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Flow improvement caused by agents who ignore traffic rules

Seung Ki Baek,1 Petter Minnhagen,1 Sebastian Bernhardsson,l Kweon Choi,2 and Beom Jun Kim>*

*

lDepartment of Physics, Umed University, 901 87 Umed, Sweden
2Gyeonggi Science High School, Suwon 440-800, Korea
3 BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
4Deparlment of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology,
100 44 Stockholm, Sweden
(Received 22 January 2009; revised manuscript received 16 April 2009; published 15 July 2009)

A system of agents moving along a road in both directions is studied numerically within a cellular-automata
formulation. An agent steps to the right with probability ¢ or to the left with 1-g when encountering other
agents. Our model is restricted to two agent types, traffic-rule abiders (¢=1) and traffic-rule ignorers
(g=1/2), and the traffic flow, resulting from the interaction between these two types of agents, which is
obtained as a function of density and relative fraction. The risk for jamming at a fixed density, when starting
from a disordered situation, is smaller when every agent abides by a traffic rule than when all agents ignore the
rule. Nevertheless, the absolute minimum occurs when a small fraction of ignorers are present within a
majority of abiders. The characteristic features for the spatial structure of the flow pattern are obtained and

discussed.
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I. INTRODUCTION

Society has various rules to regulate interactions among
its members. While some of these rules might be enforced by
authorities and turned into laws, quite a few have evolved
over a long time and have turned into conventions. Just as in
natural sciences, rules or conventions, regulating the interac-
tion between individual constituents, often result in emerging
global patterns. A traffic rule which enforces individual
vehicles/pedestrians to move along only one side of a road
clearly results in a global traffic flow pattern (see, e.g., Ref.
[1]). Because of this connection, traffic problems have often
been studied by using methods and concepts from nonequi-
librium statistical physics (for a review, see Refs. [2,3]). The
approaches from physics include hydrodynamic descriptions
[4], differential equations describing effective microscopic
forces [5], and cellular automata (CA) [6—10]. In particular,
the CA approach is often used in broad contexts of agent-
based modeling as an efficient way of accounting for com-
plicated interactions among constituents. Due to the compu-
tational efficiency, CA is particularly suitable for analyzing
the dynamics of many individuals who try to move in differ-
ent directions while at the same time being influenced by the
motions of other individuals. It is notable that the jamming in
vehicular traffics has natures different from that in pedestrian
traffics. The former is explained by the time delay in the
responses of the drivers, and this is the reason why the jam-
ming may easily occur with vehicles only in one direction
[10]. In the latter case, on the other hand, the jamming is
caused by the collision of agents in opposite directions [7].
This study is mainly focused on this pedestrian case.

In the present work, we use the CA approach and find that
the minimal risk for a jamming of the pedestrian flow occurs
when a small fraction of traffic-rule ignorers is present
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within a majority of traffic-rule abiders. Even though this
result is obtained within our simplified model system, it
raises an interesting question on the observability and impli-
cation of such a phenomenon in social systems. Here we
provide a detailed description on this observation as well as
a qualitative understanding.

This paper is organized as follows. In Sec. II, we review
the basics of a coordination game based on a traffic rule. We
describe how we have performed our numerical experiments
in Sec. III. The results are presented and compared to the
coordination game in Sec. IV. The results are summarized in
Sec. V.

II. COORDINATION GAME

Let us first consider two players moving on a road in
opposite directions heading for a direct collision. Each of
them can choose to step aside left (L) or right (R) in order to
avoid the collision and it is avoided only if both make the
same choice. Thus the options both L or both R are equally
gainful, whereas the choices LR and RL lead to collision.
The situation is summarized in Table I in the form of a
doubly-symmetric two-person coordination game [11,12].
Each player will behave according to a strategy in the form
of a complete description of which action is taken under

TABLE 1. Normal form of a traffic-rule coordination game.
Since the situation is symmetric to each player, only one player’s
payoff is presented in this table after normalized to unity. Both
players are better off when they choose the same moves (left/left
and right/right).

Left Right
Left 1 0
Right 0 1
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every possible circumstance. In what follows, we denote the
strategy of an agent as S, if she chooses R with probability ¢
(and thus L with probability 1-g). For example, if a player
always chooses R(L), her strategy is represented as S,(Sy).

The concept of equilibrium is useful in analyzing a game;
suppose that everyone has chosen a strategy so that no one
gains anything by changing her strategy unilaterally, such a
set of strategies constitute a Nash equilibrium [12]. In the
case of the coordination game, there exist three strategies
which are Nash equilibria, i.e., S;, Sy, and Sy,,. The pure
strategies S| and S, simply represent the ordinary traffic rules
such that agents should always step aside to the left or to the
right. Due to the left-right symmetry in the problem both S
and S, compose Nash equilibria. On the other hand, if one
makes a decision at random by tossing a coin, then obviously
the opposing player cannot gain anything no matter what
strategy she changes to. Consequently, the mixed strategy
S1/» also constitutes a Nash equilibrium.

We next consider the evolutionary stabilities [13] of these
Nash equilibria in a population where every pair of members
plays the game. Suppose that almost all the players adopt a
certain strategy S. The strategy S is called evolutionarily

stable when another mutant strategy S cannot invade the

population of § since the payoff of S is less than that of S.
Mathematically, the evolutionary stability of the mixed strat-
egy S, is equivalent to the stability of a population where a
fraction Q=g¢g of members have §; while the others have S
[13]. Note that such equivalence holds only when there exist
two pure strategies. In the stability analysis, one often em-
ploys a dynamics resulting as individuals in a group try to
adopt the strategies of more successful individuals. Such a
situation can be modeled as follows: the relative proportion
Qg of players who use strategy S is assumed to grow in time
in proportion to the payoff Wy at the last time step. This
particular dynamics is given by the replicator dynamics
equations [13],

. d
Os= 55 = QS(WS_ > WS/QS'>»
t s’

within the continuum time approximation, where the last
term has been inserted to make the constraint 2¢Q¢=1 ful-
filled at any time 7. In our traffic-rule game, we have 0Os,
+Q51=1’ and therefore we may set QSIEQ and QSOE 1-0
to study the evolutionary stability of S, with g=Q. From
Table I, it follows that the expected payoff for an agent is
given by the probability of encountering a traffic-rule abider
or ignorer, respectively, resulting in Ws =0 and W =1-0.
For example, if 0=1/4, an agent with strategy S; will have
a chance out of four to meet another with the same strategy,
meaning that her expected payoff amounts to 1/4 at every
encounter. Consequently, the replicator dynamics equations
can be cast in the form

0=0{0-[0*+(1-0]}=0(1-0)(20-1).

From the stationarity condition Q=0 we find three Nash
equilibria at 0;=0, Q,=1, and Q3=1/2, which in turn cor-
respond to g=0, 1, and 1/2, respectively. The linear pertur-
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FIG. 1. Movements of a self-propelled agent. The solid arrow
indicates the agent’s intrinsic direction, while the dotted ones indi-
cate its possible evasions when the intrinsic direction is blocked by
another agent.

bation €, introduced to the nth Nash equilibrium by 0=0,
+¢,(n=1,2,3) satisfies &/€;, <0, &/€<0, and &/e;>0,
respectively, and we find that only the last equilibrium point
Q=1/2 is unstable in this dynamics. In other words, a con-
vention of randomly choosing left or right is unlikely to
emerge, since people eventually learn that the traffic im-
proves if a majority settles for one of the alternatives. Note
that this conclusion is based on the assumption of full mix-
ing, corresponding to the mean-field approximation in phys-
ics. To what extent is the simple picture, implied by Table I,
also valid for a two-dimensional plane filled with moving
agents? This question is investigated in the following.

III. NUMERICAL SETUP

A. Moving code

We start with a simple self-propelled agent, derived from
Ref. [8], which obeys the following moving code (compare
to Fig. 1). It has its own intrinsic direction, either upward or
downward. It can move only to a neighboring cell at each
time step, and a single cell cannot allow more than one agent
at the same time. If the agent’s front cell is empty, it moves
to the cell with the probability 1—s, where s denotes the
probability of spontaneous stopping. If the agent is prevented
from moving forward because the front cell is already occu-
pied, then it steps aside to the right with a probability ¢ or to
the left with 1—g¢. In case it attempts to the right (left) but
cannot because there is already an agent in that cell, then it
proceeds to try the alternative option left (right). In case this
is also prevented, it just remains in its present cell. At least
two steady states can be found within this moving code: one
is the complete jamming where no one can move forward
and the other one is a perfectly collisionless flow where ev-
ery column is occupied only by agents moving in the same
direction.

B. Initialization

A road is a two-dimensional plane, which has a size of
X X Y in units of cells. We impose a periodic boundary (PB)
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in the y direction to make the road homogeneous in that
direction. In the x direction, on the other hand, there are
walls which prevent agents from being at x=0 or x> X. At
the initial time, the agents are randomly distributed with a
density p on the road, and their intrinsic directions are given
upward or downward with equal probability. Such a starting
condition is qualitatively similar to a walking street filled
with mingled pedestrians which all start to walk home at the
same moment. The number of agents is N=pXY, and the
numbers of upward and downward agents are N/2. Among
these N agents, pN agents have g=1 so that they always try
the right-hand side first, while the others have no prefer-
ences, i.e., g=1/2. There are no initial correlations among
the position, intrinsic direction, and preference.

C. Recursive update

All agents make moves in accordance with the moving
code in a random sequential order (RSO). A simultaneous
update is, in practice, not possible since each update then
involves finding all consistent possibilities based on all indi-
vidual possibilities of all the agents. The RSO update to-
gether with the PB condition causes an artifact called dead-
lock. Imagine that one column is fully occupied by players
having the same intrinsic direction with zero stopping prob-
ability (s=0). Even though all of them want to move in the
same direction, they cannot within the RSO update since no
one finds an empty space in front of herself. Therefore, RSO
needs to be modified as follows. Suppose that an agent A is
picked up by RSO to be updated. Then we regard A’s current
position as empty and search for a new position for it accord-
ing to the moving code. If agent A is blocked from going
forward by another agent B, which has the same intrinsic
direction as A but not updated yet at this time step, we do not
exclude the possibility for both of them to move together
simultaneously, so we let B move first. If B is also in the
same situation by a third agent C, this procedure is repeated
recursively. When this recursion goes all the way around PB
to A’s position again, the column of agents will be updated
by one cell forward altogether. One time step is completed
when the moving code is applied to all the N agents.

IV. RESULTS

A crucial question, when it comes to traffic flow, is under
what conditions the traffic will jam. This usually happens
when the traffic gets too dense. Hence, one may expect that
there exists a critical traffic density p=p,. beyond which the
propensity for jamming becomes high. In our traffic model
we measure the traffic flow ¢, the fraction of agents advanc-
ing in its intrinsic direction, at a given density of agents p
and average over a large number of random initializations.
Figure 2 shows one example, together with the average time
7 taken to reach a steady situation, which is either a jam or a
steady-state flow. Close to p, the time to reach a steady situ-
ation becomes so large that we, for practical reasons, intro-
duce a large time cutoff 7. in the simulations. As illustrated in
Fig. 2, there is a sharp cross over from a low- to a high-risk
jamming at around a well-defined critical density p.. The
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FIG. 2. (Color online) Transition between two steady states, the
complete jamming and the collisionless flow, as density p changes.
Both of the fraction p of rule abiders and the stopping probability s
are set to zero and the road is given as 50 X 200. Depicted here are
the flow ¢ and the time 7 to either of the steady states after being
averaged over 10% samples under a cutoff of 7,=10°.

flow ¢ is averaged over 10 samples in this figure and deter-
mined by how many samples will settle down to the steady
flow. Intuitively one would expect that p. decreases as we
make the road larger for a fixed density of agents and fixed
width of the road; any point along the road is a potential site
where a jamming could start and grow into a road block
across the road which implies that the longer the road the
larger the risk for jamming (see, for comparison, Ref. [6]). In
Fig. 3 it is shown that this is also true in the case where the
width and the length increase simultaneously, preserving the
geometrical shape of the road. Since p, decreases as the size
of the road increases (even when the geometrical shape is
preserved), we speculate that the jamming transition has the
large-size limit p.=0 in our model. This also implies that the
capacity of a road, measured as the amount of traffic that a
road will transmit on average before the traffic jams, in-
creases less than linearly with the road size.

A striking feature of Fig. 3 is that p. does not grow mono-
tonically with the proportion of traffic-rule abiders p. In

FIG. 3. (Color online) Flow ¢, as a function of p and p, with the
stopping probability s=0. The road sizes are (a) 50200 and (b)
100 X 400, respectively. Each point is obtained from 10 random
initial conditions. Completely black region indicates that the system
is in a traffic jam, one of the steady states, while all the agents move
freely when the parameters p and p are within the white region
corresponding to ¢=1. 103 samples. (c) Sectional plots of ¢ with
fixing p in 50X 200 and (d) in 100X 400. The nonmonotonic be-
havior of ¢ is more pronounced in the latter case, which has enough
room for developing spatial patterns as described in the text.
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FIG. 4. (Color online) Snapshots of density distributions in the
long run when only rule abiders are present (p=1). The average is
taken over about 103 samples at t=6X 104, where X=100, Y
=400, and p=0.2. The stopping probability is set as (a) s=0 and (b)
s=0.01, respectively.

other words, when only 60% of agents abide by the rule, for
example, the road of 100X 400 has a higher capacity than
when 90% abide by the rule.

One possible guess would be that the traffic reduction
with abundant rule abiders is caused by their concentration
on the wall sides, since it is an inefficient use of resources if
they are populated only at those parts of the road. However,
that scenario does not explain this phenomenon. Let us plot
the spatial density d(x) for the groups of pedestrians so that
>.d(x)=1 is satisfied for each group. Rule abiders do not
occupy only the sides of the road if the stopping probability
s is zero because then rule abiders have no reason to move in
the lateral direction once forming a lane anywhere on the
road [Fig. 4(a)]. Even if s #0 as in Fig. 4(b), a high density
of agents does not disturb the maximal flow velocity due to
the recursive update (Sec. III C).

In order to gain some further insight into the mutual effect
between rule abiders and rule ignorers, we have studied the
spatial flow structure in more detail. To this end it is conve-
nient to include a tiny nonzero stopping probability s (we use
$=0.01 in the simulations) for the following reason: when-
ever an agent stops, agents colliding from behind try to step
aside as prescribed by the moving code. Hence a nonzero
stopping probability generates small diffusive processes in
the lateral direction. This helps the system to arrive at a
robust spatial steady state without changing the numerical
results in any essential way.

For simplicity we choose the case when the rule ignorers
are restricted to move upward (Fig. 5). According to the
moving code, agents moving in opposite directions will have
a stronger interaction than agents moving in the same direc-

0.1 0.1

wryl abider, up _ 3 abider, up
(a) t=10 abider, down - (b) t=2x10 abider, down -
ignorer, up — ignorer, up -
= 0.05 = 0.05
° ©°
0 - 0 bt —= =
0 50 100 0 50 100
X X
0.1 0.1
_ 3 abider, up _ 3 abider, up
(0) t=4x10 abider, down (d) t=6x10 abider, dow
= ., ignorer, up = ignorer, up
5 0.05 5

FIG. 5. (Color online) Snapshots of density distributions with
the condition that rule ignorers move only upward. The average is
taken over 10° samples, where X=100, Y=400, p=0.2, p=0.9, and
s=0.01. (a) =102, (b) r=2X 103, (c) r=4 X 10%, and (d) r=6 X 10°.
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FIG. 6. (Color online) A typical distribution of agents taken
from a sample at 7=103 with p=0.2, p=1.0, and s=0.01, where the
road is given as 100 X 400. Two intrinsic directions are marked with
different colors so that red (dark) dots mean upward rule abiders
and green (bright) dots mean downward rule abiders.

tion. Since rule abiders always prefer the right-hand side, the
most rapid process is the pushing of the downward rule abid-
ers to the left side of the plot in order to avoid agents moving
upward [Fig. 5(b)]. By symmetry the upward rule abiders get
pushed out of the left region preferred by the downward rule
abiders. However, rule ignorers have no preference between
left and right, and as a consequence they remain for a longer
time in the middle region. Their presence further pushes the
downward rule abiders to the left wall. Note that the upward
rule abiders, on the other hand, have little interaction with
rule ignorers since all of them are basically headed for the
same direction. As these upward rule abiders move very
slowly in the x direction, many of the rule ignorers cannot
penetrate into the right side, i.e., x>50, but remain on the
wrong side of the road with respect to the traffic rule [Fig.
5(d)].

Also in the case which includes downward rule ignorers
in addition, rule abiders are more quickly evacuated from the
central part of the road in the presence of rule ignorers. In
addition, rule ignorers play an important role in smoothing
out uneven agent concentrations on the road. These uneven
concentrations arise because the upward rule abiders have an
average drift toward the right side of Fig. 5 when starting
from a random initial condition, while downward rule abid-
ers drift in the opposite direction. As a consequence they
interact and usually form long narrow trains in the central
part of the road (Fig. 6). This leads to high local concentra-
tions on the road from which jamming can start and develop.
However, with a sufficient number of rule ignorers, these
trains are broken into a more evenly distributed concentra-
tion, reducing the risk of jamming.

Snapshots of the flow development for the case including
downward rule ignorers as well as upward rule ignorers are
shown in Fig. 7. One notable point is that the rule ignorers
tend to make a backflow against the rule abiders. One sees
abundance of upward rule ignorers on the left-hand side of
the median line at x=X/2 and conversely abundance of
downward rule ignorers on the right-hand side of the median
line [Fig. 7(d)]. The upward (downward) backflow is devel-
oped by rule ignorers who are repelled by downward (up-
ward) movers gathering densely beside the left (right) wall.
This is a numerically stable pattern which is rather unex-
pected from an intuitive point of view.

Finally, we have tested how much the result changes with
a variation in the moving code. The traffic rule becomes
softened so that it acts only to rule abiders on the wrong side
of the road. If standing on the right side, even rule abiders
will be just the same as rule ignorers. This rule was designed
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FIG. 7. (Color online) Snapshots of density distributions when
both of upward and downward rule ignorers are present. The aver-
age is taken over 10 samples, where X=100, ¥Y=400, p=0.2, p
=0.9, and s=0.01. (a) r=10%, (b) r=3 X103, (c) r=10% and (d) ¢
=3x10%

to check whether the excessive concentration on the wall
sides, as in Fig. 4(b), could be relaxed without altering the
qualitative results. Numerical simulations show that the non-
monotonic behavior of p still remains and the optimal p is
even lowered than before [Fig. 8(a)]. A closer look indicates
that jamming is likely to develop around the median line x
=X/2, since the momentum of rule abiders to the right side
disappears while crossing the line, leading to congestion at
that point [Fig. 8(b)].

V. SUMMARY

In our numerical simulation based on the CA approach,
we have observed that the jamming transition density on
two-dimensional planes does not monotonically increase
with the fraction of rule abiders. It implies that a certain
amount of rule ignorers may diminish the propensity for jam-
ming by diminishing the risk for high local traffic concentra-
tions. In contrast to the coordination game, which presumes
two rational players acting to maximize the gain by either
abiding to or breaking the traffic rule, the situation on a large
road is generally more complex; it involves interactions
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FIG. 8. (Color online) (a) Flow ¢, as a function of p and p,
when the traffic rule is applied only to rule abiders on the wrong
side of the road. In accordance to Fig. 3, we take averages over 103
samples with a size of 100X 400 and set s=0. (b) A snapshot of the
spatial distribution for p=0.1 and p=0.9, taken at r=6 X 10*. This
shape maintains itself with time for s=0, while for a nonzero s, the
peaks on the middle are slowly relaxed outward.

among agents which lead to nontrivial flow patterns in a long
time. Our result suggests that there are situations when abid-
ing too strictly by a traffic rule could lead to a jamming
disaster which would be avoided if some people just ignored
the traffic rule altogether.

One should note that this is drawn by our model system
under certain conditions, which captures only a part of the
pedestrian dynamics. Our observation demonstrates one pos-
sible complexity of the pedestrian problem that even such
simple agents could lead to an unexpected global behavior. It
also supports to some extent a hypothesis that the most suc-
cessful behavior in social or biological systems is achieved
when both of the regular and random factors are incorpo-
rated, which should be further examined in future research.
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