ability to extract accurate information
about that system from the available data.

In the control theory literature the task of determining the
unobserved dynamical variables from observations of a sub-
set of the whole collection of state variables goes under the
name of finding observers for the system �20–27�. To the
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extent one may consider the unknown parameters of the sys-
tem as state variables constant in time, the observer problem
also includes the estimation of these parameters.

Chaotic oscillations of the system may mean that the ob-
servations we make and their equivalent dynamical variables
in the models we develop for those nonlinear systems may
not synchronize. This will severely impede our ability to
estimate either unknown states or parameters for the system
of interest. This issue was first addressed by So et al. �28� in
1994 where they recognized that the states of the observed
system, represented by vectors x�t�, and the states of the
model system, represented by vectors y�t�, might not syn-
chronize because of instabilities on the synchronization
manifold x�t��y�t�. They introduced an approach that
looked at many of the ideas of observers from the point of
view of this instability. They also recognized that the
Kalman-type filters that are often lifted from their natural
setting in linear problems to help achieve observability or
synchronization in nonlinear problems are directed toward
the reduction in noise in the tasks at hand rather than directed
toward instabilities in the formulation of the problem itself.

We have introduced a variational formulation for state and
parameter estimation in nonlinear problems that focuses on
these issues as aspects of one problem. To illustrate the is-
sues involved and the solutions we suggest, we have con-
structed an experiment on a simple, widely utilized, three
variable nonlinear circuit and we present both the formula-
tion of our state and parameter estimation in that context as
well as presenting the results of our analysis of the observed
data for the circuit.

The circuit is shown in Fig. 1. It is a damped resonator
together with a bipolar junction transistor providing a non-
linear dynamical element. There are three independent dy-
namical variables for its description and we choose them to

be VCE�t�, the voltage at the collector relative to the emitter,
VE�t� the voltage at the emitter relative to ground, and IL�t�
the current through the inductor.

Our challenge in this paper is to use measurements of
VE�tn� taken every tn=n�t; �t=10 �s for n=0,1 , . . . ,N to
estimate the parameters in the model of the circuit and to
estimate the unobserved state variables VCE�tn� and IL�tn�
over the same selection of observation times. Once we have
estimated VCE�tN� , IL�tN� and the fixed parameters, we may
use the model for prediction for t� tN.

It is the transistor in particular that makes this an interest-
ing system for study. A simple transistor model is well
known, but what is perhaps not very well known is that real
transistors will follow this model only approximately. As we
will show, an imperfect model can have a significant impact
on our analysis, especially on efforts to extract accurate pa-
rameter values. We attempt to find methods to test the accu-
racy of our results and potential improvements to the model.
In carefully examining the effect of coupling strength be-
tween model and data we find interesting and anomalous
behavior which may provide a useful test for the quality of
different models for the system.

We examine two methods for estimating parameters that
build on the idea of stabilizing the synchronization manifold
between the observations and the model dynamics �29–31�.

�i� One method �initial value� determines the parameters
and the state variables at the initial time VE�0� ,
VCE�0� , IL�0� by solving the model equations for a selection
of parameters and initial conditions to produce a model
counterpart of the observed variable’s time series. A metric
for the distance between the model output and the observa-
tions is then minimized using a standard procedure in initial
condition, parameter space. The advantages of this method
include speed and flexibility of use. Software implementing
this method is available from one of the authors �P.B.� �32�.

�ii� The other method �constrained optimization� works in
the larger space of model variables at each observation time
tn, a coupling/control parameter at each of these times, and
the time-independent parameters. This method offers more
efficient and precise control of synchronization though it suf-
fers from a number of practical problems, e.g., setup, speed,
memory, and numerical problems. Software for implement-
ing this method is also available �33�.

A. Circuit equations

We work with a nonlinear oscillator of Colpitts variety.
This has a long history in the study and utilization of non-
linear oscillators for a variety of technological applications.
While it is likely that many engineers working with Colpitts
and other nonlinear oscillators encountered chaotic oscilla-
tions, Kennedy �34� appears to be the first to have recognized
this was not noise or an unwanted defect in circuit behavior.
We utilize a chaotic Colpitts oscillator for illustrating our
suggestions on estimating parameters and unobserved states
in a chaotic system. It is important to move beyond the nu-
merical study of these oscillators and demonstrate in an ex-
perimental setting how the ideas work because theoretical
models at best only approximately describe real experimental
systems.
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FIG. 1. Colpitts circuit.
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We built the circuit shown in Fig. 1 using the following
components: C1=7.44 �F, C2=7.23 �F, L=11.74 mH,
REE=392 �, and the power supply VCC=5.03 V, VEE
=−5.10 V. The capacitors were nonelectrolytic with a maxi-
mum voltage rating of at least 30 V. The inductor was air
core to avoid any nonlinearity due to core saturation or hys-
teresis. We used a 100 � potentiometer in the circuit to ad-
just the parameter R. Note that R in all the equations includes
the resistance of the potentiometer plus the resistance of the
inductor, which was not negligible in our case. We used a
2N2222 BJT small signal transistor. The fundamental fre-
quency of this oscillator is approximately f0=1 / �2��LCeq�,
where 1 /Ceq=1 /C1+1 /C2. For the circuit elements we used,
f0�770 Hz.

The dynamics is described by three coupled first-order
differential equations obtained directly from the circuit using
Kirchoff’s laws:

C1
dVCE�t�

dt
= IL�t� − IC„VE�t�… , �1�

C2
dVE�t�

dt
= IL�t� −

VE�t� − Vee

Ree
+ IB„VE�t�… , �2�

L
dIL�t�

dt
= Vcc − VE�t� − VCE�t� − RIL�t� , �3�

where IC�VE� and IB�VE� are the currents into the collector
and base of the transistor. The state of the circuit is com-
pletely described by the three dynamical variables: VCE�t�
the potential at the collector relative to the emitter, VE�t� the
potential at emitter relative to ground, and IL�t� the current
through the inductor. A key ingredient needed to complete
the description is the set of equations that specify the tran-
sistor currents. Here we used a simplified version of the
Ebers-Moll equations �35,36�

IC�VE� = Is exp�− VE

VT
� , �4�

IB�VE� =
IC�VE�

�F
, �5�

where �F is the forward current gain and Is is the reverse
saturation current, both properties of the particular transistor.
VT=kT /e is the thermal voltage. These equations are nonlin-
ear and are what leads to the interesting behavior of the
circuit. Inaccuracy in the transistor model has important con-
sequences for our analysis. Later in this paper we discuss
some ways to improve it.

Although in this test circuit we can take experimental
measurements of all three of the variables, it will often be the
case in experiments on other systems that only some of the
variables can be measured; this is certainly true, for example,
of weather forecasting and nervous systems. So in our analy-
sis we will assume that only VE�t� is available for analysis
and that the circuit parameters are unknown.

B. Circuit dynamics

The values of the circuit parameters determine the behav-
ior of the circuit. Although all the parameters matter, here we
focus on changing only the resistance R by adjusting the
potentiometer and keeping all the other parameters fixed.

The simplest possible behavior of the circuit occurs when
the three dynamical variables are constant in time; namely, a
fixed point. To find this point, set the time derivatives in the
equations of motion to zero. The emitter current, IE= IC+ IB,
can be found from Eqs. �4� and �5�, and set equal to the
current through the resistor REE,

IE = Is�1 +
1

�F
�exp�− VE

�0�

VT
� =

VE
�0� − Vee

Ree
. �6�

The fixed point emitter voltage VE
�0� can then be found

numerically for specific parameters. The other two fixed
point values VCE

�0� and IL
�0� can then be calculated using

IL
�0�= Is exp�−VE

�0� /VT� and VCE
�0� =Vcc−RIL

�0�−VE
�0�. The fixed

point is a useful thing to calculate because it can be used as
a first step for comparing the model predictions to the volt-
ages measured in the actual circuit. This fixed point is always
a solution to the equations of motion, but is stable only when
R is large enough.

As R is decreased the fixed point becomes unstable and
the circuit oscillates at approximately the fundamental fre-
quency f0. As R is decreased further there is a series of
period doubling bifurcations leading to chaos. This is shown
in the bifurcation diagram Fig. 2. To construct this diagram,
we integrated the circuit equations using a range of values
for R and plotted the value of VCE only at the times tn where
both VE�tn�=Vth and

dVE�tn�
dt �0. The threshold value of Vth

=−0.6 V was chosen because that is about where the tran-
sistor switches from “on” to “off.”

We recorded all three dynamical variables VCE�t� , VE�t�,
and IL�t� when the circuit was operating in a chaotic regime.
The orbit traces out a strange attractor in this three-
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FIG. 2. Bifurcation diagram calculated by numerically integrat-
ing the model equations over a range of values for R. The value of
VCE�tn� is plotted for all tn where VE�tn�=−0.6 V with VE increas-
ing. There is a period doubling bifurcation at R�59 � and again at
R�48 �.
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dimensional space. A two-dimensional projection of the at-
tractor is shown in Fig. 3 with data both from our experi-
ments and from our model.

II. PARAMETER AND STATE ESTIMATION
USING SYNCHRONIZATION

A. Background

Although we were able to measure all the dynamical vari-
ables for our Colpitts oscillator, we use this as an example
system to evaluate methods for estimating unknown param-
eters and unobserved state variables. We proceed as though
we know many of the “external” parameters driving the cir-
cuit, such as the constant voltages Vee and Vcc while treating
the parameters within the circuit, especially those of the
model used for the nonlinear operation of the transistor, as
unknown.

We proceed, then, with the assumption that we observe
only VE�tn� where tn=n�t, with the data time step �t
=10 �s. We wish to use this information to evaluate the
remaining parameters and the value of the state variables
VCE�tn�, VE�tn�, and IL�tn� for n=0 through N. By assumption

we have data for VE�tn�, but this will be slightly different
than the output from the model due to noise and imperfec-
tions in the model. Except where otherwise specified, our
results are for the case N=1000 or tN=10 ms. For all of the
analyses in this paper, the model uses both a half step and a
full step for improved accuracy. In the case of our initial
value method, we use fourth-order Runge-Kutta integration
�37� which involves function evaluations at the midpoint of
each full time step thus requiring the use of a half step.
Similarly, our constrained method requires function evalua-
tions at midpoints. Often the model half step h will be cho-
sen to be equal to the data time step. i.e., h=�t=10 �s. In
this case the full step will be twice this value and the number
of full steps used in the analysis will be N /2. As is discussed
later in this paper, sometimes model accuracy can be im-
proved by choosing a smaller value for h, typically by select-
ing a value for which some multiple of h is equal to �t.

It is very important to choose an appropriate quantity of
data to analyze. With too little data there may be insufficient
information to determine the unknown parameters, while
with too much data, not only is the processing slowed down,
but �as we will show� the problem of maintaining synchro-
nization becomes more severe. Once the fixed parameters are
estimated along with VCE�tN� and IL�tN�, we may use them
and the observed VE�tN� as initial conditions for the three
dynamical circuit equations to predict VE�t� tN�. We would
also predict VCE�t� tN� and IL�t� tN� at the same time, but in
the scenario we are envisioning, those are not observable, so
we would have no way to verify the predictions. The advan-
tage of our experimental setup and our measurements of all
state variables is that in the case we are discussing here, we
do, in fact, know VCE�tn� and IL�tn� and can further examine
the validity of our estimates. In the interesting physical set-
tings we have in mind, this will not be the case and we wish
to have some sense of the reliability of the methods in that
instance.

We make use of the phenomenon of synchronization of
chaotic systems. The key idea is that two coupled systems
will synchronize the most readily when they are identical. In
our case, one system is the “driver,” which here is the actual
circuit and the other system is the “response” or model sys-
tem which is implemented numerically using the model
equations with an additional term to couple to the driver
system. The response system has adjustable parameters and
our goal is to find the values for the parameters that best
match the parameters of the driver system. Here we intro-
duce a simple form of coupling by taking the difference be-
tween a measured data variable and the corresponding model
variable at each time step, multiplying this by a coupling
strength u, and adding this expression to the right-hand side
of the corresponding differential equation. This can be done
for as many variables for which we have data, but since we
are using Colpitts as a “test system” we choose to only apply
it to VE �38–40�. This results in the following sets of equa-
tions, in which the primed variables represent our model of
the system �response� and the unprimed variable VE repre-
sents the experimental data �driver�:
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FIG. 3. Two-dimensional view of the attractor: �top panel� VE�t�
versus IL�t� calculated by integrating the model equations; �bottom
panel� VE�t� versus IL�t� as observed in our experiments.
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dVCE�

dt
=

IL� − IC� �VE��
C1�

,

dVE�

dt
=

IL� + IB��VE��
C2�

−
VE� − Vee�

C2�Ree�
+ u�VE − VE�� ,

dIL�

dt
=

Vcc� − VE� − VCE� − R�IL�

L�
. �7�

Another possible coupling scheme �that we have not used�
would be to replace VE��t� with �VE�t�+ �1−��VE��t� on
the right-hand side of all three circuit equations, where
0���1.

When model and data are different at some time step, i.e.,
when VE�t��VE��t�, the coupling term will try to move VE� in
the direction that closes this gap. Note also that the coupling
strength u can be allowed to change with time step or it can
be independent of time step. It can also be put under the
control of the optimization program, it can be fixed, or it can
be manually changed through a set of values. We explore all
of these options.

Note that numerical instability is likely if u is allowed to
be too large. The limiting value is approximately 1 /2h, i.e.,
one should require

u � 1/2h , �8�

where h is the model half step �defined above�. To increase u
beyond this point one can make a corresponding reduction in
h, possibly requiring the experimental data to be interpo-
lated. Another common reason for reducing the half step
would be when it is necessary to improve the accuracy of the
numerical integration of the equations �i.e., irrespective of
any coupling instability�.

An alternate scheme that avoids the need for interpolation
of the data and that we have used quite successfully is to
remove the synchronization term from the differential equa-
tions, and instead make small synchronizing corrections di-
rectly to the model variable. These corrections are applied
between integration steps when there is data available at that
time point, discontinuously moving the model variable some
fraction of the way toward the corresponding experimental
data value. The small steps in the model variable will tend to
vanish on approach to perfect synchronization. This method
of coupling can be shown to be essentially equivalent to the
other method if that fraction is 1−exp�−u�t�. Using sub-
scripts − and + to represent before and after the discontinu-
ous step, we have for our current problem

VE��tn+� = VE��tn−� + �1 − e−u�t�„VE�tn� − VE��tn−�… . �9�

Note that this removes the stability problem for large u, i.e.,
Eq. �8� no longer applies. The case u goes to infinity corre-
sponds to a jump in the model variable all the way to the data
value for that time step. One way to obtain Eq. �9� is to leave
the coupling term in the differential equation but replace u
with u�t		�t− tn�, where the sum is over all data points
�indexed by n�, �t is the data time step, and 	� � is the Dirac
delta function. This form of periodic impulse coupling is
similar to that studied by a number of authors �41–44�. The

delta functions can be integrated out �after first dividing by
the factor VE−VE� and neglecting the other terms on the right-
hand side as small compared to the delta function� to give the
fractional displacement rule above. It is often the case that
the desired time step for the model is smaller than what is
available or possible to achieve for the experimental data. In
cases like this where the data are sparse, the method just
described allows the time step of the data to be a multiple of
the time step of the model, conveniently solving this problem
without needing to interpolate the experimental data and
avoiding the additional inaccuracy that would be introduced
by that interpolation.

We require a metric in which to compare our observed
VE�tn�=VE�n�=x1�n� with the estimates we generate from
solving the model equations for VE��tn�=VE��n�=y1�n�. These
estimates depend on the parameters, which we call p
now, and the initial conditions y�0�= 
VE��0�=y1�0� ,VCE� �0�
=y2�0� , IL��0�=y3�0��. We adopt the usual least-squares or
minimum variance metric as the distance between the experi-
mental observations and the value of our model output

C�p,y�0�� =
1

N + 1	
n=0

N


x1�tn� − y1„tn,p,y�0�…�2. �10�

We call this the cost function or objective function and it is a
measure of the quality of synchronization.

The goal is to find the parameters and initial conditions
which minimize the cost function. One problem is that the
path through parameter space from the initial guess to the
best result may contain local minima which will prematurely
end the minimization process resulting in an incorrect result.
But even when this is not the case, the “downhill” path
through a high dimensional parameter space can sometimes
be extremely convoluted and lengthy. We can see an indica-
tion of this in Fig. 4 by looking at the variation in the cost
function, C�R��,
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FIG. 4. �Color online� Cost �Eq. �11�� as a function of R� for
four different coupling strengths �decreasing from bottom to top�.
The calculation was done over 10 ms, with the two systems starting
at the same point in phase space and all parameters identical except
R�R�. Increasing u smoothes out the surface, but it also makes the
minimum less well defined as u becomes large.
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C�R�� =
1

N + 1	
n=0

N

�x1�tn� − y1�tn,R���2 �11�

when only the resistance R� in the response circuit Eq. �7� is
varied with all other parameters held fixed. The curve labeled
u=0 corresponds to integrating the model equations and
evaluating the cost function Eq. �10�. The other elements of
Fig. 4 will be addressed in a moment.

This complicated behavior of C�R�� impedes one’s ability
to seek the global minimum where we expect that R� will
equal R of the driver circuit—the source of our data. As
one might expect, as more parameters are added, the graph
becomes a very complex hypersurface that we must ex-
plore. This complexity is associated with the instability
of the synchronization manifold x�t�= �VE�t� ,VCE�t� , IL�t��
=y�t�= �VE��t� ,VCE� �t� , IL��t�� in the six-dimensional state
space �x�t� ,y�t��= �VE�t� ,VCE�t� , IL�t� ,VE��t� ,VCE� �t� , IL��t�� of
the coupled oscillators. This instability leads to extreme sen-
sitivity of the orbit y�t� on its parameters, including here R�,
and, as it happens on its initial conditions y�0� though the
latter is not shown here �45�. This complexity of the surface
of a cost function in parameter space has been known for
some years �46,47�.

It should be noted that when additional parameters are
included, many �perhaps most� of the local minima shown in
Fig. 4 will no longer be minima. That is to say, in many cases
it may be possible to escape from one of these apparent
minima by simply moving in some orthogonal direction. It
also presents a somewhat oversimplified picture, in that the
real experimental data will often include some significant
noise, and also the model we are using to represent the ex-
perimental system may have significant imperfections. As a
result no choice of parameters will produce perfect synchro-
nization and the optimal cost will be nonzero.

With these considerations in mind, now we examine the
other curves in Fig. 4. They correspond to increasing values
of u and we see two effects as u is made larger: �1� the
complex, rough nature of C�R�� as a function of R� becomes
smooth and �2� the magnitude of C�R�� decreases. The origin
of these two effects comes from the synchronization of the
data x1�n�→y1�n ,R��. As u becomes very large, it drives
x1�n�→y1�n ,R�� approximately as 1

u leading to C�R�� de-
creasing as 1

u2 . Interestingly, for small or moderate size u,
there is structure in the dependence of the cost function on u
that can reveal information about the quality of the model,
the presence of noise, and other attributes useful in interpret-
ing the outcome of the numerical optimization.

The smoothing out of the surfaces in parameter and initial
condition space is attributable to the reduction in any posi-
tive conditional Lyapunov exponents �CLEs� �1,3–5� by the
added term u�VE�t�−VE��t��. Note that the term “conditional”
is used because the exponents depend on the experimental
variable VE which is treated as an external drive signal
whose dynamics is not explicitly considered. The CLEs are
evaluated by iterating the Jacobian DF(y�t�) along an orbit
of the dynamical equations, and this change in the dynamics
takes the original Jacobian and modifies it by subtracting u

from the �2,2� component in our example. This allows us to
reduce the one positive CLE to a negative value, synchronize
the data and the model output, and make the contributions to
the cost function coherent.

From the point of view of the nonlinear dynamics ex-
pressed in Eq. �7�, we are, by coupling the equations to the
data, reducing the largest conditional Lyapunov exponent
from positive to negative. This idea is illustrated in Fig. 5,
which shows how the largest CLE depends on the coupling
strength and depends on which variable is being coupled.
Coupling to IL�t� will not cause synchronization, at least for
u�1.

It is desirable to have u→0 at the end of any estimation
procedure as the term u�VE�t�−VE��t�� in our equations is not
a result of Kirchoff’s laws or any physics, but is introduced
to regulate instabilities on the synchronization manifold. To
use the equations for prediction, it should be gone from the
dynamics.

Although increasing u appears to make our parameter
finding problem much easier it can also have an undesirable
effect. This comes from the possibility that in real experi-
mental systems, where the model is imperfect, the coupling
term in the equations of motion will not completely vanish
for any choice of model parameters. This in turn can cause
the parameter values that minimize the cost function to be
dependent on the magnitude of the coupling. To deal with
this, we can initially use a very strong coupling to arrive at a
first approximation to the desired parameters, and then the
coupling can be reduced gradually to smaller and smaller
values, either to zero or to a value where its impact is small.
To accomplish this it is sometimes efficient to allow the op-
timization process to control the value of u. In this case it
may sometimes be necessary �though not always� to add a
“coupling cost” to the cost function Eq. �11� so that the cost
can decrease as the coupling is decreased,

C�p,u� =
1

N + 1	
n=0

N


�x1��tn� − y1�tn,p�2� + 
2u2, �12�
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where 
 is a number assigning a weight to the synchroniza-
tion term relative to the coupling term and p is a vector
comprising all of the parameters and initial conditions. In
some cases we allow the coupling to depend on time step
based on the idea that the strength of the coupling required to
make synchronization occur may vary across the system at-
tractor. One might expect that in certain locations the data
variable being measured may sometimes be in good align-
ment with direction of maximal stretching of the attractor.
This alignment can be examined explicitly through the
Lyapunov direction vectors �in Ref. �48� see discussion start-
ing on page 2796�. This does of course complicate the opti-
mization problem; if there are 500 full time steps for the
model and we wish to optimize this u�t� then we have just
added an additional 500 unknown parameters to the problem.
We give results for both cases.

B. Effect of positive Lyapunov exponents

The Lyapunov exponents, particularly the most positive
one, can be very useful in determining how to analyze the
experimental data. These measure the average rates of ex-
pansion or contraction of a chaotic attractor along different
directions of the phase space. There are methods for calcu-
lating these from experimental data �49,48�, and other, gen-
erally easier, methods that can be used when a good model is
available and the parameters are known �in Ref. �50� see
discussion of QR decomposition method beginning on page
650—software implementing this method is available �51��.
When only the most positive exponent is needed, the prob-
lem is much easier—nearby initial conditions �on the attrac-
tor� will separate on average as e�t, where � is the largest
Lyapunov exponent. For our system and parameter choices,
we determined the most positive exponent to be about
0.35�1/ms�. For our choice of time interval tN=10 ms for
most of our results, one can expect that a small error in the
initial condition at t=0 will grow by a factor e3.5=33 by the
end of the interval. As a result of this moderate growth over
our interval, it is relatively easy to reduce the coupling to
zero without degradation to the fit to the experimental data.
Going much beyond 10 ms, however, will change this pic-
ture. In order to reduce the coupling all the way to zero we
need to require that

�tN � � , �13�

where � is probably not a precise constant, but is rather a
number that is roughly about 10 and which may depend
somewhat on the details of the system and how hard we are
willing to work on the analysis. An increase to 100 ms defi-
nitely puts us over this limit for the present problem drasti-
cally increasing the growth factor to e35=1.6
1015. In this
case it is quite impossible to reduce the coupling all the way
to zero without major loss of synchronization. We must
choose to either reduce the time interval or accept the prob-
lems that may possibly be caused by maintaining a nonzero
coupling parameter. In the latter case, having a time-
dependent u�t� presents a clear benefit in being able to apply
the coupling more efficiently at points where it is most ben-
eficial.

C. Optimization methods

We used two different optimization methods, an initial
value method and a constrained method, which we describe
below. In both cases the primary goal was to find the best
values for the parameters and all of the state variables based
on the available experimental data which in this case is a
time series for VE�t�. Once this has been achieved we can
also make predictions by integrating the model into the fu-
ture, beyond the last data point. It was convenient for our
data to use a half step for the model �as defined in Sec. II A�
that was equal to the time step for the data. So we use tn to
represent the time points for the data as well as these half-
step time points for the model. The even values of n corre-
spond to the full-step time points. However, for other experi-
ments it will often be the case that this will not be a good
choice. In general, the model half step should be chosen to
be as large as possible without adversely effecting numerical
accuracy. But, often there are limitations on the sampling
rate for experimental data that require that the data time step
be larger than this value, although usually one can arrange
for the data time step to be some multiple of the model half
step.

The first method we examined is an “initial value
method” similar to the one discussed in Voss et al. �47�, but
uses a time-independent coupling term to synchronize the
experimental data set to the model. This method treats the
initial conditions y�0� as additional parameters to be deter-
mined. The cost function can be computed at any point in
this extended parameter space by numerically integrating the
equations of motion with those values of the parameters and
comparing the result to the data using the cost function Eq.
�10�. We use standard minimization methods to search the
parameter space for the minimum of the cost function. Inte-
gration of the equations is typically done using the standard
fourth-order Runge-Kutta algorithm. Software �DATASYNC�
implementing this initial value method is available from one
of the authors �P.B.� on request �32�.

Two of the minimization methods that we tried with the
initial value method were the Broyden-Fletcher-Goldfarb-
Shanno �BFGS� “quasi-Newton method” �37� and the Brent-
Zangwill-Powell-Smith �BZPS� “direction set method” �52�.
The latter is related to the somewhat better known Powell
method �37�. We first set upper and lower bounds and start-
ing values for each of the parameters to be used by the mini-
mization method. We used physically reasonable values for
bounds and starting values. Most of the results in this paper
were obtained using the BZPS method. BZPS is convenient
because it does not require evaluation of derivatives of the
cost function. The derivatives required by BFGS can how-
ever be determined numerically. It has been our experience
that BZPS is the most reliable method, even though it may
sometimes be slightly slower than the BFGS method. In
quasi-Newton methods such as BFGS, a positive definite ap-
proximation to the inverse Hessian matrix is generated at
each step, a process that guarantees downhill movement and
also quadratic convergence when sufficiently close to the
minimum. Direction set methods such as BZPS work by per-
forming line searches to find the minima of the cost function
along specific directions in parameter space. The directions
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are searched in sequence, with each search staring off at the
location in parameter space where the last search ended. Ini-
tially the search directions are just the cardinal directions,
but as the process goes on the directions are updated based
on the results of previous iterations. In the BZPS method, the
update involves singular value decomposition and is de-
signed to approximate the principal directions of the Hessian
matrix.

In this initial value method, we often set the coupling
strength u to be time independent and fixed at a user speci-
fied value. We use the method in several steps. Initially we
use a large u to get from the initial guess of parameters to
the correct region of the parameter space. Then we repeat
with smaller u, starting where we left off in parameter space,
in order to refine the search. This approach is suggested by
Fig. 4, which shows that the cost function becomes smoother
with large coupling. Provided the time interval is not too
long, as discussed previously, u can be reduced all the way to
zero without significantly impacting the fit between model
and data. When this is not the case, there will be an �approxi-
mate� lower limit to u below which synchronization is lost. It
is also possible to include u in the cost function �Eq. �12��
and have it be reduced as part of the optimization process,
although, as will be shown, this must be set up carefully in
order to get the best result.

The second approach we have utilized for this numerical
optimization problem we call the “constrained method.” In
this method, we treat the values of the model state variables
y�tn� for all even n on an equal footing with the parameters p
and search for the minimum of the cost function in this com-
bined space instead of just the parameter space. The differ-
ential equations are no longer integrated. Instead the state
variables are forced to satisfy the differential equations by
discretizing them to get equality constraints relating y�tn� to
y�tn+2�. The discretization process involves evaluation of the
equations at the midpoint of the full time step, i.e., the points
tn where n is odd �the details of this “Hermite-Simpson”
process can be found in Ref. �29��. As before, we were able,
for our particular data set, to make the choice that the half
time step for the model �as defined in Sec. II A� was equal to
the time step for the data. As a result, when we are using
N+1 experimental data points in our analysis, this method
needs to minimize the cost function in a space of dimension
D�1+N /2�+L, where D is the number of variables and L is
the number of parameters. When we allow the coupling u
to depend on tn, this will add another 1+N /2 to this total.
Thus this dimension is typically about 2000 when we use
N+1=1001 data points, i.e., the space we are optimizing
over is extremely large. We have successfully used up to
N+1=10 001 data points in the calculation. We implemented
the constrained method using the constrained nonlinear opti-
mization software package SNOPT with the optimal control
interface SNCTRL �53�. This is available publicly �33�.
We have used a symbolic mathematics code �MATLAB or
MATHEMATICA� to provide the derivatives of all equality con-
straints and of the cost function.

The output of the numerical optimization using either
method is an estimate of all the parameters along with
an estimate of all of the unobserved state variables
y2�tn� ,y3�tn� , . . . ,yD�tn� over the time interval of data pre-

sented to the model. For the Colpitts experiments, this gave
us an estimate of the parameters not held fixed �see below� as
well as VCE�tn� , IL�tn�; n=0,1 ,2 , . . . ,N over the interval from
t0=0 to tN=N�t. From the values of VE�tN� , VCE�tN� , IL�tN�
and the parameters we can use the differential equations to
predict the temporal development of the oscillator.

As stated previously, we often wish to reduce the coupling
to zero, at which point the rms error in fitting the data will be
a good measure of our success in finding the correct param-
eters. However, if it is impossible to reduce the coupling to
zero, perhaps because of the excessive length of the data set,
we can use the information from either method to ask an
important consistency question about our estimation results
by examining the magnitude of the ratio

R2�t� =
FE�t�2

FE�t�2 + 
u�t��VE�t� − VE��t���2 , �14�

where FE�t�=dVE� /dt without the coupling term �see Eq. �7��.
If R�t� is near unity over the time segment where we estimate
parameters and state variables, the estimation is consistent as
the coupling term is small compared the dynamics in FE�t�.
If, however, R�t� departs from unity, then the accuracy of any
synchronization x�t��y�t� is due to the coupling. If R�t�
�1, we call the model consistent with the data. If not, espe-
cially if R�t� is near zero, we call the model inconsistent with
the data.

III. STATE AND PARAMETER ESTIMATION USING THE
CHAOTIC COLPITTS CIRCUIT AS A TEST SYSTEM

As we have described, we operated the Colpitts circuit in
a setting where chaotic trajectories for the states as a function
of time were generated. We recorded VCE�tn� , VE�tn� , IL�tn�
at intervals of �t=10 �s for 100 ms �tn=n�t ,n
=0,1 , . . . ,104�. We then �unless stated otherwise� used the
first 10 ms of the sampled VE�tn� data as input into our esti-
mation procedures. As indicated earlier, we held fixed sev-
eral parameters: C1 , Vcc , Vee, and Ree. There remained six
parameters to determine from the 10 ms of VE�tn� data:
C2 ,L ,R , Is ,VT, and �F. Instead of directly treating the very
small quantity Is as a parameter, we defined V0=−VT log

Is

I0
,

where I0=1 mA, and searched on V0.
We measured all values of the circuit elements directly

and we found the transistor parameters by measuring the
current-voltage characteristics, IC�VBE� and IB�VBE�, so that
we could compare to the parameter estimates we obtain. The
resolution of the VE�t� measurement was �V=0.01 V. If the
only source of uncertainty in the experiment was due to res-
olution of the measurement, we would expect an rms error
�square root of the cost function, Eq. �10�� of �C=�V /�12
�0.003 V. In both methods described below, the actual rms
error between the model and the data comes out to be about
four times larger suggesting there are other sources of error.

A. With time-independent coupling

Here we use the DATASYNC software to implement the
initial value method with time-independent coupling u. The
response system is now a model of the circuit with six un-
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known parameters plus the three unknown initial conditions
VE�0� , VCE�0�, and IL�0�. Exploring the behavior of the rms
error in fitting the data as a function of coupling strength u,
we find a very anomalous result shown in Fig. 6. We ex-
pected the error to decrease with increasing coupling
strength. This is in fact the case for u�1.7. However, for u
between 0 and 1.7 the opposite is true—the error rises and
with a very significant positive slope even near u=0.

Recall that when we wish to have the optimization pro-
cess reduce the value of the coupling u toward zero, we
would normally include a term containing the coupling
strength in the cost function as in Eq. �12�. However, if the
coupling is restricted to the anomalous range between zero
and the value where the rms error starts to decrease, then the
coupling term may be omitted from the cost function en-
tirely. We tested this using the initial value method with the
coupling restricted to the range from 0.0 to 1.0 �1/ms� and
with all parameters set initially to values that were either 1.4
or 0.7 times their best values and with the coupling started at
1.0. The optimization was successful and the coupling ended
up at about 3
10−9.

If a wider range of coupling is desired then the value of 

that appears in the cost function must be chosen large enough
to counteract the downward slope that occurs for large cou-
pling. If we let ��u� represent the optimal rms error as a
function of u, then the optimal cost function is given by
C�u�=��u�2+
2u2. Note that optimal means with parameters
adjusted to minimize the cost for the particular choice of u. If
this function has a minimum for positive u then the optimi-
zation process could get stuck there. To look for a minimum
we set the derivative equal to zero resulting in the equation

2= �−d� /du��� /u�. We can eliminate all such minima if we
choose 
2 so that


2 � �− d�/du���/u� , �15�

for all u in the desired range. In that case u should tend to go
to zero.

In the present case we can estimate d� /du from Fig. 6. We
found that for u in the range from 0.0 to 10.0 the minimum
value for 
2 should be about 2.6
10−6. Again we tested this
with the initial value method. With 
2 set to 2
10−6 the
optimization got stuck in a minimum near u=6, but when we
increased 
2 to 3
10−6 it no longer got stuck and success-
fully completed the optimization. For this run u ended up at
about 1
10−6.

Normally when starting to work on a new problem d� /du
will not be known in advance, so we would have to guess
based on our knowledge of the problem and previous analy-
ses of similar problems. The difficulty in selecting 
 can, of
course, be avoided entirely by requiring u to take on a series
of values ending with zero.

As mentioned previously, if we wish to be able to reduce
the coupling to zero, we must ensure that the time interval tN
over which we are analyzing the data is not too large. In
particular we must require that tN� is not very large, where �
is the largest positive Lyapunov exponent �0.35 for our data�.
When tN is 10 ms as it is for most of our results there appears
to be no problem in reducing the coupling to zero. However
if we increase tN to 60 ms this is no longer the case. When
we try to reduce the coupling in that case we reach a value
below which it becomes impossible to maintain a good fit to
the data. This is illustrated in Fig. 7. To create the curve in
this figure, we start by optimizing at a fairly large value of
coupling, e.g., u=10. We then reduce u in steps, each time
starting the parameters with the values obtained in the pre-
vious step. At each step we reoptimize the parameters and
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make sure that the rms error is only slightly different from
the previous step. If the step taken is too large the error
settles on a value that is much larger than the previous step,
often by a factor of 10 or more. When we are near or below
u=1.0 this process starts becoming exceedingly difficult. We
must take smaller and smaller steps and the optimization
process becomes slower and slower. Soon it becomes im-
practical to make any more progress. For the case shown in
Fig. 7 this occurs around u=0.57, which is the lowest point
shown. Thus for this data set we cannot reduce the coupling
to zero. Our choices are as follows: �a� use the results ob-
tained at the minimal coupling u=0.57, �b� redo the analysis
using a smaller time interval so that we can reduce the cou-
pling to zero, �c� redo the analysis using a time-dependent
u�t� as discussed in the next section, or �d� break up the time
interval into smaller subintervals, each of which is short
enough to allow zero coupling. The last case would be clas-
sified as a “multiple shooting” method. Each subinterval
would have its own initial conditions to be determined, so
there would be an increase in the total number of unknown
parameters. But this would be offset by the benefit of having
more data points available

The parameters calculated with time-independent cou-
pling and using the shorter time series of 10 ms are com-
pared to the measured values in Table I. The parameter esti-
mates mostly come out near the measured values, with the
exception of the transistor parameters �F and V0. We explore
this discrepancy later with an improved transistor model.

We also compute a value for the uncertainty of the param-
eters. This was calculated by doing exactly the same fitting
procedure, with the same initial guesses for parameter val-
ues, over nine different 10 ms segments of the same data set.
Since all the segments of data came from the same circuit,
we expect all the parameter estimates to come out almost the
same, but the initial condition estimates to be different. The
column labeled “Uncertainty” in Table I is the standard de-
viation of the mean of each of the parameters over the nine
different 10 ms segments of data. This is just a measure of
the uncertainty from the numerical fitting process. There is
an additional uncertainty presumably due to experimental
noise and other effects which are not included in the model.

Once the parameters are estimated with the fitting proce-
dure, the model can be used to make predictions. One simple
prediction is the location of the fixed point. The fixed point
location is calculated using the estimated parameters �but
substituting the measured value of R, since the resistance

was increased to make the fixed point stable� and also can be
directly measured from the circuit by making R large enough
to make the fixed point stable. The measured and calculated
values are shown in Table II. The values predicted using the
fitted parameters are within 5% of the measured values. The
third column in the table contains predictions from an im-
proved model that will be explained later in the paper.

B. With time-dependent coupling

Now we set the coupling u to a function of time u
→u�tn�, so the strength of the coupling �or control� to stabi-
lize the synchronization manifold varies over the attractor.
We use the SNOPT software as a way to implement the con-
strained method for solving the numerical optimization prob-
lem. As mentioned previously, for 10 ms of data we have
space of approximately 2000 dimensions to search. As SNOPT

is used regularly for optimization in spaces of high dimen-
sion, this was well within its tested regime of validity. We
presented the software the data VE�tn� at 1000 points, pro-
vided it with initial guesses and ranges for the six param-
eters, and set the initial guesses for all the state variables and
coupling variables to zero.

In the previous section we noted that when the coupling
strength was below the peak in Fig. 6 there would be a ten-
dency for it to move toward zero even with 
 set to zero. For
time-dependent coupling we find that there are subintervals
in which the coupling will tend to decrease to the lower
boundary �usually zero� and others in which it will tend to
increase often going to the upper boundary �recall that we
must require that u�t�1 for numerical stability�. With a
nonzero 
 there emerges a set of peaks shown in Fig. 8
whose amplitudes decrease with increasing 
. These peaks
are not random but are robust features for a given data set.
The optimal rms error � and the optimal cost C are now �in a
continuous time picture� functionals of the coupling strength
u�t�. Optimal here means the value obtained when the cost
has been minimized over the parameter space for the particu-
lar choice of u�t�. For a time interval from 0 to �, the cost can
be expressed as

C�u� = ��u�2 +

2

�
�

0

�

u�t�2dt . �16�

We can solve for u�t� by taking the functional derivative and
setting it equal to zero:

TABLE I. Parameters found by the two methods and the mea-
sured values.

Name DATASYNC Uncertainty SNOPT Measured Units

C2 6.98 0.03 7.02 7.23 �F

L 12.28 0.02 12.2 11.74 mH

R 40.38 0.01 40.0 39.3 �

V0 0.663 0.004 0.661 0.63 V

VT 25 1 25.0 27 mV

�F 74 4 72.0 180 1

TABLE II. Fixed point values. In the first column are the values
measured directly from the circuit. The second column is the cal-
culation of the fixed point using the fitted parameters using the
standard model. The third column is the calculation of the fixed
point using the fitted parameters from the improved model.

Name Measured Prediction 1 Prediction 2 Units

VE
�0� −0.696 −0.723 −0.702 V

VCE
�0� 2.24 2.31 2.25 V

IL
�0� 11.12 11.02 11.16 mA
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	C�u�
	u�t�

= 2��u�
	��u�
	u�t�

+ 2u�t�

2

�
= 0. �17�

We define �0 to be the value of ��u� for u�t�=0 and we define
�0�t� to be the functional derivative of ��u� for u�t�=0. For
sufficiently small u�t� we may use these to solve for u�t�:

u�t� � −
��0


2 �0�t� . �18�

Thus we find that the structure observed in u�t� is propor-
tional to the functional derivative of the rms error with re-
spect to the coupling strength. The equation also shows that
the amplitude of the observed structure in u�t� varies in-
versely with 
2 as can be seen in Fig. 8. We usually set the
lower limit on u�t� to be zero, but when this is instead set
to a negative value we can see additional structure corre-
sponding to times when �0�t� is positive. This is also shown
in Fig. 8.

We found that u�t� is strongly influenced by noise and this
is responsible for the jagged appearance of u�t�. To explore
this we generated u�t� using simulated data with added noise.
We then repeated this with the same data but using a differ-
ent noise sequence of the same rms amplitude. This produced
a dramatic change in the structure demonstrating that the
noise played a critical role. We then repeated the test again,
this time using the original noise sequence but with double
the rms amplitude. In that case we found that the structure
remains essentially unchanged but the amplitude of that
structure is increased by a factor of 4; i.e., it is proportional
to the square of the rms noise amplitude.

It is also interesting to see what happens if we change the
form of the coupling term in the cost function. In particular
one can use a term that is linear such as �u�t�, where � is a
constant, resulting in a cost functional of the form

C�u� = ��u�2 +
�

�
�

0

�


u�t�
dt . �19�

If we take the functional derivative again we get

	C�u�
	u�t�

= 2��u�
	��u�
	u�t�

+
�

�
. �20�

Since this does not explicitly contain u�t� we cannot set it
to zero and solve as before. Note, however, that �in the
small u�t� limit� the right-hand side will be positive when
��−2��0�0�t�. In these cases u�t� will go to zero �the pre-
sumed lower boundary for u�t��. For those values of t for
which the opposite is true, u�t� will move upward, either to
the upper boundary or to a value where our approximation
breaks down because u�t� is no longer small. Further, one
may expect that there will be a critical value of � above
which u�t� will be zero for all t.

Note that in all of the cases above, we have been discuss-
ing the optimized value of u�t�. In the process of getting to
that optimal solution, u�t� may temporarily take on much
larger values as determined by the optimization algorithm.

In addition to noise, the structure in Fig. 8 may be par-
tially related to the varying relationship between the direc-
tion associated with the �scalar� data variable VE and the
Lyapunov direction vectors �in Ref. �48� see discussion start-
ing on page 2796�, particularly direction of maximum
stretching of the attractor that is associated with the largest
Lyapunov exponent. At certain locations on the attractor
these directions are nearly parallel and so the coupling there
is relatively effective in achieving synchronization. This be-
comes increasingly important for long data sets, particularly
those which violate the condition of Eq. �13�. These cases are
also ones for which there may be a significant advantage for
time-dependent coupling. We previously examined a case for
which the time interval was 60 ms compared to 10 ms for
most of our results. In the results, shown in Fig. 7, we were
unable to reduce the time-independent coupling below 0.57.
At this point, the rms error was 0.0292, considerably higher
than the value 0.0146 obtained in a shorter data set. Running
this data set with a time-dependent u�t� we were able to
reduce this to 0.0161. The average u�t� is now much less
than 0.57, but it contains a number of peaks with height of
order 1, for which, at the time when they occur, the primary
Lyapunov vector is relatively parallel to the coordinate axis
associated with the measured experimental data variable.
When using the linear form of the coupling term in the cost
function, a similar result is found except that the few remain-
ing peaks are very tall and extremely narrow. For �=0.001
there are only 13 peaks in u�t� with an average height of
about 6 and an average width of only slightly more than one
full time step. Everywhere else it is zero. One might reason-
ably assume from this that for many problems with a good
choice of � there will be little impact on the dynamics other
than to maintain synchronization. Of course, if � is too large
the synchronization will be adversely effected while if it is
too small the number of peaks in u�t� will become excessive
and detrimental as it attempts to correct for every noise
bump in the data.
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FIG. 8. �Color online� Time-dependent coupling u�t� for 

=0.10 �V ms� �middle� and 
=0.14 �V ms� �bottom�. The struc-
ture is very similar in both cases, but the magnitude scales approxi-
mately as u�t��
−2. When u�t� is allowed to be positive or nega-
tive, additional structure becomes visible �top�.
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In Fig. 9 we show that the peaks of the residual u�t� are
localized in phase space. �Here we are using 1800 points in
the data set and a quadratic term in the cost function.� We
divided the phase space into cells and shade in each accord-
ing to the average value of u�t� within each cell. We do the
same thing a second time, but using VCE�t� as the data source
instead of VE�t�. The areas where u�t� is largest are now in
different spots in phase space.

In the cost function Eq. �12� we explored various values
of the weight 
 and report in Table I the values of the pa-
rameters for 
=0.1 �V��ms�. If 
 is chosen too small, u will
become large and the coupling term will end up dominating
the dynamics in Eq. �7�. This means that VE��t� will be forced
to follow VE�t� even if the parameter values or the model
itself is wrong. On the other hand, if 
 is chosen too large, u
will be driven toward zero and synchronization may not oc-
cur. In either extreme limit of 
 very small or 
 very large
the ratio R�t��1, because either �VE�t�−VE��t�� or u will be-
come very small in Eq. �14�. Therefore care must be taken to
choose a value of 
 that allows the two effects to be bal-
anced.

The parameter search methods provided consistency for
estimates of the six parameters as displayed in Table I. In
Fig. 10 we display both the observed values of the state

variables �IL�t� ,VE�t� ,VCE�t�� and their estimated values
from the use of the constrained method. Only VE�t� as ob-
served was presented to the estimation algorithm, yet the
estimation of the two unobserved state variables IL�t� and
VCE�t� is also quite accurate.

From the output of the estimation program we have an
estimate of the values of the three state variables at t
=1000�t=10 ms, and using these as an initial condition for
the model of the Colpitts circuit along with the values of the
estimated parameters �Table I�, we predicted the behavior of
the circuit for t� t1000. These predictions are displayed in
Fig. 11. Each shows that the predictions from the estimated
state of the oscillator are accurate for about 8 ms or so be-
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FIG. 9. �Color online� Localization of peaks of u�t� in phase
space. Phase space was divided into 40
40
1 cells �40 in the
IL and VE directions, 1 in the VCE direction�, and the average value
of u�t� in each cell is indicated by the shading. The calculated phase
space orbit is overlaid for reference. The coupling was either to
VE �top panel� or to VCE �bottom panel�. In both cases 

=0.01 �V ms� and 1800 data points were used.
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FIG. 11. �Color online� Using the first 10 ms of data for VE�t�,
sampled every 10 �s, we estimated the parameters and the other
state variables VCE�t� and IL�t� over the interval 0� t�10 ms.
Then using the equations of motion with estimated parameters and
the values of VE�t=10 ms� �as measured� and VCE�t=10 ms� and
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to the measured data �dots�. Initially the prediction matches the
measurement, but the two diverge after about 8 ms because the
dynamics is chaotic.
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yond the point in time t=10 ms where the state estimate was
made. This is the kind of prediction one finds when a dy-
namical system is chaotic as small errors in parameters or
initial conditions are exponentially magnified in the behavior
of the orbit because of the positive Lyapunov exponents of
the system. What is important here is that we have been able,
through our estimation methods, to accurately enough evalu-
ate the state variables that were not observed that our model
predictions of the experimental system show high accuracy.

Because we use a coupling to the synchronization mani-
fold as part of our estimation procedure we need to ask
whether the synchronization we observe is the result of large
coupling. At the end of the optimization process we calculate
the ratio R2�t� from Eq. �14� and see that R2�t��0.99 at all
times as shown in Fig. 12. This means that the coupling has
a negligible impact on the dynamics, as it should, and that
our model is consistent with the data.

C. Effects of model deficiencies and results
for the Gummel-Poon model

The Ebers-Moll model is only an approximate model of a
real transistor. This causes interesting challenges for the pa-
rameter calculation process and makes the Colpitts oscillator
more interesting as a test problem. In a general problem, it
may often be the case that the value of the parameters them-
selves will be of interest. But in the process of trying to
optimize the output of an inexact model sometimes the defi-
ciencies in the model may be partially compensated for with
parameter values that are dramatically shifted away from
their true values. In the current problem this may have oc-
curred with the current gain parameter �F, for which we
obtained a value of about 72 by minimizing the cost function
compared to a measured value of about 180. Another
anomaly was observed in regards to the capacitor C1. For the
results shown in Table I, C1 was fixed to its known value
while other parameters were calculated. In principle, C1
could also be obtained by optimization, but when we at-
tempted this it was found that for this particular problem,
shifting C1 away from its true value has only a very weak

influence on the optimal cost value. Furthermore, some defi-
ciency in the model causes the optimization to prefer a dras-
tically incorrect value for C1 while maintaining a correct
value for the series equivalent capacitance, Ceq=1 / �1 /C1
+1 /C2�. It seems that Ceq matters more than C1 or C2 sepa-
rately, which is reasonable because the fundamental fre-
quency is given by f0=1 / �2��LCeq�.

To see if we could reduce or eliminate these effects, we
tried adding some additional parameters to our model equa-
tions using a more accurate model of the transistor known as
the Gummel-Poon model �54�. The full model involves an
additional ten parameters �excluding capacitive effects which
we assume are negligible in our application�. These include
modeling internal resistance between the emitter of the tran-
sistor on the chip and the package lead which we connect to
the rest of the circuit. There is a similar resistance between
the collector and its package lead. The base resistance is
assumed to vary with base current according to a particular
formula including three adjustable parameters. There is also
an assumed rolloff to the current gain involving one param-
eter. The Early voltage parameter compensates for changes
in base thickness with collector voltage.

It turns out that a significant improvement in the cost
function can be achieved by merely adding the emitter resis-
tance into the model equations. Because of the presence of
this resistor, −VE is no longer the true base-emitter voltage,

but instead it has a slightly higher voltage −V̄E. The equa-
tions for the transistor currents �Eqs. �4� and �5�� are now

functions of V̄E. The modified voltage V̄E is a function of VE
which must be found numerically by finding the solution to

V̄E = REIs�1 +
1

�F
�exp�− V̄E

VT
� + VE. �21�

Using only RE in addition to our previous parameters, the
rms error in matching the data was reduced from about
0.0146 to about 0.0102 in volts. In addition, the value of �F
increased from 72 to 179, i.e., remarkably close to the mea-
sured value of 180. We also tried other parameters from the
Gummel-Poon model in various combinations including the
full set but found no significant additional improvement in
the cost function. Although the value of �F was improved,
the problem with C1 remains, so perhaps the Gummel-Poon
model still retains significant deficiencies. These results were
obtained using our first method �initial value� and are sum-
marized in Table III. The parameters were also used to make
a prediction of the fixed point shown in Table II.

D. Comparison of models

In order to better understand the effect of coupling on the
optimization process, we again looked at how the coupling
strength affects the value of the rms synchronization error in
fitting the data. These are shown in Fig. 13. Curve �a� �taken
from Fig. 6 and included here for reference� shows the case
where we are using experimental data and use our standard
model �Eqs. �1�–�5��, while �b� shows these data represented
using our improved model that include the effects of an in-
ternal emitter resistance RE. Note that in both cases the seem-
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FIG. 12. �Color online� The consistency check R2�t� defined in
Eq. �14�. Since R2�t��1 the model is consistent with the data. In
this calculation 
=0.1 �V ms�.
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ingly logical assumption that increasing the coupling
strength will always decrease the rms error is violated. Note
that curve �b� starts at a significantly lower error than �a�, a
strong indication that it is a better model. In curves �c� and
�d� we are looking to see whether the anomalous behaviors
of �a� and �b� are due to inaccuracies in the model or whether
the presence of additive noise can produce a similar effect.
Here we used simulated data with the same parameter values
found in the experiment to which Gaussian noise was added.
In case �c� the simulation used Eqs. �1�–�5�, i.e., it did not
involve the use of an internal emitter resistor, while in �d�
that resistor was included. In both cases the noise level was
adjusted to produce about the same rms error for u=0 as is
found in the curves �a� and �b�. Note that presence of noise
can produce a positive slope effect but seems to do so in a
much less dramatic fashion than curve �a�. Unlike curves �a�
and �c�, curves �b� and �d� seem much more similar to each
other. This is perhaps an indication that the model used in
those cases is a much better one. In the final curve �e�, the
simulated data were generated using RE, but then it was ana-
lyzed with the model that lacks this resistor. No noise was

added in that case, so the rms error is entirely due to a lack of
ability of the model to fit the simulated data. Note the simi-
larity to curve �a�, both peak at u approximately 1.7. It starts
at a lower rms error than �a� because the real data do include
some added noise.

Model imperfections are yet another cause of the structure
seen in the time-dependent coupling function u�t�. We can
demonstrate this by reanalyzing the simulated data of case
�e� above using our constrained method with time-dependent
coupling. The result shows much smoother features in u�t�
than are generated by noise in the data. In Fig. 14 we show
just a portion of the u�t� function showing an overlay of the
result for the simulated data with that of the experimental
data. Note that the experimental data appear to show the
same feature but with noise superimposed. This result sug-
gests that another way to identify imperfection in a model is
to look for these larger scale smooth features in u�t�.

IV. DISCUSSION

We have developed a method, based on synchronization,
for finding unknown parameters and predicting the future
state of an actual chaotic experimental system, from limited
measurements. This problem is difficult for several reasons:
the dynamics are chaotic, there are many parameters and
state variables to search over, we have only very limited
measurements of the experimental system, and most impor-
tantly, we do not have an exact description of the experiment
in our models.

Because of the chaotic nature of the dynamics, the cost
function is an especially rough surface in the space of pa-
rameters and initial state values of the response system. This
makes it difficult to locate the global minimum, which rep-
resents the point where the model system parameters match
the data system parameters. This problem can be made dra-
matically easier by adding a term to the dynamics of the
model system which couples the response system to the

TABLE III. Parameters found with the improved transistor
model, which includes emitter resistance RE, compared to the mea-
sured values.

Name Fit Measured Units

C2 7.08 7.23 �F

L 12.00 11.74 mH

R 39.71 39.3 �

V0 0.637 0.63 V

VT 26 27 mV

�F 179 180 1

RE 0.23 �
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FIG. 13. Optimized rms error as a function of fixed time-
independent coupling strength. �a� Real data analyzed with standard
model. �b� Real data analyzed with improved model. �c� Simulated
data generated from standard model plus noise and analyzed with
standard model. �d� Simulated data generated from improved model
plus noise and analyzed with improved model. �e� Simulated data
generated from improved model and analyzed with standard model.
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driver system. For sufficient coupling strength, this often has
the effect of changing the largest conditional Lyapunov ex-
ponent from positive to negative and stabilizes the synchro-
nization manifold. This effect can be observed by noticing
that the coupling smoothes out the cost function �Fig. 4�.

Even with the coupling, it is still difficult to search for a
global minimum in a space with many dimensions. To per-
form the search we used a few different well-established op-
timization methods �37,52,53�. This is mainly just a practical
problem of efficiency. We did this with time-independent
coupling and time-dependent coupling with almost identical
results. Not surprisingly, the process takes much longer with
time-dependent coupling, because there are many more de-
grees of freedom to be optimized.

We explored two different types of coupling. The simpler
type is time-independent coupling, which works quite well
on our test problem. If the time series being analyzed is short
enough then coupling can be reduced all the way to zero at
the end of the process. Otherwise it is reduced to the mini-
mum level needed to maintain synchronization. We found an
interesting effect where the optimal rms error in fitting the
model to the data initially increases as the coupling strength
is increased. This was very unexpected since the coupling is
pulling the model variable toward the data. As the coupling
is further increased, the error reaches a peak and then begins
to decrease, so that for large coupling the behavior is what
would be expected. The result is likely an artifact of the
noise in the data; i.e., the coupling term is sometimes re-
sponding more to this noise than to the actual synchroniza-
tion error.

The other type of coupling is with time-dependent u�t�
which is optimized like the other parameters to yield the
lowest cost function. This makes the problem more compli-
cated but gives us some additional, possibly useful, informa-
tion such as the peaks in the residual u�t� which are robust
and are localized in phase space. This structure was also
shown to be highly dependent on how u�t� is included in the
cost function—a term that is quadratic in u leads to a very
rich structure that mirrors the sensitivity of the synchroniza-
tion error to the coupling as a function of time; a term that is
linear in u leads to a few very sharp narrow peaks in the
residual u�t�, with the vast majority of time steps having a u
that is exactly zero. We suggest that this form of coupling
may be best for maintaining synchronization for long data
sets while causing minimal effect on the dynamics. By doing
tests with simulated data we saw that there are three separate
causes that contribute to the structure of the residual cou-
pling u�t�:

�i� One is due to inaccuracies in the model. In regions
where the model is inaccurate, the coupling increases to pull
the model toward the data. This information could be useful
for finding out where the model needs improvement.

�ii� The second is due to noise. We saw that u�t� changes
significantly if only the particular sequence of random num-
bers used to generate the noise is changed, but there are
persistent features.

�iii� The third cause is related to the direction of the pri-
mary Lyapunov vector relative to the direction associated
with the coupling variable. This becomes relevant, even with
a perfect model, when the time series is long enough to re-

quire coupling to counteract positive Lyapunov exponents.
We also described a method of coupling that is particu-

larly useful for sparse data, i.e., data that has a time step that
is much too large to be used as the time step for the model
because it would lead to significant numerical error. This
coupling method is applied discretely at the exact locations
in time where the data points reside.

We considered the important effect of imperfect models.
In the Colpitts case, most of the circuit components behave
in a well known nearly ideal way and can be very accurately
described by linear differential equations. The exception is
the transistor. Even though it is moderately well described by
the Ebers-Moll model, the slight inaccuracy that is present is
sufficient to cause significant errors in the estimated values
of some parameters. This can be verified by including an
additional term in the equations—one that is part of the more
detailed Gummel-Poon model �35,54�. In many other cases
that one might choose to study, the models are not as well
established or as accurate and there will likely be similar
problems but more severe. Our main interest in this simple
case is that it provides a way of testing methods that then can
be applied to the harder cases.

In this case we were then able to make improvements to
the transistor model by adding the emitter resistance RE, but
if we had no information besides VE�t� we might have de-
clared the original model good enough and stopped there.
With that issue in mind, we then explored how the rms error
of the fit depends on coupling strength �Fig. 13�.

We proposed a test that can be done with just a measure-
ment of one of the dynamical variables �VE�tn� in this case�
and one prospective model. The main idea is that if the ex-
periment is accurately described by the prospective model,
then data simulated using the prospective model should be
indistinguishable from the real experimental data. Here we
are not comparing the real data directly to the simulated data,
but instead comparing the results of the fitting process �per-
formed using either the same model or a different model�
applied to both real data and simulated data. We showed in
Fig. 13 that when simulated data using the improved model
�with noise added� are fed into the fitting algorithm, the out-
put �curve d� looks almost the same as the output of feeding
the real data into the same fitting algorithm �curve b�. Al-
though there are many details of this test we do not under-
stand yet, it seems to be a useful way of checking the quality
of a prospective model.

Improvements to a model, when available, provide an-
other test of our analysis—they are important when they
cause a significant change in one or more of the estimated
parameters or in the values of the variables that are inacces-
sible in the experiment.

In a perspective on the ideas in this paper, we note that we
addressed three problems: �i� when comparing data from an
experimental source and a model where the time series has
chaotic oscillations, one must regularize the search mecha-
nism �minimizing a cost function� to avoid the irregularities
in parameter and initial condition space so the impediments
to the search of multiple local minima are removed, �ii� one
must select numerical methods that give the parameters and
state variables over the observation period, �iii� and one must
develop good models to compare to the data and be aware
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that seemingly small defects in a model can have a very
strong impact on the results obtained.

The methods we have described, including the two pos-
sible choices for the second item that we explored, impact
the quality of the model in an interesting fashion: the tech-
niques can be used to explore the quality of a model, as we
demonstrated in the investigation of two somewhat different
models for the nonlinear transistor element in the Colpitts
circuit.
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