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We study the biased random-walk process in random uncorrelated networks with arbitrary degree distribu-
tions. In our model, the bias is defined by the preferential transition probability, which, in recent years, has
been commonly used to study the efficiency of different routing protocols in communication networks. We
derive exact expressions for the stationary occupation probability and for the mean transit time between two
nodes. The effect of the cyclic search on transit times is also explored. Results presented in this paper provide
the basis for a theoretical treatment of transport-related problems in complex networks, including quantitative
estimation of the critical value of the packet generation rate.
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The problem of wandering at random in a network �or
lattice� finds applications in virtually all sciences �1,2�. With
only minor adjustments random walks may represent the
thermal motion of electrons in a metal, or the migration of
holes in a semiconductor. The continuum limit of the
random-walk model is known as diffusion. It can describe
the Brownian motion of a particle immersed in a fluid, as
well as heat propagation, bacterial motion, and even fluctua-
tions in the stock market. Recently, the concept of random
walks has also been applied to exploring traffic in complex
networks. The spectrum of network related problems in-
cludes, among many others, ordinary traffic in a city, the
distribution of goods and wealth in economies, biochemical
and gene expression pathways, and search �or routing� strat-
egies on the Internet or other communication networks �3–9�.

In this paper, we investigate biased random walks in com-
plex networks, and we explore the effects of different local
navigation rules on the mean first-passage �or transit� time
between any pair of nodes �10�. The biased random-walk
model defined in scale-free networks is particularly interest-
ing since it has been considered as a mechanism of transport
and search in real networks, including the Internet. For a
long time, it was believed that the most optimum transport-
related processes are based on the shortest paths between the
two nodes under consideration. At the moment, however, it is
understood that such a routing strategy would require a glo-
bal knowledge of network topology, which is often not avail-
able. Moreover, routing strategies based on shortest paths
may create inconvenient queue congestions in scale-free net-
works, given that the majority of the shortest paths pass
through hub nodes in such structures. A possible alternative
that has been suggested is to consider local navigation rules
instead of global knowledge. As a consequence, a number of
adequate models have been proposed �see, e.g., �5,8��. In
general, the models mimic traffic in complex networks by
introducing packet �particle� generation rates, as well as as-
signing a randomly selected source and a random destination
to each packet. In these models, a common observation is
that the traffic exhibits a continuous phase transition from
free flow to the congested phase as a function of the packet
generation rate. In the free flow state, the numbers of created
and delivered particles are balanced while in the jammed
state, the number of packets accumulated in the network in-

creases with time. In this paper, we show that the random-
walk model, although very simple, correctly describes the
properties of the proposed traffic models in the free flow
state. We calculate the transit times characterizing this state.
We also provide some suggestions on how to calculate the
critical packet generation rate.

Technically, we define our random walks as follows. We
consider random uncorrelated networks with given node de-
gree distributions P�k� �11�. The networks are also known as
random graphs or as the configuration model, and they have
been repeatedly shown to be very useful in modeling differ-
ent phenomena taking place in networks. We assume that the
networks are connected, i.e., there exists a path between each
pair of nodes. Given the graph structure, the diffusing par-
ticle �packet� is created at a randomly selected node, and it is
assigned a random destination node. In the next time steps
the particle passes from a node to one of its neighbors being
directed by local navigation rules. In practice, it means that,
being at a certain node i, the random walker performs a local
search in its neighborhood �up to the first, second, or further
orders� looking to see if the destination node is within the
search area. If the destination is found, the particle is deliv-
ered directly to the target, following the shortest path �this
rule is known as the cyclic search �5��. Otherwise, the par-
ticle continues a biased random walk, i.e., the next position
�a node j� is chosen according to the prescribed probability
wij.

In the following, to explore transit times characterizing
biased random walks in uncorrelated networks with arbitrary
degree distributions P�k�, we partially reproduce and gener-
alize standard calculations for the mean first-passage time in
periodic lattices �12�. At the beginning, we work out some
general concepts related to biased random walks without the
cyclic search. In particular, we calculate the stationary occu-
pation probability Pi

� for the diffusing particle, which de-
scribes the probability that the particle is located at the node
i in the infinite time limit. Then, performing simple textbook
calculations, we derive formulas for the mean transit time
between any pair of nodes �we would like to stress that some
time ago similar calculations were done for unbiased random
walks in complex networks �13�; results presented in our
paper encompass the results of Ref. �13� as a special case�.
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The effect of the cyclic search on transit times is explored
via a simple renormalization trick applied to the degrees of
the nodes.

Thus, let us consider a particle that hops at discrete times
between neighboring nodes of a random network described
by the adjacency matrix A. Let Pij�t� be the probability that
the particle starting at site i at time t=0 is at site j at time t.
The evolution of this occupation probability is given by the
master equation

Pij�t + 1� = �
l=1

N

AljwljPil�t� , �1�

where the meaning of wlj has already been explained, and Alj
represents element of the adjacency matrix, which is equal to
one if there exists a link between l and j, and zero otherwise.
In the rest of the paper we perform a detailed analysis of the
local navigation rules defined by the preferential transition
probability �8,14�

wlj =
kj

�

�
m=1

kl

km
�

, �2�

where the sum in the denominator runs over the neighbors of
the node l, and the exponent � is the model free parameter.
Note that according to formula �2� the transition probability
from l to j in our biased random walk depends only on the
connectivity of the next-step node j. Note also that for
�=0 we recover the ordinary unbiased random walk studied
by Noh and Rieger �13�.

In order to calculate the stationary occupation probability
Pi

�, characterizing the biased random walks studied, we av-
erage master equation �1� over the ensemble of the networks
considered �i.e., we apply mean-field approximation to this
equation�

Pj
� � �

l=1

N

�Alj��wlj�Pl
�. �3�

Now, before we proceed further, let us recall a few structural
properties of uncorrelated networks with a given node degree
distribution. First, one can show that probability of a link
between any pair of nodes l and j with degrees, respectively,
equal to kl and kj is given by �see Eq. �27� in �15��

�Alj� =
klkj

�k�N
. �4�

Expression �4� is the so-called annealed network approxima-
tion. It means that a given complex network is replaced by a
weighted fully connected graph. One has to be aware that
this approximation gives good results for vertices with large
degrees �16,17�. Second, since in uncorrelated networks the
node degree distribution Q�km /kl� of the nearest neighbors of
a node l does not depend on kl �compare Eq. �1� in �18�, and
Eq. �4� in �19��

Q�km/kl� =
km

�k�
P�km� , �5�

the normalization factor in formula �2� is equal to

�
m=1

kl

km
� = kl�

m=1

kl

km
�Q�km/kl� =

�k�+1�
�k�

kl, �6�

and the transition probability wlj between l and j averaged
over different network realizations may be written as

�wlj� =
�k�

�k�+1�kl
kj

�. �7�

Finally, inserting relations �4� and �7� into simplified master
equation �3�, after some algebra, one obtains

Pj
� =

kj
�+1

N�k�+1�
. �8�

Note that, for �=0, which stands for the unbiased random
walk, the stationary distribution is, up to normalization,
equal to the degree of the node j, i.e., Pj

�	kj. This means
that the more links a node has, the more often it will be
visited by a random walker. Note also that for �=−1,
which represents the antipreferential transition probability
wlj 	1 /kj, the stationary occupation probability is uniform
Pj

�=1 /N.
To test the validity of Eq. �8� we numerically calculated

the fraction of random walkers found in nodes with a given
connectivity kj. The expected power-law relation Pj

�	kj
�+1

was found in all the � cases and for different classes of the
analyzed networks �i.e., classical random graphs, and scale-
free networks P�k�	k−� with the characteristic exponent
�=3�; see Fig. 1. The same scaling behavior was found in
Ref. �8� for the number of packets moving simultaneously in
Barabási-Albert �BA� networks �20� in the free flow state. In
that paper, a packet routing strategy based on the preferential
transition probability �Eq. �2��, and the so-called path itera-
tion avoidance, which means that no link can be visited twice
by the same packet, was considered. At each time step R
packets were generated in the network, and a fixed node
capacity C, which is the number of packets a node can for-
ward to other nodes, was assumed. The fact that our results
coincide with those of Wang et al. �8� shows that packets
may be considered as noninteracting particles �i.e., indepen-
dent biased random walkers� in the free flow stationary state.
One can also show that this approach can be used to estimate
the critical value of packet generation rate Rc �21�, as the
parameter should fulfill a kind of balance equation between
the node’s processing efficiency C, and the number of deliv-
ered packets delivered Pj

�Rc�Tij�, where �Tij� stands for the
mean first-passage time �Eq. �13�� averaged over all pair of
nodes, and, respectively, Rc�Tij� corresponds to the total
number of packets distributed over the whole network.

The first-passage probability Fij�t�, namely, the probabil-
ity that the random walk starting at the node i visits j for the
first time at time t satisfies the well-known convolution rela-
tion �10,13�
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Pij�t� = �t0�ij + �
�=0

t

Pjj�t − ��Fij��� . �9�

The delta function term in Eq. �9� accounts for the initial
condition that the walk starts at i= j. Applying the Laplace

transform, defined as f̃�s�=�t=0
� e−stf�t�, to this equation leads

to the fundamental expression

F̃ij�s� =
P̃ij�s� − �ij

P̃jj�s�
, �10�

in which the Laplace transform of the first-passage probabil-

ity F̃ij�s� is determined by the corresponding transform of the

probability distribution P̃ij�s�. Consequently, due to the fact
that all moments

Rij
�n� = �

t=0

�

tn�Pij�t� − Pj
�� �11�

of the exponentially decaying part of Pij�t� are finite, ex-

panding P̃ij�s� as a power series in s

P̃ij�s� =
Pj

�

1 − e−s + �
n=0

�

�− 1�nRij
�n� sn

n!
, �12�

and then inserting Eq. �12� into Eq. �10�, and again expand-
ing the result as a series in s, one finally obtains the formula
for the mean transit time between i and j
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FIG. 1. Stationary probability distributions Pj
��k� calculated for different values of the parameter � in classical random graphs and

scale-free networks. Solid lines correspond to the theoretical prediction of Eq. �8�. In the case of classical random graphs, �k�=5 was
assumed. In scale-free networks �=3 and �k�=6 were chosen.
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FIG. 2. Mean first return time Tii vs node degree ki �main panels�, and �Tii� vs � �insets� in classical random graphs ��k�=5� and
scale-free networks ��=3, �k�=6�.
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Tij = �
t=0

�

tFij�t� = − F̃ij� �0� = 
1/Pj
�, for j = i

�Rjj
�0� − Rij

�0��/Pj
�, for j � i

� .

�13�

Recall that Pj
� �Eq. �8�� corresponds to the stationary occu-

pation probability, which has already been calculated.
Figure 2 shows how the mean first return time Tii of the

biased diffusing particle wandering in random network de-
pends on ki. In the figure, numerically calculated transit
times are indicated by scattered points, whereas their values
predicted by theory �13�, namely,

Tii =
N�k�+1�

ki
�+1 , �14�

are represented by solid lines. Subsets given in the figure
show how the mean first return time �Tii� averaged over all
nodes depends on � �i.e., on local navigation rules governing
the diffusing particle�

�Tii� = N�k�+1��k−�−1� , �15�

and they indirectly show how fast the biased random walk is.
The discrepancies between numerical simulations and their
theoretical prediction given by Eq. �15� shown in the subset
result from the limited wandering time of a diffusing particle,
cf. Fig. 3. The minimum value of �Tii� observed for
�m�−1 in classical random graphs indicates that the anti-
preferential transition probability �Eq. �2�� causes the slowest
exploration of the networks considered, which, in turn,
causes, in the case of such a navigation rule, the relaxation
part of the occupation probability Pii�t�− Pi

� to converge to
zero much more slowly than in the case of other values of the
parameter � �the same reasoning applies to the case of
�m�−0.5 in scale-free networks�. This reasoning implies
that, although in general the parameters Rjj

�0� and Rij
�0� in for-

mula �13� for the mean transit time Tij cannot be easily cal-
culated, the expected fast convergence of the occupation
probability Pij�t� toward the stationary distribution Pj

� for
��−�m��0 allows one to simplify the relation

Tij � 
�
t=0

2

�Pjj�t� − Pj
�� − �

t=0

0

�Pij�t� − Pj
���/Pj

�

=
N�k�+1�

kj
�+1 +

N�k�2

�k2�
1

kj
− 2, �16�

where Pij�0�=0, Pjj�0�=1, Pjj�1�=0, and Pjj�2�= �wlj� �Eq.
�7�� with kl= �k2� / �k� standing for the average degree of near-
est neighbors. In Fig. 4 one can see that the theoretical pre-
diction of Eq. �16� agrees quite well with the numerical cal-
culations of Tij. As expected, approximate formula �16�
works better for the parameter ���m. We have also checked
that the mean first-passage time Tij between any pair of
nodes does not depend on the source node i in the networks
considered. It only depends on the destination node j.

Knowing the mean transit time �Eq. �13�� of the biased
random walk, the effect of the cyclic search on the quantity
can be calculated through a simple trick that consists of di-
viding the walk between any pair of nodes i and j into two
parts: the first part is before the diffusing particle arrives in
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FIG. 3. First return time Tii vs node degree ki for different val-
ues of the particle’s wandering time t in scale-free networks ��=3,
�k�=6, �=1�. Increasing the simulation time t improves agreement
with the theoretical line given by Eq. �15�.
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the neighborhood of the target, and the second part is when
the particle sees its destination and follows the shortest path.
Distinguishing between the two parts allows us to treat the
first part as an ordinary biased random walk from a node i to
an arbitrary node in the distance x from j. The stationary
occupation probability for these nodes taken together, Pj

��x�,
is equal to the sum of probabilities representing the separate
nodes that belong to the group �note that Pj

��0�� Pj
�, Eq.

�8��. In the case of x=1, the sum runs over the kj nearest
neighbors of j. Since the average connectivity of a nearest
neighbor is �k2� / �k� �from Eq. �5��, thus, due to Eq. �8�,
occupation probability for the nearest neighborhood is given
by

Pj
��1� =

kj

N�k�+1�

 �k2�

�k�
��+1

, �17�

and in general one can show that

Pj
��x� � kj . �18�

With the stationary distribution Pj
��x�, the mean first-passage

time Tij�x� in the cyclic search problem can be calculated
from the formula below:

Tij�x� = x + TiJ = x + �RJJ
�0� − RiJ

�0��/Pj
��x� �

1

Pj
��x�

=
1

kj
,

�19�

where J stands for the xth nearest neighborhood of j. The
parameters RJJ

�0� and RiJ
�0� are given by Eq. �11�, with J corre-

sponding to the group of nodes that screens the destination
node j. Of course, in the case of x=1, these nodes corre-
spond to the nearest neighborhood, and PJJ�t�, appearing in
the formula for RJJ

�0�, describes the probability that a diffusing
particle starting at J at time t=0 is at J at time t. In Fig. 5,
one can see that scaling relation �19� for the mean transit
time in the cyclic search problem with x	1 really does
work.

In summary, we have studied the biased random-walk
process in random uncorrelated networks with arbitrary de-

gree distributions. In our model, the bias was defined by the
preferential transition probability �Eq. �2�� �see also another
paper on biased diffusion in random networks �22��. We have
calculated the expression for the stationary occupation prob-
ability, and we have derived formulas for the mean first-
passage times between any pair of nodes. The effect of the
cyclic search on transit times was also explored. We have
also shown that the random-walk approach can be used to
explain some properties of traffic dynamics in communica-
tion networks. Other traffic-related problems that can be
solved using this approach include, among many others, the
microscopic explanation of the phase transition from free
flow to the jammed phase and the quantitative estimation of
the critical value of the packet generation rate in scale-free
networks �8�. We leave these problems for our future work
�21�.
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