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Emergence of social cooperation in threshold public goods games with collective risk
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In real situations, people are often faced with the option of voluntary contribution to achieve a collective
goal, for example, building a dam or a fence, in order to avoid an unfavorable loss. Those who do not donate,
however, can free ride on others’ sacrifices. As a result, cooperation is difficult to maintain, leading to an
enduring collective-risk social dilemma. To address this issue, here we propose a simple yet effective theoret-
ical model of threshold public goods game with collective risk and focus on the effect of risk on the emergence
of social cooperation. To do this, we consider the population dynamics represented by replicator equation for
two simplifying scenarios, respectively: one with fair sharers, who contribute the minimum average amount
versus defectors and the other with altruists contributing more than average versus defectors. For both cases,
we find that the dilemma is relieved in high-risk situations where cooperation is likely to persist and dominate
defection in the population. Large initial endowment to individuals also encourages the risk-averse action,
which means that, as compared to poor players (with small initial endowment), wealthy individuals (with large
initial endowment) are more likely to cooperate in order to protect their private accounts. In addition, we show
that small donation amount and small threshold (collective target) can encourage and sustain cooperation.
Furthermore, for other parameters fixed, the impacts of group size act differently on the two scenarios because
of distinct mechanisms: in the former case where the cost of cooperation depends on the group size, large size
of group readily results in defection, while easily maintains cooperation in the latter case where the cost of
cooperation is fixed irrespective of the group size. Our theoretical results of the replicator dynamics are in

excellent agreement with the individual based simulation results.
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I. INTRODUCTION

A cooperator always benefits others with a cost to itself.
Hence, everyone is faced with the temptation to defect. How-
ever, cooperation is ubiquitous in human and animal societ-
ies [1,2]. The puzzle why cooperative behavior can emerge
in the real world attracts much attention recently [3—7]. The
classical metaphors for investigating this social problem are
the prisoner’s dilemma game (PDG) [8,9] and the public
goods game (PGG) [10]. The PDG gives emphasis to the
cooperative behavior through pairwise interactions; whereas
PGG, which captures the group interactions, focuses on the
origin of cooperation in the conflict between individual in-
terest and collective interest. In PGG, each cooperator con-
tributes to the public pool with a cost to itself while each
defector contributes nothing. The accumulated contribution
is multiplied by an enhancement factor, and the total amount
is distributed equally among all the individuals. With in a
certain group, the payoff for a cooperator is always lower
than that for a defector, it is better off defecting than coop-
erating, which leads to a social dilemma [4]. To solve such a
dilemma, a number of mechanisms to enhance cooperation
have been proposed, including repeated interactions, direct
reciprocity, punishment [11-13], spatially structured popula-
tions [14-16], and voluntary participation in social interac-
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tions [17-19]. It is worthy of noting that this line of research
has received increasing interests from the physics commu-
nity (see, for example, a recent review [20]).

However, there are some social dilemmas which have the
features of the classical PGG but cannot be characterized
exactly by PGG, such as constructing a dam for the flood
prevention and building a fence to avoid the aggression. In
these mentioned social phenomena, each individual or com-
munity can also choose to contribute (cooperate) or not (de-
fect). In order to meet a final collective target (which is also
referred to as threshold), large scale social cooperation is
required. In other words, the provision of public goods is
completed if the total contribution meets or exceeds the
threshold; otherwise, all individuals suffer with nothing irre-
spective of whether they contributed or not. For these social
dilemmas, the effective framework commonly used is the
threshold public goods game (TPGG) [21,22]. The TPGG
has been intensively studied both theoretically [23,24] and
experimentally [25,26]. Plenty of experimental results reveal
that social cooperation in TPGG can be promoted in some
situations, including sequential contribution mechanism [27],
continuous contribution mechanism [28], and high step re-
turn mechanism [29,30].

Here, we aim to study the collective risk instead of deter-
ministic loss if the collective goal is missed. Collective risk
might be encountered when the provision of public goods
fails [31]. In this case, the private goods are at stake with a
certain probability. The mechanism of collective risk is sub-
stantially different from the above referred ones as it is based
on the incentive to avoid a loss but not to obtain a gain.
Motivated by this mechanism that has been studied experi-
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mentally in [31], we propose a model of TPGG incorporating
the effect of collective risk to theoretically study the evolu-
tion of social cooperation.

Consider an infinite well-mixed population. From time to
time, an interacting group of N agents is chosen at random
among the whole population. Each of these N agents is pro-
vided with a fixed endowment W. Within such a group, there
is a target to be accomplished, for example, constructing a
dam. Specifically, building the dam requires a final contribu-
tion T collected by donating. For simplicity, we restrict par-
ticipants to binary contributions (a fixed donation amount or
nothing). Namely, each player can choose to donate either a
fixed amount H (cooperate) or nothing at all (defect). Herein
the donation amount H is also referred to as the cost of
cooperation although the actual cost (final payout) depends
on whether the collective target can be achieved. If the final
target is reached, the dam can be constructed and the remain-
ing private goods of each individual is prevented from los-
ing. In this case, cooperators can keep whatever is left in
their private account, W—H, and defectors own the whole
endowment W. If the target is not completed, the dam cannot
be built and the risk happens with probability p (0=p=1).
Once the danger occurs, all participants, including coopera-
tors and defectors, lose their whole private goods. Whereas
the danger does not happen, cooperators can hold what they
had not invested in their private account, W—H, and defec-
tors can keep the whole endowment W. Hence, cooperation
is always worse off than defection in any given group. Be-
cause of this apparent disadvantage of cooperation, under
what conditions social cooperation can emerge? To answer
this question, we analyze the evolutionary population dy-
namics using the replicator equations [32-35] for two differ-
ent scenarios. One scenario focuses on defectors versus fair
sharers, who donate the fair share (H=T/N, which depends
on the group size), and the other consists of defectors and
altruists, who donate a fixed amount more than fair share
(H>T/N). We shall investigate the impacts of risk (param-
eter p) and other factors (e.g., the initial amount of endow-
ment) on the evolution of cooperation. We find that high risk
as well as large initial endowment can significantly promote
social cooperation. In addition, small cost of cooperation
(donation amount) and small collective target also maintain
cooperative behavior. Most interestingly, we observe differ-
ent effects of group size on the two scenarios because of
distinct mechanisms: a large group size tends to inhibit the
emergence of cooperation in the case of fair sharers and de-
fectors (where the collective target is only fulfilled when all
individuals donate; thus the cost of cooperation is dependent
of the group size) but enhances the sustainment of coopera-
tors in the other situation of defectors versus altruists, where
the cost of cooperation is fixed and irrespective of the group
size. Furthermore, we confirm the validity of our theoretical
results by individual based simulations.

The paper is organized as follows. For the case of fair
sharers and defectors, the TPGG model with collective risk
is proposed and discussed in Sec. II. In Sec. III, the corre-
sponding model is introduced and investigated in detail for
the case of altruists and defectors. Numerical simulations
are presented in Sec. IV. Finally, conclusions are drawn in
Sec. V
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II. DYNAMICS OF POPULATIONS OF FAIR
SHARERS AND DEFECTORS

First, we consider a simple situation that donators contrib-
ute minimum average amount, i.e., the amount H=T/N. In
this case, the target 7' can be reached in the limit of all
donating. Note that the initial endowment W needs to be
larger than T/N (otherwise, public goods can never be pro-
vided). In a group consisting of n cooperators and N—n de-
fectors, the remainder in the private account for a cooperator
and a defector is, respectively, given by

T
W- X], n=N
Pc(n) = - (1)
(l—p)(W—X]>, 0<n<N
and
Pp(n)=(1-p)W,0=n<N. (2)

It is easy to see that if the danger happens with certainty
(p=1), individuals are better off donating than defecting. If
the danger never happens (p=0), defection is the best choice.
Nevertheless, if the danger happens with a probability 0
<p<1, some individuals want to save their interests by co-
operating, whereas others are willing to gamble for the dan-
ger. If the donation amount for a cooperator exceeds the
expected loss for a defector, i.e., T/N>pW [p<T/(NW)],
defection dominates cooperation. The strategy profile of all
defection is the unique Nash equilibrium. If T/N<pW [p
>T/(NW)], everyone is better off if the public goods is pro-
vided than not. The “all fair sharers” set of strategies is a
Nash equilibrium as no one can increase its remainder by
changing its own strategy while the others stay the same.
However, it is an “unstable” equilibrium because once one
player changes its strategy, the remaining players may in-
crease their expected remainders by altering their strategies.
These changes lead to another “stable” Nash equilibrium, the
profile of “all defectors.”

The above discussion is only applied to one-shot game.
Using replicator dynamics, we study the evolutionary behav-
ior of repeated game. Denote the fraction of cooperators by x
and that of defectors by y. We have x+y=1. The time evo-
lution of this system is governed by the following differential
equations

X=XUC—J_C)

_ (3)
y=y(fp-1,

where f. is the expected remainder for a cooperator in a

group of N players and fp is that for a defector, f=xfc
+yfp is the average remainder in the population.

In the well-mixed population, a group of N agents is cho-
sen randomly, resulting in a random population composition.
For a given fair sharer, the probability to find him in an N
persons group consisting of j other fair sharers and N—-1—j
defectors is
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(N_. 1 )xij—l—j‘
J

In this case, the expected remainder in the private account
for a fair sharer is

N1
fe= > ( . )xij_l_ch(j+ 1). 4)
j=0 J
Similarly, the expected remainder for a defector is
N-1
N-1)\ . .
fo=2 ( ; )xny-l-fPD(i). (5)
j=0

Substituting equation x+y=1 and using
’§ (N -1

, )xj(l )M =1,
J

j=0

Equations (4) and (5) can be transformed to

fe=( —p)(W— Z) +x”“p(W— Z)

N N
T T T
=W—]T/—p(W—X7>+xN‘lp<W—X]> (6)
and
fo=-p)W. (7)

Denote the expected payout for a cooperator and a defector
by ge=y+p(W—1)=x""'p(W-1) and gp=pW, respec-
tively. We can find that the payout for a cooperator is com-
posed of the cost of cooperation 7/N and the expected loss
arising from the risk, whereas the payout for a defector is
only due to the expected loss.

Further substituting x+y=1 into the first equation of Eq.
(3), the dynamics of x(z) is given by

x=x(1-x)(fc—fp)
=x(1-x)(gp—8c)

t—o| v (- z) T }
=x(1 x){xN p(W N N(l p)|. (8)
We focus on the steady state to which the population
evolves. Let x=0, we get all fixed points of the system. Ac-
cording to the value of the risk rate p, we distinguish three
situations as follows:

(1) If p=0, Eq. (8) reduces to

T
t=— —x(1-x).
X Nx( X)

This system has only two fixed points, x=0 and x=1. At x
=0, the Jacobian is J(x=0)=-T/N<0, leading to a stable
equilibrium. At x=1, the Jacobian is J(x=1)=T/N>0, lead-
ing to an unstable equilibrium. In this case, the population
system converges to the state of all defectors. This result can
also be derived from the comparison between the payout (or
remainder) for a cooperator and a defector. The relationship
gp—8c=—T/N<0 indicates that defection is always better
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off than cooperation. Thus, all individuals choose to defect.
No one wants to contribute its savings to a dam for the flood
prevention in a desert.

(2) If p=1, Eq. (8) becomes

x:(W— %})x”(l —-x).

There are also only two fixed points x=0 and x=1. It is
worth noting that the payout for a cooperator is less than that
for a defector as gp—gc=(W- I%I)JCN‘1 is always positive in
the whole interval (0,1), resulting in x as an increasing func-
tion of ¢ irrespective of the initial state. Departure of the
trajectory from the point x=0 shows that x=0 is an unstable
equilibrium. At x=1, the Jacobian is J(x=1)=—(W- 1%,) <0.
Thus, the fixed point x=1 is stable, leading to extinction of
defectors. Accordingly, the population ends up with the
steady state of all cooperators. In fact, if the danger happens
with certainty, the best response for each individual is to
donate unconditionally.

(3) If 0<p<1, we also obtain the two boundary fixed
points x=0 and x=1. At x=0, the Jacobian

J(x=0)=—]€(l -p)<0

shows that x=0 is a stable equilibrium. At x=1, the Jacobian
is

J( —1)—Z w
x=1)=1-pW,

which is below zero in the case p>T/(NW) and exceeds
zero in the case p <T/(NW). Thus, x=1 is a stable equilib-
rium if p>T/(NW), and an unstable equilibrium, otherwise.
Therefore, if the cost of cooperation 7/N is lower than the
expected loss of defection pW, cooperation can prevail and
take over the population, depending on the initial abundance
of cooperators. However, whenever pW<T/N, the expected
loss of defection is less than the cost of cooperation. Thus
cooperation is not a social optimum in this case. Individuals
better do nothing rather than contribute. Even so, we still call
these zero contributors as defectors in order to simplify the
terminology.

To gain a complete picture of the dynamics, let us further
analyze the existence and stability of the interior equilibrium.
For p<T/(NW), there is no interior equilibrium and for p
>T/(NW), there is a unique one in the interval (0,1). In
order to prove this, we set F(x)=fc—fp. It is obvious that
F(0)=—y(1-p)<0, F(1)=p(W-y)-y(1-p), and F'(x)
=(N-1)x"2p(W-T/N)>0. For p<T/(NW), F(1)<0
holds, and thus there is no interior equilibrium (see Fig. 1);
for p>T/(NW), we have F(1)>0, F(0)<0, and F'(x)>0,
and hence there exists a unique root of F(x)=0 as
=" NL(1=p)/[p(W=L)] in (0,1). At the interior equilib-
rium x*, the Jacobian is

Jx=x")= ]%(l - x)1-p)(N-1)>0,

resulting in an unstable equilibrium.

016101-3



WANG et al.
6
al
2
Ef/ 0
0 0.2 0.4 0.6 0.8 1

X

FIG. 1. (Color online) Difference between the expected remain-
der for a cooperator and a defector as a function of the fraction of
cooperators.

To sum up, the collective risk brings in rich dynamics (see
Table I). With increasing the risk rate, evolutionary dynamics
transits from the dominance of defectors [0=p <T/(NW)] to
the bistability between defectors and fair sharers [T/(NW)
< p<1] and further to the dominance of fair sharers (p=1)
(Fig. 2).

Further, let us study the dependence of the resulting
dynamics on the model parameters. If the expected loss of
defection is larger than the cost of cooperation, i.e.,
p>T/NW, the steady states x=0 and x=1 are both stable.
Which state that the system evolves to eventually depends on
which attraction basin the initial state is located in. The in-
terior equilibrium x* separates the attraction basins of x=0
and x=1. If the initial state meets x,<x", the expected re-
mainder for a cooperator in the sampled groups is less than
that for a defector, that is, the payout for a cooperator sur-
passes that for a defector. Hence, the system ends up with all
individuals donating nothing. Otherwise (x,>x"), the payout
for a cooperator is below that for a defector (the remainder
for a cooperator exceeds that for a defector). Thus, each in-
dividual chooses to donate the fair share. As a result, de-
creasing the equilibrium x* broadens the attraction basin of
x=1 and makes it easier to reach full cooperation, promoting
the emergence of cooperation. Note that the interior equilib-
rium x* is a decreasing function of the risk rate p. With an
increasing rate p, the attraction basin of the state x=0 is
reduced, and therefore a lower initial abundance of coopera-
tors is needed to maintain cooperation. In this situation
(xg>x"), both remainders for a cooperator and a defector
decrease when the risk rate p increases. However, the payout

TABLE I. Stability of equilibria in systems of fair sharers and
defectors.

0<p<l
p=0 p=1 P<ww P>
x=0 Stable Unstable Stable Stable
x* Unstable
x=1 Unstable Stable Unstable Stable
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FIG. 2. Evolutionary dynamics of the population consisting of
fair sharers and defectors. Filled and open circles represent the
stable and unstable fixed points, respectively. Arrows indicate the
evolutionary direction. (a) 0=p<T/(NW); (b) T/(NW)<p<l1;
and (c) p=1.

for a defector may exceed that for a cooperator as the in-
creasing rate of the former with respect to the risk rate p is
higher than the latter. Accordingly, the remainder for a coop-
erator is more likely to be larger than that for a defector in a
more risky environment, inducing the prevalence of coopera-
tion. Overall, cooperation may be favored under high risk
situations.

In addition, the attraction basin of the state x=0 shrinks
with the increase in the endowment W and the decrease in
the final target 7. Hence, it is easier for the population to
reach all cooperators with larger endowment and smaller tar-
get sum. Besides, noticeably, the interior equilibrium x* ap-
proaches to x=1 when the group size N increases to infinite.
Namely, for sufficiently large group size, the attraction basin
of the state x=1 is vanishing. Therefore, large group size has
a negative impact on the emergence of cooperation in the
case of fair sharers and defectors.

This result is consistent with previous studies of PGG
involving voluntary participation in Ref. [19] where the au-
thors stated that cooperation is favored for small effective
interaction group size. Since with decreasing the effective
interaction group size S, condition 7> (r is the enhance-
ment factor) is easily satisfied, and hence the net payoff for a
cooperator readily tends to exceed that for a defector. In our
model, although decreasing the group size raises the cost of
cooperation, it becomes more likely to pick up N coopera-
tors, which form an interaction group and can complete the
collective target. Consequently, cooperation can gain a foot-
hold in the population for a small group size compared with
a large group size, as the expected remainder for a coopera-
tor is lightly larger than that for a defector.

III. DYNAMICS OF POPULATIONS OF ALTRUISTS
AND DEFECTORS

Let us consider the situation of altruists versus defectors.
Altruist is a type of player who contributes more than the fair
share (H>T/N). In order to analyze the emergence of social
cooperation in this case, we have to distinguish two sce-
narios below.

A. Case 1: T can be divisible by H

In this case, an altruist in an N-player group has reminder
in its private account
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p 3 W-H, m=n=N 9
A=) W), 0<n<m. ©)

where n is the number of altruists in the group and m
=T/H<N. The remainder for a defector in the same group is
given by

m=n<N

o) =1 (10)
{W(l -p), 0=n<m.

Similarly, we get the expected remainder in the personal ac-
count for an altruist and a defector, respectively, as follows:

"2IN-T\ A
fa=W-H-p(W-H)2 ( . )x’(l—x)N""’,
j=0 J

m—1
fo=W-pWX (N_. : )xf(l —x)N (11)
J

j=0

The payout for an altruist and a defector is, respectively,
given by

m=2 N-1
gA=H+p(W—H)E< . )xf(l—x)N—‘-f,
j=0 J

m—1
N-1)\ . .
gD=pWE< . )xf(l—x)N“‘f.
J

j=0

The corresponding replicator equation is

x=x(1=x)(fa=fp)=x(1 =x)(gp—ga)-

Let F(x)=f4~fp(=gp—84). We get

Flx)=— H+pW(N: i )xm—l(l —x)N-m

(N-1
+Hp Y, ( _ )xj(l—x)N_l_j. (12)
j=0 J
The boundary fixed point x=1 is an unstable equilibrium as
the Jacobian is J(x=1)=H>0, while the other boundary
fixed point x=0 is a stable equilibrium as a result of the
Jacobian J(x=0)=—H+Hp <0, with p<<1. Let us consider
the interior fixed points which are roots of the function F(x).
We only concentrate on the real roots of the function F(x) in
the interval [0,1] and the situation of no multiple root. La-
beling these real roots according to an increasing rank order,
we claim that all fixed points appear alternately between
stable and unstable as the first derivative of x(1-x)F(x) at
these fixed points alternately changes signs between negative
and positive (the proof can be found in the Appendix). The
stability of the interior fixed points is summarized in Table II.
In the case of p=1, the replicator equation is simplified as
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TABLE II. Stability of all fixed points in systems of altruists and
defectors (case IIIA). k is the number of interior fixed points. It is a
positive even number or zero in the case of p<1 and p=1 [F(x)
< 0], while it is a positive odd number in the situation of p=1
[F(x)>0]. 0<x,<x,<---<x;<1. The stability of the interior
fixed points listed in the table is obtained under the assumption of
no multiple root. If there exists a multiple root, it may be stable,
unstable, and saddle node. The inequalities F(x)>0 and F(x)<0
need to be satisfied in the right neighborhood of x=0.

p=1
p<l1 F(x)<0 F(x)>0
x=0 Stable Stable Unstable
X=X Unstable Unstable Stable
X=Xy Stable Stable Unstable
X=X Stable Stable Stable
x=1 Unstable Unstable Unstable

N-1
x=x(1—x)|:—H+ W( )xm_l(l—x)N_m
m—1

m-2
+HY, (N_ ! )xj(l —x)N_l_j]
j=0 J
=x(1 —x)|:W(Z: i )xm_l(l — x)N-m

N-1
-H > (N_, ! )xfu —x)N-l-f]. (13)

Jj=m—1 J

Note that if F(x)<0 holds in the right neighborhood of x
=0, i.e., x=x(1-x)F(x) <O, then a sufficiently small fraction
of cooperators will decrease to zero, resulting in a stable
equilibrium x=0. Whereas if F(x)>0 is always satisfied in
the right neighborhood of x=0, the departure of the small
fraction of cooperators from the state x=0 shows that the
fixed point x=0 is no longer stable, implying that coopera-
tion cannot disappear. Thus, elements which can lead to
F(x)>0 in the right neighborhood of x=0 also promote the
emergence of cooperation. By observing Eq. (13), we find
that cooperation can be sustained by increasing the initial
endowment W and the group size N, or decreasing the target
sum T and the cost of cooperation H for a fixed number of
donators needed to accomplish the final goal. In fact, if the
danger happens consequentially, for larger initial endowment
W and smaller cost of cooperation H, more individuals con-
sider it worthy of saving their private goods by donating,
thus promoting the emergence of cooperation. The decrease
in the target sum 7 gives rise to more free riders and fewer
donators that are needed to collect the goal. In this situation,
the smaller number of donators is more readily satisfied to
fulfill the goal, and therefore more persistent cooperation is
found. Regarding the group size, let us explain why its in-
crease enhances the maintenance of cooperation. The prob-
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TABLE III. Stability of all fixed points in systems of altruists and free riders (case IIIB). k is the number
of interior fixed points. It is a positive even number or zero when one of x=0 and x=1 is stable, whereas the
other one is unstable, while it is a positive odd number when both x=0 and x=1 are stable or unstable. 0
<x;<xp,<---<x;<1. The stability of the interior fixed points listed in the table is obtained under the
assumption of no multiple root. If there exists a multiple root, it may be stable, unstable, and saddle node.
The inequalities F(x)>0 and F(x) <0 need to be satisfied in the right neighborhood of x=0.

p=1 p<l
T T T T T
v1=H>y H>355 v =H>y
F)<0  F(x)>0  F(x)<0  Fx)>0 p>1i p<i H>5
x=0 Stable Unstable Stable Unstable Stable Stable Stable
X=X Unstable Stable Unstable Stable Unstable Unstable Unstable
X=X Stable Unstable Stable Unstable Stable Stable Stable
X=X Unstable Unstable Stable Stable Unstable Stable Stable
x=1 Stable Stable Unstable Unstable Stable Unstable Unstable

ability to find an N, persons group consisting of m altruists
and N,—m defectors is

N
( 1 )xmle—m.
m

Similarly, the probability to find an N, group (N, <N,) com-
posed of m altruists and N,—m defectors is

(NZ )meNz_m .
m

Notice that when x<<1, the first probability is smaller than
the second one. Namely, for sufficiently small x, large group
size raises the probability to complete the final target, thus
encouraging the cooperative behavior even when rare coop-
erators are present in the population. Hence, increasing the
size of group can promote the emergence of cooperation in
our model.

B. Case 2: T cannot be divisible by H

Similarly, in this case, an altruist in an N-player group has
the remainder

PA(n)={W_H’ [m]+1=n=N

(1-p)(W=H), 0<n=[m], (14)

where n is the number of altruists in the group and “[]”
represents the integralized Gauss mark. The remainder for a
defector in the same group is given by

PD(H):{W, m]+1=n<N

Wl -p), 0=n=[m]. (15)

Then, we obtain the expected remainder for an altruist and a
defector, respectively, as follows:

[m]-1

fa=W-H-p(W-H) X ( _.1>xj(1—X)N‘1‘j=W—gA
Jj=0 J

[m]

fp= W—pWE (N]_ ! )xj(l -0V =W-g,. (16)
j=0

In this situation, the replicator equation is given by

N-1
X =X(l —x) — H+pW( )X[m](l _ X)N—[m]—]
[m]
[m]-1
N-1)\ . .
+Hp 2, ( . )x’(l—x)N_l_f . (17)
j=0 J

The stability of each fixed point is listed in Table III.

In what follows, we focus on investigating what ingredi-
ents can enhance the emergence of cooperation when the
boundary fixed point x=0 is stable and x=1 is unstable. Co-
operation is apparently disadvantageous in this situation. It is
worth noting that all fixed points appear alternately between
stable and unstable as the first derivative of the right-hand
side of the replicator dynamics at these fixed points changes
alternately between negative and positive. We also suppose
F(x)=fs—fp(=gp—ga). As F(0)<0 and F(1)<0, the num-
ber of the interior fixed points is either zero or a positive
even number, which guarantees the interior fixed points to
appear alternately between stable and unstable in this case.
Furthermore, the nearest fixed point to the stable equilibrium
x=0 in the interval (0,1), x7, must be unstable, thus deter-
mining the attraction basin of the state x=0. With the de-
crease in the fixed point x", the attraction basin of x=0 is
reduced. Accordingly, the probability with which the popu-
lation system evolves to the steady state of all defectors
drops, promoting the emergence of the cooperative behavior.
In addition, the nearest interior fixed point to the unstable
equilibrium x=1, denoted by x3, must be stable, representing
the largest possible cooperation level. This possible coopera-
tion level declines with decreasing xi and vice versa. To
some extent, the fixed point xf indicates how favorable the
cooperative behavior is.

Therefore, we concentrate on the smallest as well as the
largest interior fixed points which are two roots of the func-
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FIG. 3. The stationary cooperation level as a function of the risk
rate p. The arrows indicate the stability of the fixed points (evolu-
tionary direction of the population): solid lines represent the stable
fixed points, while dashed lines represent the unstable ones. In
phase A(p <0.76), defectors dominate cooperators. While in phase
B(0.76=p<1), defectors and cooperators may coexist at the inte-
rior equilibrium. With a raised rate of loss p, the attraction basin of
the state x=0 decreases and the largest possible cooperation level
increases. When the risk rate p=1, cooperators dominate defectors.
It shows that high risk rate p can enhance the emergence of coop-
eration and promote the cooperation level. Parameters: W=20, T
=40, H=7, and N=8.

tion F(x). As shown in Fig. 3, when the risk rate p<0.76
(denoted by phase A), no interior fixed point can be ob-
served. There are only two equilibria x=0 and x=1, which
are stable and unstable, respectively, resulting in no donation
behavior eventually. When the risk rate p =0.76 (phase B in
Fig. 3), two interior fixed points x" and xi appear, which are
unstable and stable, respectively. The transition from phase A
to phase B occurs as the risk rate increases. Furthermore,
when the risk rate p is raised, x" decreases and xi} increases
monotonously. The decrease in x' indicates that the attraction
basin of x=0 is reduced. Therefore the population reaches
the state of all defectors with a lower probability, enhancing
the emergence of cooperation. Additionally, the increase in
x¥ demonstrates that the largest possible cooperation level is
improved. Hence, high rate of risk p is an alternative mecha-
nism to enhance the emergence of cooperation and promote
the cooperation level.

Increasing the initial endowment W can also advance co-
operation (Fig. 4). For a fixed donation amount, the poor
people think it is worthless to protect their private accounts
by donating a large amount compared with the initial endow-
ment. Instead, they would like to bear a risk, leading to no
donators in the limit of small initial endowment. On the con-
trary, people with large initial endowment are not willing to
run a risk. They come forward to donate with a high prob-
ability. The incentive for the rich people to avoid risk cata-
lyzes the emergence of cooperation and also enhances the
cooperation level. As a consequence, large initial endowment
can promote the evolution of cooperation.

The effects of donation amount H, final target 7, and
group size N on cooperative behavior are complex, resulting
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FIG. 4. The stationary cooperation level as a function of the
initial endowment W. The arrows indicate the stability of the fixed
points (evolutionary direction of the population): solid lines repre-
sent stable fixed points, while dashed lines represent the unstable
ones. In phase A, defectors dominate cooperators. Whereas in the
next phase B, defectors and cooperators may coexist at the interior
equilibrium. With the increase in the initial endowment W, the at-
traction basin of the state x=0 is reduced and the largest possible
cooperation level is raised. It shows that large initial endowment
can enhance the emergence of cooperation and increase the coop-
eration level. Parameters: 7=40, H=7, N=8, and p=0.8.

in rich evolutionary dynamics. Let us first investigate the
effect of donation amount. If H<<T/N, the target cannot be
reached even all individuals donate. There is only one stable
fixed point, x=0. It shows that no one wants to cooperate in
this case. For H=T/N, the target can be reached only if every
individual donates the amount H. This situation, which is
already analyzed in detail in Sec. II, is corresponding to the
phase A in Fig. 5(a). The states x=0 as well as x=1 are both
stable, while the unique interior fixed point x* is unstable,
separating the two attraction basins of all free riders and all
fair sharers. For further increased H (in phase B), it is not
necessary for all individuals to donate in order to complete
the goal. The system even allows one individual to free ride
but the target can still be reached. In this case, the fixed point
x=0 is still stable but x=1 changes to be unstable. Moreover,
a new stable interior fixed point x} which is adjacent to x
=1 appears. The original unstable equilibrium x in region A
parts the two attraction basins of x=0 and xi in region B. In
addition, the state x and x} ascends and descends, respec-
tively, as H increases. It indicates that there is less incentive
to collect the public goods with larger cost of cooperation. In
the next phase C, the system allows at most two free riders
under the premise of the provision of the public goods. The
local dynamics in phase C is similar with that in phase B.
However, in contrast with dynamics in phase B, the interior
equilibrium x" as well as x# decline. This transition between
phases B and C stems from the decrease in the number of
donators needed to accomplish the target with increasing H.
It is easier to meet the number, elevating the probability of
completing the target. Accordingly, the persistence of coop-
eration is improved. On the other hand, since more free rid-
ers are permitted in a certain group to accomplish the goal,
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FIG. 5. (Color online) The steady cooperation level as functions
of (a) the donation amount H, (b) the threshold 7, and (c) the group
size N. The open symbols represent the unstable fixed points, while
the filled symbols represent the stable ones. Parameters: (a) T=40,
N=8, W=20, and p=0.8; (b) W=20, H=7, N=8, and p=0.8; and
(c) T=40, W=20, H=5, and p=0.8.

many more individuals choose to free ride, inhibiting the
cooperation level. Moreover, when H exceeds everyone’s up-
per limit for the donation amount, no one thinks it is worth to
donate for the provision of the public goods, which corre-
sponds to the only one stable equilibrium, x=0 [as shown in
phase D in Fig. 5(a)].

PHYSICAL REVIEW E 80, 016101 (2009)

The impact of the target T is shown in Fig. 5(b). The
dynamics with increasing 7 is similar to that with decreasing
H. The phases A, B, and C in Fig. 5(b) are corresponding to
D, B and C, A in Fig. 5(a), respectively. With ascending
target T, both fixed points x* as well as xi are raised. The
population ends up with all defectors with higher probability,
and the largest possible cooperation fraction is also raised.
We should point out that the population may settle at a high
cooperation level (for example, xt=0.89 or 0.71) but is of-
ten faced with a high probability of having all defectors (the
corresponding attraction basin of all defectors is x<<0.62 or
x<0.51). Thus, large target sum 7 encourages the defection
and inhibits the emergence of cooperation.

Figure 5(c) depicts the effect of the group size N. In phase
A, the target will be reached only if all individuals donate,
which is similar to the situation in phase A of Fig. 5(a). In the
next phase, increasing the size of the group permits more
people to free ride as long as the target can be completed.
The transition is similar to that from phase B to C in Fig.
5(a). Hence, the attraction basin of the state x=0 drops.
Moreover, many free riders allowed induces the incentive to
share the collective interest without any donation, thus re-
ducing the largest possible cooperation level. Therefore, in
this case, large group size enhances the maintenance of co-
operation but reduces the largest possible cooperation level
as well.

Actually, this result regarding the effect of group size
does not contradict the conclusion in Sec. II as the two phe-
nomena are based on distinct mechanisms. In the case of fair
sharers and defectors, increasing the group size N decreases
the cost of cooperation, but also raises the number of dona-
tors needed for achieving the final target. Consequently, it
becomes harder to have all donators in a given group so that
the collective target can be completed. Frequent failures of
the target destroy the cooperative behavior. Hence, in Sec. II,
large group size hinders the emergence of cooperation. How-
ever, in the case of altruists and defectors, the cost of coop-
eration is fixed, and the number of necessary donators is also
constant. Similarly to the case A, the probability of success-
fully collecting the target for an N, persons group is less than
an N, persons group (N;<N,) in the limit of small fraction
of cooperators. Accordingly, increasing group size N encour-
ages the cooperative behavior, thus enhancing the conserva-
tion of cooperation even with rare cooperators.

IV. SIMULATIONS

In order to verify the results derived from the replicator
equation, we perform individual based simulations for our
model. Here, we adopt asynchronous update rule. In the
simulations, we consider a well-mixed population consisting
of M individuals. All individuals are treated as equivalent in
all respects and the evolutionary process depends on the re-
mainder of individuals. Initially, half of the population are
assigned as cooperators. Each individual is provided with a
fixed endowment. At each time step, an individual i and a
group of N—1 (N<<M) individuals competing with i are ran-
domly chosen. These N individuals play the public goods
game together. The remainder for individual i, P;, is calcu-
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lated according to Egs. (14) and (15) [or Egs. (9) and (10)].
Similarly, another randomly chosen individual j in another
randomly chosen sample of N individuals has the remainder
P;. If P;> P, the individual j changes his strategy to that of
i with a probability given by p(j—i)=(P,—P;)/m, where 7
is the normalized factor being the possible maximum re-
mainder difference between P; and P;. Analogously, indi-
vidual i adopts the strategy of j with the probability p(i
— j)=(P;=P;)/  if P;> P;. The numerical simulation results
are in excellent agreement with the analytical results from
the replicator equation (see Fig. 6).

V. CONCLUSIONS

In summary, we have studied the effects of collective risk
as well as other factors on the evolution of cooperation in
threshold public goods games. This simple model presents
the characteristics of some long-standing collective-risk so-
cial dilemmas in human societies. Our theoretical model is
largely different from the previously most studied public
goods games in the sense that provision of public goods in
previous models is based on the incentive to gain more from
the goods in return, whereas our model focuses on the situ-
ation in which individuals voluntarily contribute to avoid the
unfavorable loss rather than to earn profit. The evolutionary
dynamics obeys a simple rule: if the payout for a cooperator
is higher than that for a defector, defection prevails, whereas
cooperation is favored otherwise. For practical purpose, we
distinguish two simplifying cases to discuss, one with fair
sharers and defectors, the other with altruists and defectors.
In the former case, we found that if the rate of loss p is less
than 7/(NW), the cost of cooperation surpasses the expected
loss of defection. In this situation, there is no incentive to
cooperate as the payout for a cooperator exceeds that for a
defector, resulting in the extinction of cooperation. The
population evolves to the steady state of all defectors. If p
>T/(NW), the cost of cooperation is inferior to the expected
loss of defection. The payout for a cooperator is possible to
surmount that for a defector depending on the initial abun-
dance of cooperators, and thus the cooperation can be main-
tained. The two strategies, donating the fair share and defect-
ing, are bistable. Reaching the steady state of all cooperators
is more likely as the risk rate p and the initial endowment W
increase or as the final target T decreases. For the group size,
large N suppresses the emergence of social cooperation. In
the latter case, the result shows that the state x=1 is always
unstable except in the situation of p=1 and N-1<T/H
<N as the provision of public goods does not require all
participants to donate. For a low risk rate, only defectors
exist eventually as no one is willing to avoid such a small
loss with a large cost to itself. With large p, in contrast, the
social cooperation can emerge if the initial frequency of co-
operators overtops some specific value. Furthermore, with an
increasing risk rate p, the probability to the steady state of all
defectors drops and the largest fraction of cooperators (can
also be referred to as largest possible cooperation level) is
promoted. In addition, we also found the conservation of
cooperation can be significantly enhanced by large initial en-
dowment, small target sum, small cost of cooperation (under
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FIG. 6. (Color online) Comparisons of the simulation results
with the analytical results. We apply the same parameters used in
Figs. 3, 4, and 5(a), respectively. We set M=1000 and update for
20 000 time steps. The line represents the analytical results derived
from the replicator dynamics and the symbols represent the simu-
lation results. Each simulation data point is an average over ten
realizations. It is found that in each case, the two results are in
excellent agreement.

the condition that the number of necessary donators to fulfill
the collective target is unchanged), and large group size
which plays an opposite role as compared to the former case
because of different mechanisms. Moreover, the largest pos-
sible cooperation level is raised by large initial endowment,
while it declines with smaller final goal, larger donation
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amount, and larger group size. In addition, we found excel-
lent agreement between our theoretical results and the indi-
vidual based simulations. Our present work demonstrates
that high-risk rate is an alternative mechanism to enhance the
emergence of social cooperation. We hope that our work
might offer some insight into promoting social cooperation
in collective-risk situations, where individuals want to avoid
the unfavorable loss rather than to gain profits.
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APPENDIX: THE FIRST DERIVATIVE AT THE REAL
ROOTS OF A POLYNOMIAL CHANGES SIGNS
ALTERNATELY BETWEEN NEGATIVE AND POSITIVE

Let G(x)=x(1-x)F(x). In what follows, we demonstrate
that the first derivative at the real roots of G(x) changes signs
alternately between negative and positive.

As function G(x) is a polynomial which can be expressed
as

!
Gx)=c]] x —xi)H (2 + ax+b;),

i=1 j

(A1)

where x; is the real root of G(x) and [ is the number of real
roots. The expression is satisfied for any i; # i, and Xj F X,
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Besides, there must be a]z < 4b_,« for any j. The first derivative
of the polynomial is given by

G’(x):(z 1 +2 22)c+a/-

;X—Xx X tapx+b;

) Gx). (A2)

Consequently, we have the first derivative at the fixed point
x;, as follows:

G' () =l =)L, (3 + ajmi+ b))

+(z

1 2x,+a;:
&)G(xk)

2

#kxk—xi )Ck+aj.xk+bj

J

=]l , (xk—x,-)Hj (x; +ap +b;). (A3)

The first derivative at the fixed point x;,; is obtained simi-
larly as

G'(xp)=c H (Xpe1 = xi)H (xiﬂ T aAXp + bj)~

i#k+1 j
(Ad)
Multiplying G’ (x;) and G’ (xy,,), we get
G’ ()G’ (1) = = (g = X541,

k=1 I
H (= x) (s — ;) H (0 = x) (g = X)),
i=1 i=k+2

H (x,z+ajxk+bj)(x,z+1 + A +b)). (A5)

J

Note that x; < -+ <x,;<x3,; <+ <x;. Equation (A5) guar-
antees G’ (x;)G' (x;,) <O0. It shows that the signs of the first
derivatives of any two contiguous fixed points are opposite.
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