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Role of friction in the mechanics of nonbonded fibrous materials
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Discrete element simulations are employed to study the influence of static friction on the mechanical
response of assemblies of nonbonded semiflexible fibers during cycles of isostatic compressions and releases.
Hysteresis is evidenced during the cycles and is related to the sensitivity of the frictional contacts on normal
forces. Nonzero frictions are shown to decrease both the packing density and caging number but do not affect
the critical exponents that characterize the pressure and bulk and shear moduli. Assemblies of frictionless fibers
are found fragile in the sense that they resist isostatic compressions but have a zero shear modulus at all

densities.
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I. INTRODUCTION

Fibrous entangled materials, where the fibers are not per-
manently linked (i.e., not bonded) have recently attracted
much attention because of their relevance in biopolymer me-
chanics [1]. Their resistance to shear has been quantified
since the 1990s for solutions of actin filaments using rheo-
logical techniques [2—4], but the study of their resistance to
compression dates back to the 1930s and the work of
Schofield [5] on animal wools. Since then, very diverse en-
tangled materials have been studied experimentally in com-
pression, including mineral [6], glass [7], and metallic [8]
wools (for a study on a wide range of materials, see Ref. [9]).
The unique characteristics that emerge from these mechani-
cal studies include: (1) very low volume fractions, (2) defor-
mation by fiber bending between contact points, and (3)
highly nonlinear stress-strain relationships in compression.

Linking the overall mechanical behavior of entangled ma-
terials to that of their individual fibers remains challenging.
Most experimental data are compared to the seminal dimen-
sional analysis of van Wyk [10], which is based on the bend-
ing deformation of fibers in a unit cell without slippage at
contact points. More refined micromechanical models have
been developed for shear and compression, accounting for
the distributions of fiber orientations [11], intercontact dis-
tances [12,13], and slippage [14,15]. However, all the above
models include highly simplifying assumptions, in particular
that the segments between contacts are independent from one
another and that the motion of the contacts is affine; i.e., it
follows the macroscopic (average) strain tensor of the me-
dium. Computer simulations have been used to avoid these
assumptions but restricted to bonded systems [6,16-18].

One aspect specific to nonbonded entangled materials is
fiber slippage at contact points, which strongly depends on
the friction between fibers. Slippage and irreversible fiber
rearrangements are evidenced by the hysteresis observed in
stress-strain curves during compression-release cycles, both
experimentally [8,9,19] and in computer simulations [20,21].
But the influence of friction on such hysteresis is not clear.
Also, the effect of friction on compression and shear moduli
has been studied so far only for packings of spherical par-
ticles [22,23].

We explore the role of friction on the mechanical response
to both compression and shear of three-dimensional assem-
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blies of fibers, through discrete element simulations. Our
computational model is an extension of that presented in Ref.
[24] for frictionless fibers. We study the influence of friction
on the hysteresis during compression-release cycles as well
as on the packing density, caging number and critical expo-
nents that characterize the fiber networks near the mechani-
cal transition.

I1. SIMULATION TECHNIQUE

In the present discrete element method, each fiber is de-
composed into N straight segments of same equilibrium
length (noted ¢, hereafter). A discretization in segments,
rather than in beads as in Ref. [24], reduces the computa-
tional time while retaining the accuracy of the calculation if
the number of segments per fiber is sufficient (typically four
segments per fiber of aspect ratio 20). The behavior of each
fiber in traction/compression is modeled by linear springs
inside the segments (stiffness Kj). Bending is modeled by
angular springs between consecutive segments (stiffness Kp).
Despite its simplicity, this model reproduces the main as-
pects of beam theory [25]: traction, bending, and buckling.
First, the fiber Young’s modulus is controlled by the linear
springs: Ep=4Kg/(mD*{,), where D is the fiber diameter.
Second, a fiber of length L clamped at one end and subjected
to a transverse force F at the other end deflects by FL*/(3«)
with k=Kgly/(1-1/N)/(1-1/2N)— Kzl, when N=L/{,
— o, Third, a fiber hinged at both ends buckles when
subjected to a compressive force exceeding ZK—%( 1

—\1- 16I;—§sin2(§v)) — 75 when N—, in agreement with

Euler’s theory of buckling [25]. The latter result was ob-
tained by considering a straight fiber with segments com-
pressed from € to €. Periodic boundary conditions are em-
ployed in order to allow for analytical calculations, but they
are applied between 0 and 2L in order to allow for bending
between O and L. If one considers only displacements per-
pendicular to the fiber axis in a given plane, the nonzero
elements of the dynamical matrix in row n (that corresponds
to node n) are Dn,n=—2(%(l—é)+6@ D, ,1=D, 1

IZE
Ks . ¢y K K
=ﬁ(1—€—0)—4€—f, and D, ;2=D, ,o==7;. It can be shown

by straightforward calculations that this matrix has plane-
wave eigenvectors and that the lowest eigenvalue (excluding
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FIG. 1. (Color online) Fiber assembly (a) after an initial relax-
ation and (b) at the end of a compression phase.

translation) becomes zero for the critical force given above.
The associated unstable wave vector is 7/L, which corre-
sponds to buckling between 0 and L. We checked by direct
computer simulations that the buckling force is not affected
by the periodic boundary conditions.

Contact between fibers is modeled through two interac-
tion terms leading to normal and transverse forces at contact
points. The first term is a repulsive Hertzian pair potential
that acts between two nonconsecutive segments when their
distance [26] becomes less than the fiber diameter, leading to
normal forces at contact points. The second interaction term
models friction between fibers. Each time a new contact is
detected, a spring of zero equilibrium length is placed be-
tween the two initial contact points on the fiber surfaces.
Slippage of the two fibers stretches the spring and produces a
transverse force along the fibers. Coulomb’s criterion for
static friction [27] is applied by removing the spring if the
contact is lost or if the norm of the transverse force (i.e.,
force in the spring at the contact) exceeds the normal force
(due to the repulsive potential between fibers) multiplied by
a static friction coefficient yg. No kinetic friction was imple-
mented, but if at the step following the removal of a spring
the fibers are still in contact, the spring is reformed, leading
to a stick-slip type of friction. Note that in contrast with
studies on spherical particles [22,23], friction is applied here
from the outset of the simulations.

We simulated isostatic compressions and releases for as-
semblies of like fibers initially straight and placed and ori-
ented at random in a cubic cell with periodic boundary con-
ditions. Figure 1 shows two examples of configurations:
before and after compression. We considered assemblies of
250 fibers of aspect ratio (L+D)/D=20 discretized into four
segments in a cell of initial volume [1.6(L+D)]>. The cell
volume was decreased (during compressions) or increased
(during releases) by increments 6V/V=3%. This deforma-
tion is not applied homogeneously to the fiber nodes because
the fibers would be compressed or extended, resulting in an
unphysical configuration of high energy since in the equilib-
rium configurations throughout the simulations, the fibers de-
form mainly by bending at their contact points and remain
nearly at constant length. Thus, between two strain incre-
ments, the fibers are rigidly translated with a displacement
computed from the affine displacement of their center of
gravity. Starting from this configuration, the system is then
relaxed using a quenched dynamics algorithm [24]. The
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compression is carried out until the pressure exceeds a pre-
scribed value (P=140 Kz€o/L*). The system is then re-
leased by increasing the cell volume until no contact remains
between fibers and the pressure is less than 107 Kyf,/L*.
During releases, the fibers are not translated between incre-
ments; only the cell volume is increased in order to avoid
unphysical separations of the fibers (without inertia, two
separating fibers should remain at a distance equal to their
diameter). In order not to account for the large nonrecover-
able strain produced during the first cycle (as observed ex-
perimentally [28]), the system undergoes a first compression-
release cycle before the measurements are done. Also, we
note that the fiber networks remain isotropic during the
compression-release cycles, as evidenced by the fact that the
texture tensor (3{n®mn), where the average is taken over the
unit vectors, n, of the fiber segments) [29] remains equal to
the identity matrix within statistical errors throughout the
simulations.

To evaluate the bulk and shear moduli of the assemblies,
we start from equilibrium configurations at different densi-
ties obtained during the compression of the second cycle and
either compress or shear the cell by small increments up to
*1%. Simple shear is applied using Lees-Edwards shifted
periodic boundary conditions [30]. Note that the shear incre-
ments, if applied homogeneously to the fiber nodes, would
induce a rotation of the fibers but also spurious compressions
or extensions depending on the fiber orientation. The latter is
avoided by rotating the fibers and translating them rigidly
according to the affine displacement of their center of grav-
ity. The bulk (respectively shear) modulus is then computed
from the slope of the pressure (respectively shear stress) as a
function of strain.

III. HYSTERESIS DURING COMPRESSION-RELEASE
CYCLES

The friction coefficients yg considered here range from O
to 0.8. Figure 2 shows the evolution of the number of con-
tacts per fiber and of the pressure as a function of the relative
density of the systems during the second compression-
release cycle. We consider first the case without friction
(v5=0, black circles in Fig. 2). The mechanical transition
already discussed in Ref. [24] is clearly visible in Fig. 2(a).
Below the packing density p-=0.25, the fibers do not inter-
act. There is no contact between fibers and zero pressure. At
pc» the system undergoes a mechanical transition where the
number of contacts is discontinuous and reaches a finite
value (the caging number, N-=8) while the pressure starts to
increase. Upon release, the reverse transition occurs when
the number of contacts has returned to eight, confirming that
the latter is the minimum number of contacts needed to en-
tangle short fibers. We recall that the caging number de-
creases for longer and/or more flexible fibers (see Ref. [24]).
When the friction coefficient increases from 0 to 0.8, both
the packing density and caging number decrease. The reason
is that friction stabilizes contacts that otherwise would dis-
appear after fiber slippage such that at a given density the
number of contacts increases with friction, and friction
makes contacts stronger (they can sustain shear loads) such
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FIG. 2. (Color online) (a) Evolution of the number of contacts
per fiber and (b) pressure P as a function of the relative density p of
fiber assemblies of different static friction coefficients g during a
cycle of isostatic compression and release. The arrows show the
sense of the cycle. P is normalized by K€,/L*.

that less contacts are needed to obtain an entanglement.

Hysteresis is clearly visible in Fig. 2 where, when friction
is nonzero, both the number of contacts and pressure de-
crease more rapidly at the beginning of the release than they
increased at the end of the compression. Indeed, the stability
of a frictional contact depends on the normal force at the
contact through Coulomb’s law. Upon unloading, the normal
forces decrease, causing a large number of contacts to disap-
pear at the beginning of the release. This reduction in contact
number is itself responsible for the rapid decrease in the
pressure in Fig. 2(b) and the hysteresis. Without friction, the
contacts that form are more stable (because there is nothing
to stabilize them other than the fiber entanglement) and they
do not depend directly on normal forces. Thus upon unload-
ing, the fiber rearrangements are close to reversible. Note
that here no kinetic friction is accounted for and the hyster-
esis is solely due to irreversible rearrangements of the fibers.

We analyzed the deformation mode of the fibers by com-
paring their stretching and bending energies, i.e., the energy
stored in the linear and angular springs, respectively. Without
friction, the stretching energy is negligible and the deforma-
tion is mainly accommodated by fiber bending as expected.
This remains true at all friction coefficients, but the stretch-
ing energy increases with the friction coefficient. The reason
is that frictional contacts resist slippage and fibers may thus
be stretched between contacts. Interestingly, since the fric-
tional contacts at the origin of the stretching energy are the
first to disappear at the beginning of a release phase, the
hysteresis on the stretching energy is larger than on the bend-
ing energy and increases with the friction coefficient.
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FIG. 3. (Color online) Evolution of the pressure P as a function
of the difference between current density p and density at transition
pc for fiber assemblies with different static friction coefficients yg
noted on the figure. The solid curve is a power law: P (p—pc)3.
The inset shows the same data in log scale. P is normalized by
Kylo/L*.

IV. SCALING LAWS

We now turn our attention to the power laws that charac-
terize the evolution of the pressure and of the bulk and shear
moduli during the compression of the second cycle. Figure 3
shows the evolution of the pressure, P, as a function of the
difference between the current density and the density at
transition for different friction coefficients. All data fall on a
single curve; i.e., friction affects the packing density but does
not change the shape of the pressure curve. The inset in Fig.
3 shows that the pressure follows a power law P (p—pc)?,
with an exponent =3 in agreement with Van Wyk’s analysis
[10].

Figure 4 shows the evolution of the bulk modulus, B.
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FIG. 4. (Color online) Evolution of the bulk modulus B as a
function of the difference between current density p and density at
transition p¢ for fiber assemblies with different static friction coef-
ficients yg noted on the figure. The solid curve is a power law: B
«(p—pc)?. The inset shows the same data in log scale. B is normal-
ized by Kyfy/L*.
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FIG. 5. (Color online) Evolution of the shear modulus G as a
function of the difference between current density p and density at
transition p¢ for fiber assemblies with different static friction coef-
ficients ys noted on the figure. The solid curves are fits: G (p
—po)*>. The inset shows the same data in log scale. G is normalized
by Kgzlo/ L.

There is more scatter than for the pressure, but the inset
shows that the bulk modulus has an exponent B=2. This
exponent is expected from the pressure law discussed above.
Indeed, B=—dP/de and e=In(p/pc)~ (p—pc)/ pe close to
the transition. Thus, if P has an exponent =3, B has an
exponent S=a—1=2. Note that this relation holds only if the
fiber displacement is affine and thus if fiber rearrangements
are limited. This is indeed the case for isostatic compressions
where the applied strain conserves the symmetry of the en-
vironment of the fibers. The latter thus remains close to equi-
librium after application of the strain increments and has
limited rearrangements during the relaxations. The same con-
clusion was reached for packing of spheres [22].

Figure 5 shows the evolution of the shear modulus, G. A
shear deformation breaks the symmetry of the fiber environ-
ments, leading to larger rearrangements than isostatic com-
pressions. Without friction (black circles), the fibers can slide
freely with respect to one another and can rearrange upon
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shear without energy cost. As a result, the shear modulus for
frictionless fibers is negligible at all densities. The fibrous
system reacts like a fluid with a resistance to isostatic com-
pression but not to shear, illustrating the fragile state of fiber
packings, as discussed for spherical particles [31]. Interest-
ingly, G and B are related to Young’s modulus E and Pois-
son’s ratio v in isotropic media (as is the case here) through
the relations: B=E/3(1-2v) and G=E/2(1+v) [25]. With-
out friction, B# 0 and G=0 imply that £=0 and v=1/2; i.e.,
the fiber system has no resistance to uniaxial compressions
and is incompressible. This can be understood qualitatively:
without friction, the fibers can rearrange and flatten perpen-
dicularly to the compression axis, implying a zero Young’s
modulus, but in doing so, the fibers will press in the orthogo-
nal directions, maintaining the system at constant volume.

When the friction coefficient is not zero, the fiber assem-
blies resist shear. Figure 5 shows that at all nonzero friction
coefficients, the shear modulus has an exponent y=2.5, but
in contrast with the pressure and bulk modulus, friction af-
fects the prefactor of the power law. The exponent expected
from micromechanical models is 3, as for the pressure
[13,15]. The difference obtained here is due to nonaffine fi-
ber rearrangements. If we consider the evolution of the shear
modulus with friction at a given difference between current
and packing densities, the shear modulus increases rapidly
between ys=0 and 0.5 and is the same between ys=0.5 and
0.8. Such increase in the shear modulus with friction was
reported for spherical particles [22], although the evolution
observed here is more rapid.

We note finally that we observed a negative normal stress
effect upon shear for nonzero frictions: the stress normal to
the shear plane decreases when the system is sheared and the
decrease is symmetric for both directions of shear. This ef-
fect was first described in the case of cross-linked fibers [32].
A detailed analysis of this effect in the case of nonbonded
fibers will be the subject of a future article.
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