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We present a computational methodology for incorporating thermal effects and calculating relative free
energies for elastic fluid membranes subject to spatially dependent intrinsic curvature fields using the method
of thermodynamic integration. Based on a simple model for the intrinsic curvature imposed only in a localized
region of the membrane, we employ thermodynamic integration to calculate the free-energy change as a
function of increasing strength of the intrinsic curvature field and a thermodynamic cycle to compute free-
energy changes for different sizes of the localized region. By explicitly computing the free-energy changes and
by quantifying the loss of entropy accompanied with increasing membrane deformation, we show that the
membrane stiffness increases with increasing intrinsic field, thereby, renormalizing the membrane bending
rigidity. The second main conclusion of this work is that the entropy of the membrane decreases with increas-
ing size of the localized region subject to the curvature field. Our results help to quantify the free-energy
change when a planar membrane deforms under the influence of curvature-inducing proteins at a finite
temperature.
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I. INTRODUCTION

Cell-membrane deformations are often orchestrated by
protein-membrane interactions �1,2�, which mediate several
intracellular trafficking events �3–5�. Accordingly, theoretical
modeling and experimental study of membranes and protein-
membrane interactions at multiple resolutions is a central
objective in biophysics �6–13�. In this paper, we employ phe-
nomenological theories based on generalized elasticity �see
below� �14,15� in order to describe mesoscopic �at the ��m
resolution� behavior of membranes, membrane undulations,
and curvature modulations �16–20�. These models have been
extensively employed and specific choices of the governing
equations �e.g., the form for membrane free energy� have
been validated based on experimental studies. Hence, at the
mesoscopic scales such models are considered reliable; how-
ever, a major challenge has been in tailoring them for the
quantification of free energies.

In a classic article, Helfrich �21� described the elastic en-
ergy of a fluid membrane by the Hamiltonian,

E =� � ��

2
�H − H0�2 + �̄K�dA + ��	A − Aflat	� , �1�

where A is the total area of the membrane, dA is the differ-
ential area element, Aflat is the projected area of the mem-
brane patch on a plane, and H and K are the mean curvature
and the Gaussian curvature of the membrane, respectively.
The membrane Hamiltonian depends on the frame tension �,
the bending rigidity �, the splay modulus �̄, and the intrinsic
curvature field H0. Considering only those membrane shapes
for which the overall membrane topology does not change,

the contribution of Gaussian curvature to the Helfrich Hamil-
tonian is a constant. Within the Helfrich Hamiltonian, the
effect of protein-induced curvature is treated through the H0
term �22� which, in general, is a spatially varying function.
To make the analytical and numerical calculations tractable,
we only consider small deformations of the membrane, in
which case, the membrane shape can be represented in a
Monge or a Cartesian gauge as z=z�x ,y�. The resulting Hel-
frich Hamiltonian obtained by simplifying the expressions
for the mean curvature and the differential area element in
Eq. �1� is given by �22�

E =� � ��

2
��2z − H0�2 + 
�

4
H0

2 +
�

2
���z�2�dxdy . �2�

In previous studies, the Hamiltonian described in Eq. �2�
with H0=0 has been employed to describe various
membrane-related phenomena. Lin and Brown �16� per-
formed dynamics simulations accounting for implicit hydro-
dynamic coupling between the membrane and the surround-
ing solvent in the presence of cytoskeletal interactions.
Reister-Gottfried et al. �17� extended this methodology to
account for the Brownian dynamics of the proteins on the
fluctuating membrane. Veksler and Gov �23� analyzed the
problem of membrane protrusions and protein phase separa-
tion by including additional terms in Eq. �2� to account for
the protein concentration field. Seifert et al. �12� minimized
Helfrich Hamiltonian given by Eq. �1� for nonzero values of
H0 at zero temperature to calculate the phase diagram for
vesicle shape transformations. Although these works have
highlighted the applicability of Helfrich Hamiltonian in a
variety of membrane-related processes, calculating the free-
energy change associated with these processes has remained
a challenge.*rradhak@seas.upenn.edu
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The calculation of the free energy of a freely fluctuating
membrane with zero-spontaneous curvature within the Hel-
frich Hamiltonian can be accomplished analytically using a
quasiharmonic analysis of the Fourier modes �16,18,24,25�.
However, using the same approach, calculating the free en-
ergy when the membrane is subject to nonzero and spatially
varying H0 becomes analytically intractable �25�. In such a
case, a robust numerical method is desirable because the
ability to compute free-energy changes enables the predic-
tion of relative stabilities of different states using which sev-
eral critical questions can be addressed; these include the
quantification of the free-energy change when a planar mem-
brane deforms under the influence of curvature-inducing pro-
teins at a finite temperature, the role of membrane entropy in
mediating interactions between curvature-inducing proteins
�26�, etc. It is our goal in this paper to present a simulation
methodology capable of addressing these questions. Calcula-
tion of free-energy changes associated with reversible ther-
modynamic processes have been described extensively for
molecular systems �27,28�. We employ the rigorous and
popular method of thermodynamic integration �TI� �27� to
calculate the free-energy change along a coupling parameter
characterizing the Hamiltonian. Such a method has recently
been applied within classical field-based simulations of poly-
mer solutions �29�.

We demonstrate the applicability in a model system of
membrane deformations caused by a static �i.e., nondiffus-
ing� heterogeneous curvature field. The model is character-
ized by a radially symmetric mean curvature field on the
membrane over a localized region characterized by a linear
extent r0 �Fig. 1�. The value of H0 is taken to be zero in
membrane regions falling outside the localized region. Thus,
the induced curvature field is described by

H0 = C0��r0� , �3�

where ��r0� is a function that it is unity within a circular
domain �centered at zero� of radius r0 and zero, otherwise,
and r0 is the linear extent �radius� of the curvature-field pro-
jected on the x-y plane. For the sake of illustration, we
choose C0=0.04 1 /nm �magnitude of the intrinsic curvature
employed in our recent work reporting the bioenergetics of
clathrin-coated vesicular bud formation �30��. We calculate

the free-energy change of the membrane as a function of the
extent of the curvature field �r0� as well as the magnitude of
the curvature field �C0�. We also present a quasiharmonic
analysis of a simplified �one-dimensional analog� membrane
system with nonzero intrinsic curvature to validate the trends
uncovered by our free-energy calculations.

II. METHODS

A. TI along C0

For a system whose energy depends on a coupling param-
eter �, the partition function can be written as �27,29�

Q��� = c� exp�− �E����drN, �4�

where, c is a constant. Since the Helmholtz free energy
F=−kBT ln Q, the derivative of the free energy with respect
to � can be written as


 �F

��
�

N,V,T
= −

1

�

�

��
ln Q , �5�

yielding,


 �F

��
�

N,V,T
= � �E

��



�

. �6�

In Eqs. �2� and �3�, when C0 is set to zero, we recover a
planar membrane while for nonzero values of C0, we obtain
the desired state of the curvilinear membrane. We also note
that the energy functional �Eq. �2�� is differentiable with re-
spect to C0 but not differentiable with respect to r0. Hence, to
compute the free-energy changes, we choose C0 as the ther-
modynamic integration variable �i.e., as the coupling param-
eter � in Eq. �6�� to obtain

�F

�C0
= � �E

�C0



C0

. �7�

Using the expression for E from Eq. �2�, we obtain

�F

�C0
= ���r0��� � �− ��2z − C0��r0�� + 
C0

2
�

���z�2�dxdy

C0

, �8�

Upon integration along C0, this yields

F�C0,r0� − F�0,r0� = �
0

C0���r0��� � �− ��2z − C0��r0��

+ 
C0

2
���z�2�dxdy


C0

dC0. �9�

Here, F�C0 ,r0�−F�0,r0� is the free-energy change as derived
from the partition function in Eq. �4�, where the energy is
defined in Eq. �2�. However, we are interested in the defor-
mation free energy F0, with reference to a state where H0
=0, which can be calculated from the relationship, �see Ap-
pendix A�

AP-2 clathrin epsin

membrane 2r0

C0

H0

0

r2r0

FIG. 1. �Color online� A depiction of membrane vesiculation in
the presence of the clathrin-coat assembly. The lower panel depicts
the form of spontaneous curvature function H0, corresponding to a
region of induced curvature of linear extent r0.
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F0 = F + �E0� − �E� , �10�

where E0 is defined as

E0 =� � ��

2
��2z�2 +

�

2
��z�2�dxdy . �11�

Thus, �F0=F0�C0 ,r0�−F0�0,r0� gives the deformation free-
energy change for a given extent of the localized region r0
�such as the size of the clathrin coat, see Fig. 1�, when C0 is
varied. To calculate the free energy as a function of r0 for a
fixed C0, we employ a thermodynamic cycle defined in Fig.
2. In this cycle, �F0,1 and �F0,2 required to deform a planar
membrane to H0=C0��r0=a� and H0=C0��r0=b�, respec-
tively, are calculated through Eqs. �9� and �10�.

B. Simulation protocol

The equilibrium sampling of membrane conformations
according to the Boltzmann distribution for a given value of
C0 is performed using the time-dependent Ginzburg Landau
�TDGL� simulations, using a protocol employed in our pre-
vious work �8,22�. In this protocol, we generate new mem-
brane configurations from existing ones by numerically inte-
grating the equation

�z�r,t�
�t

= − M
	E

	z
+ 
�r,t� , �12�

where,

	E

	z
= �H0��z · �H0� + 
�

2
Ho

2 + ���2z − ��4z + ��2H0.

�13�

In Eq. �12�, t represents a fictitious time, M is a scalar mo-
bility term, and 
 is the thermal noise term, which is drawn
randomly from a Gaussian distribution with zero mean and
with variance depending on the temperature T, i.e., �
�r , t��
=0 and �
�r , t�
�r� , t���=2kBTM	�t− t��	�r−r��. This en-
sures that membrane configurations generated by Eq. �12�
are consistent with the canonical ensemble with probability
�exp�−E /kBT�.

Our simulations are performed for a system size of L
�L in x ,y dimensions, respectively, with periodic boundary
conditions implemented in the xy plane. The length param-
eters �L values� for the different systems we have considered
are summarized in Table I. For each system, the membrane is
discretized using a 50�50 set of spatial grid points in the xy
plane, each with a fixed grid length of h=L /50 nm. All the
derivatives on the right-hand side of Eq. �13� are approxi-
mated using a second-order centered-difference scheme.
TDGL equations are then integrated in time using an explicit
Euler scheme �31�. The time step of integration 	t is set to be
1 ps based on the linear stability analysis �see Appendix C�.
We choose a value of M�=2.5�10−6 m2 s /kg� such that the
normalized membrane height autocorrelation �z�t�z�0�� / �z2�
obtained in our simulations �when C0=0, i.e., for system II
in Table I� matches closely �see Appendix B and Fig. 8� with
that obtained using the Oseen tensor formalism �33� �in
which M is a spatially varying tensorial quantity�. The latter
incorporates hydrodynamic interactions and represents mem-
brane dynamics in an infinite surrounding fluid in the Stokes
regime �16�. Additionally, we note that our results for the
equilibrium properties are independent of the value of mo-
bility term M �22�. TDGL integration is performed for 200
million steps �i.e., 0.2 ms�. The first 50 million steps are
regarded as equilibration steps and are not included in com-
puting the thermodynamic properties.

By carrying out TDGL simulations with the parameters
listed in Table I, the values of the integrand on the right-hand
side of Eq. �9� for different values of C0 are computed �C0 is
varied from 0 to 0.04 in increments of 0.005 1/nm�. Hence,
for each value of r0, in total, nine independent TDGL simu-
lations are performed with different values of C0. The inte-
gral on the right-hand side of Eq. �9� is then computed from
these nine values using the trapezoidal rule �31�. The process
is repeated for r0=10, 20, and 30 nm. For each value of r0,
the mean energy of the membrane �E0� �defined in Eq. �11��
for C0=0.04 1 /nm is also computed from the TDGL sam-
pling. Standard deviation �for the estimation of error bars� is
computed by processing four separate blocks from two inde-
pendent simulations, each block corresponding to 75 million
steps of integration �28,34�.

III. RESULTS

A. Calculation of membrane free energy

We report our numerical results for the free-energy
changes obtained using thermodynamic integration. As evi-

∆

(a,0)

(a,C0)

(b,0)

(b,C0)

F0,0= 0

F0,1 F0,2

F0∆

∆

∆

FIG. 2. Thermodynamic cycle to calculate �F0: �F0=−�F0,1

+�F0,0+�F0,2. a and b are the extent of the curvature-induced
regions �r0 values�, while C0 is the magnitude of the curvature.
�F0,1 and �F0,2 are computed using Eq. �9�.

TABLE I. Parameters employed in different systems.

System
Lengtha

�nm�
� b

�kBT�
�

�� N /m�

I 250 20 0

II 250 50 0

III 250 50 3.0

IV 500 50 3.0

aLength L of the membrane is discretized into 50 grid points for all
systems.
bTemperature of 300 K is set for all systems.
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dent from Fig. 3, �F
�C0

increases with increasing value of C0

implying that the free energy of the membrane F increases
with increasing magnitude of C0. Furthermore, for a larger
extent r0, the increase in free energy is larger for a same
change in C0. In Fig. 3, we also depict the calculated values
of � ��E�

�C0
�r0

for different values of C0, r0. The quantity ��E�
�C0

− �F
�C0

derived from these two plots yields the entropic contri-
butions T �S

�C0
, which are plotted in the inset of Fig. 3. As

evident from these figures, the entropy of the membrane de-
creases as C0 increases, with the decrease more prominent
for larger values of r0.

Using the thermodynamic cycle shown in Fig. 2, we also
calculate the membrane deformation free-energy change as a
function of the extent of r0. Since we are interested in com-
puting the deformation free-energy change �Appendix A�
with respect to a planar membrane �i.e., H0=0�, we compute
the mean energy �E0� with respect to planar membrane,
where E0 is defined in Eq. �11�. The change in the deforma-
tion free energy �F0�, the mean deformation energy �E0�, and
the entropy �TS� with respect to a planar membrane are plot-
ted in Figs. 4–6, respectively, for the four different systems
listed in Table I. The deformation free energy of the mem-
brane increases as the extent of the curvature field r0 in-
creases. Furthermore, changes in the nondimensional defor-

mation free energy F0 /� and mean deformation energy E0 /�
are similar for the first three systems in Table I. Thus, for the
parameter values considered in this work, �F0 /� and �E0 /�
depend only weakly on membrane bending rigidity � and
membrane frame tension �. Insets in Figs. 4 and 5 depict the
variation in �F0 /� and �E0 /� with the area of the localized
region subject to the curvature field Ac defined as

AC =� � ��r0��1 +
1

2
��z�2�dxdy . �14�

This trend is almost linear demonstrating that membrane free
energy is a linear function of AC, for small deformations
considered here. Interestingly, the increase in �F0 /� is
smaller for the larger membrane size. Noting that the differ-
ence in the entropy change for different sizes of membrane is
small, the changes in �F0 /� values are a reflection of the
changes in �E0 /�.

To further dissect the calculated dependence of E0 /� on
L, we note that the Eq. �11� can be written in discrete form as

E0 = �
i=1

N2 ��

2
��i

2z�2 +
�

2
��iz�2�h2, �15�

where �i
2 and �i are the Laplace and the gradient operator

evaluated at grid point i. Between systems III and IV, the
number of grid points remains the same, while the grid
length h increases by a factor of 2. Since the total number of
degrees of freedom remains the same, the total energy from
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plotted for two values of r0=20 nm and 30 nm for system II. The
inset shows T �S
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FIG. 4. �Color online� Membrane free-energy change as a func-
tion of r0. Error bars, where not visible, are smaller than the
symbols.
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FIG. 5. �Color online� Membrane energy change as a function of
r0. Error bars, where not visible, are smaller than the symbols.
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FIG. 6. �Color online� Membrane entropy change as a function
of r0.
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equipartition is also the same. This implies that the terms
��2z�2 and ��z�2 are smaller in system IV relative to system
III in order to compensate for increasing h. For �E0
=E0�C0=0.04,r0=30�−E0�0,0�, the region of the membrane
subject to the curvature contributes the most to the �E0 term.
Hence, �E0 can be approximated in discrete form as

�E0 = �
i=1

M ��

2
��i

2z�2 +
�

2
��iz�2�h2, �16�

where the summation now is only over the grid points sub-
ject to the curvature field, which is smaller for the larger
system size �i.e., system IV� resulting in a smaller value of
�E0. The same conclusion can be reached if the step size h
remains same, while the total number of grid points N
change. Hence, we expect that a larger membrane would
have a smaller increase in the free energy when subject to a
fixed curvature region of size r0, rationalizing the trend in
Fig. 4.

B. Quasiharmonic analysis for a model membrane with
nonzero curvature

Fourier series has traditionally been the preferred basis set
representing the modes of the thermally undulating mem-
brane. In the absence of the H0 term, the Fourier modes
decouple �16� and the Helfrich energy is simply the addition
of harmonic contributions from the Fourier coefficients.
However, the Fourier coefficients are not the natural basis
when the membrane is subject to an intrinsic curvature field,
as shown by several researchers �18,25�. In particular, Wal-
lace et al. �18� and Divet et al. �25� solved the Helfrich
Hamiltonian when the intrinsic curvature is proportional to
the membrane concentration of curvature-inducing species.
In such scenarios, the membrane Hamiltonian involves cou-
pling between the membrane height and membrane compo-
sition. In the presence of a heterogeneous curvature field, it is
also evident that the Hamiltonian in Eq. �2� with nonzero H0
is not diagonalized in Fourier space �35� due to cross terms
�mode mixing�. This feature is easily appreciated in a one-
dimensional analog to the Helfrich model �choosing H0
=C0��x0 /2�� by expressing the membrane undulation of the
form �35�

z�x� =
a0

2
+ �

q=1
aq cos�qx� + �

q=1
bq sin�qx� , �17�

where q=2�m /L, m is an integer such that 0
m�L /h, and
aq and bq are the Fourier coefficients. Differentiating E twice
with respect to aq, we obtain the stiffness �rigidity� associ-
ated with the qth sine mode �35�

�2E

�aq
2 = ��Lq4

2
+

�Lq2

2
� +

�C0
2q2x0

4
−

�C0
2q

4
sin�qx0� .

�18�

In order to determine whether the dependence of the ef-
fective stiffness with x0, we evaluate

�

�x0

 �2E

�aq
2� =

�C0
2q2

4
�1 − cos�qx0�� . �19�

Since the right-hand side is always positive, the effective
stiffness ��renorm,q� of every sine mode q increases �or re-
mains constant� with increasing x0. Differentiating Eq. �18�
with respect to C0, we obtain

�

�C0

 �2E

�aq
2� =

�C0q

2
�qx0 − sin�qx0�� . �20�

Since the function y−sin�y� is always positive for y�0, the
right-hand side is always positive, which indicates that the
effective stiffness of the sine mode q increases with increas-
ing C0. These trends are illustrated in Fig. 7. Our results
show that the membrane stiffness increases �and hence the
fluctuations of the membrane and thereby the quasiharmonic
entropy decreases� with increasing intrinsic membrane cur-
vature H0. This provides the rationale for the similar trend
quantifying the loss of entropy with increasing membrane
deformation we have computed using the numerical TI cal-
culations in Fig. 6.

As discussed by Kozlov �26�, many previous analyses ac-
counting only for the membrane energy have showed that in
the biologically relevant cases, deformation related forces are
repulsive and should in fact prevent—rather than promote—
the formation of protein domains. Moreover, Kozlov postu-
lates that the restriction of undulation �i.e., the reduction in
quasiharmonic entropy� by curvature-inducing proteins could
lead to attractive forces favoring the formation of protein
domains. We note that for the systems we have explored, we
have quantified the free-energy changes �and the entropic
effects� and conclude that even though the contribution of
the entropic effects 	T�S	 to the overall change in the bend-
ing free energy is small ��5%�, the entropic effects are com-
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FIG. 7. �Color online� Renormalized stiffness associated with
the eigenmodes of a one-dimensional model membrane for C0

=0.0 1 /nm �asterisk� and C0=0.04 1 /nm �circle�. We construct a
stiffness matrix K associated with the cosine modes with wave
number q ranging from 2� /L to 10� /L; i.e., we have restricted our
analysis to first five cosine modes �35�. Eigenvalues of this matrix
denote the renormalized stiffness �renorm of the system. We plot the
�renorm as a function of the mode number for C0=0 and C0�x0 /2�
=0.04 1 /nm, where x0=60 nm. The inset depicts the ratio of
�renorm when C0=0.04 to �renorm when C0=0.0. In generating these
plots, we have employed L=250 nm, x0=60 nm, and �=0 N /m.
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parable in magnitude to a few kBT. Hence, as postulated by
Kozlov �26�, such forces can indeed provide the basis for the
formation of protein domains which are ubiquitous in intra-
cellular signaling and trafficking mechanisms.
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APPENDIX A: CHANGE OF REFERENCE STATE

F is the free energy as defined by the partition function,

Q = c� exp�− �E�drN, �A1�

where the energy is defined in Eq. �2�. Hence, the system
entropy can be written as

S =
�E� − F

T
. �A2�

Since we are interested in the deformation free energy with
reference to H0=0, we define the membrane deformation en-
ergy with this reference state as

E0 =� � ��

2
��2z�2 +

�

2
��z�2�dxdy . �A3�

Hence, the ensemble average of the deformation energy is
given by

�E0� =� E0e−�EdrN. �A4�

�E0� accounts for the energy required to deform the mem-
brane from a planar state to a curved state and the energy
contribution due to thermal fluctuations around a reference
state of nonzero H0. Adding the entropic contributions to
�E0� gives the deformation free energy with respect to non-
zero H0,

F0 = �E0� − TS . �A5�

Using Eq. �A2�, we get

F0 = F + �E0� − �E� . �A6�

APPENDIX B: MOBILITY TERM M

For a membrane fluctuating in an infinite surrounding
fluid, the membrane dynamics can be expressed as �16�

�z

�t
= − �

−�

�

dr����r − r��
	E

	z
� + 
�r,t� , �B1�

where ��r−r��=1 /8��	r−r�	 is the diagonal part of the
Oseen tensor �33� and � is the viscosity of the surrounding

fluid. Using the membrane Hamiltonian for a planar mem-
brane �with zero-spontaneous curvature�,

E =� � ��

2
��2z�2 +

�

2
��z�2�dxdy , �B2�

Lin and Brown �16� showed that the normalized membrane
height autocorrelation obeys

�z�t�z�0��
�z2�

=

�
k

��k4 + �k2�−1e−t/�k

�
k

��k4 + �k2�−1
, �B3�

where k= �m ,n�2� /L is the wave vector and �k is the char-
acteristic decay time of kth mode and is given by

�k =
4�k

�k4 + �k2 . �B4�

The values of wave vector are restricted by −N /2
m ,n
�N /2, where N is the number of grids along each direction.
For the membrane dynamics given by

�z

�t
= − M

	E

	z
+ 
�r,t� , �B5�

where M is the scalar mobility term, the normalized mem-
brane height autocorrelation follows:

�z�t�z�0��
�z2�

=

�
k

��k4 + �k2�−1e−t/�k

�
k

��k4 + �k2�−1
. �B6�

�k is the characteristic decay time of kth mode and is given
by

�k =
1

M��k4 + �k2�
. �B7�

We fit M such that the autocorrelation given by Eq. �B6�
matches with that of Eq. �B3� �see Fig. 8�. We find that M
=2.5�10−6 m2 s /kg yields a good agreement between the
membrane height autocorrelation predicted by Eqs. �B3� and
�B6�.

APPENDIX C: LINEAR STABILITY ANALYSIS

We integrate the TDGL equation numerically using the
explicit Euler scheme. The upper bound on the time integra-
tion step is dictated by the problem and the spatial grid size
so as to ensure numerical stability of the explicit scheme,
i.e., boundedness of the numerical solution. We use the ma-
trix method �31� to find a 	t, which leads to bounded solution
when membrane is discretized in spatial units of length h.
We can write the discretized equation for each spatial grid
point as

zj
n+1 = zj

n + f�zj+i
n �	t + g�Hj�	t , �C1�

where the subscript refers to the spatial grid and superscript
refers to the temporal step. g�Hj� is the nonhomogeneous
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part of TDGL, which arises from the �2H term. We can write
this equation in the matrix form as

zn+1 = Izn + Czn + B , �C2�

i.e.,

zn+1 = Azn + B . �C3�

The matrix A is dependent on h, 	t, and the specific problem
and is referred to as the amplification matrix. The eigenval-
ues of this matrix A dictate the numerical stability of the
scheme as outlined in Ref. �31�. We note that the solution at
�n+1�th step is

zn+1 = �
j=1

n+1

A jz0 + �
i=1

n+1 
�
j

i−1

A j�B . �C4�

Replacing � j=1
n+1A j in diagonal form using the eigenvector

matrix v and eigenvalue matrix �, i.e.,

�
j=1

n+1

A j = vT
�
j=1

n+1

��v , �C5�

we get

zn+1 = vT
�
j=1

n+1

� j�vz0 + �
i=1

n+1 
�
j

i−1

� j�B . �C6�

For numerical stability, each of the eigenvalue �i of the ma-
trix A should be bounded by �−1,1�; more specifically, they
should obey 0��i�1 for steady-bounded decay and −1
��i�0 for oscillatory-bounded decay. For all other values
of �i, the solution diverges. Decreasing the step size h re-
duces the allowed value of 	t. In Fig. 9, we plot the eigen-
values for the integration time step 	t=1 ps showing that all
the eigenvalues are less than one.
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