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Cilia are motile biological appendages that are driven to bend by internal shear stresses between tubulin
filaments. A continuum model of ciliary material is constructed that incorporates the essential ciliary con-
straints: (i) one-dimensional inextensibility of filaments, (ii) three-dimensional incompressibility, and (iii) shear
strain only longitudinally along filaments. It is shown that twist of filaments about each other is not an
independent degree of freedom under ciliary constraints. The constraint on twist appears in the equations of
motion for cilia as a term not previously recognized. As another application of the same geometrical idea, a
general approach to the polymorphism of bacterial flagella is proposed.
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I. INTRODUCTION

The beating of cilia, or eukaryotic flagella, has been the
subject of research for over fifty years. The hydrodynamics
of propulsion is one aspect of these studies, concerned with
Stokes flows past the cilium at a mesoscale of microns,
where the cilium is considered a plane curve or space curve
moving in a prescribed way [1-7]. The length scale is set by
the length of the cilium, with the small diameter of the ci-
lium serving only as a cutoff in the logarithmic singularity of
the hydrodynamics.

Another focus of cilia research has been the mechanism
by which the cilium generates motion, concerned with the
dynein-mediated sliding of microtubule doublets on each
other at a nanoscale of tens of nanometers [8—13]. The length
scale is set by the diameter of the cilium or even by the size
of the motor proteins.

The standard ciliary model, motivated by the structure of
the cilium, or axoneme, is called the sliding filament model.
The axoneme structure is shown schematically in Fig. I.
There are nine microtubule doublets around the outside, and
two in the center. Other components are also visible in elec-
tron micrographs: radial spokes connecting the outer micro-
tubules to the central ones, and dynein arms, the motor pro-
tein for the system, positioned to walk along adjacent
microtubule doublets and generate shear stress between them
[14].

In the sliding filament model the microtubule doublets
(the “filaments™) are made to slide along each other by the
dynein motors. Because shear strain is tightly coupled to
bending, the cilium bends, and thus moves. The tight cou-
pling between shear strain and bend, essential for this mecha-
nism, is always assumed either explicitly or implicitly in the
form of ciliary constraints: (1) the filaments are inextensible,
(2) the material is incompressible in the three-dimensional
sense, and (3) shear strain is longitudinal along filaments. In
this paper I make these constraints precise in a hypothetical
continuum model of “ciliary material,” abstracted from the
structure of the axoneme, and I deduce the consequences for
the possible states and motion of this material, independent
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of all other details. Some of these consequences have not
been recognized before. I summarize the results in this intro-
ductory section.

The ciliary constraints couple shear strain and bend so
tightly that it is possible to take, as the basic kinematic vari-
ables, not the shape of the cilium, as is usually done, with
equations of motion for that shape, but rather the two inde-
pendent components of shear strain. This choice is well
adapted to modeling the molecular mechanism of ciliary mo-
tion since local strain at the nanoscale knows very little
about the largely irrelevant mesoscopic shape of the cilium.
The cilium shape is implicit in the state of the shear strain,
and can be found from the shear strain by integration but it is
irrelevant for the dynamics (unless one includes the nonlocal
part of the hydrodynamic interaction, which is mesoscopic
and does depend on shape but is well understood, a separate
issue).

The ciliary constraints constrain the twist degree of free-
dom, i.e., differential rotation about a given filament (differ-
ential rotation about the central microtubules of the ax-
oneme, for example). Thus twist is not an independent
degree of freedom in ciliary matter. What the ciliary con-
straints mean for the 9+2 axoneme is illustrated in Fig. 2.
Twist has been treated somewhat inconsistently in the past.

FIG. 1. Schematic cross section of a cilium showing the 9+2
arrangement of microtubules (dots) and microtubule doublets
(double dots), the radial spokes (solid) and the dynein arms
(dotted).
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FIG. 2. Under the ciliary constraints, the filaments in the neigh-
borhood of a given filament twist about it in a way that is deter-
mined by the geometry of the given filament as a space curve (the
displacement vector between the filaments is parallel transported
along the given filament). The above 9+2 cilium, which is assumed
to have taken a helical shape with curvature k=1 and torsion 7=2,
is shown in cross section as it intersects a plane containing the helix
axis. It twists by about 38° on each turn.

Twist was not an issue as long as the cilium was modeled as
a curve with negligible thickness, so until recently equations
of motion just ignored it. More recently, in the work of
Gueron and Levit-Gurevich [6] and Hilfinger and Jiilicher
[15], twist is a degree of freedom on a par with other ones. If
the ciliary constraints are obeyed (more on this in a mo-
ment), neither of these approaches is quite right. Ciliary mat-
ter does twist, and its equations of motion contain terms
reflecting this, but these terms involve a Lagrange multiplier,
not recognized before, enforcing the ciliary constraints. Thus
the ciliary equations of motion incorporating the generally
accepted ciliary constraints are derived here in their complete
form.

The ciliary constraints forbid the kind of motion shown in
Fig. 3, in which initially straight filaments forming a cylinder
slide along each other (nonzero shear strain) in order to spiral
about the cylinder but without bending the cylinder. From an
evolutionary point of view it is clear that a motile organism
depending on its cilia for propulsion would not want this
decoupling of shear and bend to happen. It would want to
control twist in order to control the orientation of the ciliary
beat in space. The ciliary constraints accomplish that. Hilfin-
ger and Jiilicher in [15] nonetheless argue that twist is an
independent degree of freedom in at least some cilia. Now it
turns out that these are not 9+2 cilia but 9+0 cilia, lacking
the central microtubules. They are motile but their purpose is
not to propel an organism but rather to drive a flow with a
definite chirality. (Other 9+0 cilia are not even motile.) Ap-
parently the cilia of [15] had to lose the central microtubules
to be able to adopt a spiral handedness, as if the central
microtubules would have enforced the ciliary constraints that
these cilia violate. With a little more insight into the meaning
of the ciliary constraints we can see intuitively why the cili-
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FIG. 3. In a twist transition the microtubules shear along each
other but do not generate bend, i.e., the cylinder remains straight.
Such a motion violates the ciliary constraints. It may be possible in
a 940 axoneme, lacking the central two microtubules, but not in a
9+2 axoneme, in which the central microtubules enforce the ciliary
constraints. The center of the cylinder is deliberately shown empty
here.

ary constraints forbid the motion of Fig. 3. As I will show,
the ciliary constraints require neighboring filaments to be as
parallel as possible, given that they also bend. In the motion
of Fig. 3 the outer filaments cannot remain parallel to the
central ones, if central ones exist. But if there is nothing in
the center, there is nothing there to be parallel to. Perhaps the
radial spokes are structures in 9+2 cilia whose purpose is
precisely to enforce the ciliary constraints in propulsive cilia
for the control of twist.

Because ciliary matter is an abstract model, characterized
just by certain constraints and no other stipulations, it might
apply to other dense assemblages of filaments than the ax-
onemal structure that suggested it. In a final section, I con-
sider what ciliary constraints would mean for the protofila-
ments of the prokaryotic flagellum and the question of its
typically helical shape. Without answering that question I do
reduce it to a definite question about strain in a certain sur-
face, assuming ciliary constraints. Remarkably, there might
be an analog of the 9+2 versus 9+0 phenomenon in the
prokaryotic world.

The plan of the paper is as follows. Section II gives an
abstract characterization of the three-dimensional material
that I call “ciliary material,” made up of “filaments” subject
to the constraints of the sliding filament model: incompress-
ible, inextensible along the filaments, and admitting shear
strain only longitudinally along the filaments. This is an at-
tempt to capture, in a continuum model, the material proper-
ties of the cilium. The unexpected result for the states of this
material is that one filament can take any shape as a space
curve, and all the rest are determined by that one.

Section III determines how the ciliary material can move,
subject to its constraints, what I call ciliary flow (note: not
the flow driven in the surrounding aqueous medium by a
beating cilium but the motion of the three-dimensional cili-
ary material itself, thought of as a kind of liquid crystal).
Consistent with the result of the preceding section, its motion
is parametrized by the motion of any single one-dimensional
filament, and this one filament can move arbitrarily. Thus the
hypothetical ciliary material, motivated by the structure of
cilia, combines, in an unexpected way, three-dimensional and
one-dimensional properties.
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Section IV derives the equation of motion of ciliary ma-
terial from standard assumptions of continuum mechanics. It
turns out to be the usual equation of motion of cilia but with
a new term that enforces the constraint on twist. The result is
remarkable because the continuum mechanics assumptions
say nothing about the cilia shape, and do not even refer to it.

Section V investigates what the ciliary constraints would
mean for the material of bacterial flagella. There are hints
that this material may also obey ciliary constraints.

The geometrical methods in Secs. II and III are well de-
scribed in the physics textbooks by Schutz [16] and Frankel
[17] for any reader not familiar with them.

II. CILIARY MATERIAL

In terms of smooth coordinates (x',x%,x%) in space, one
can describe the deformation of any material by the trajecto-
ries of its constituent particles, solutions of equations of mo-
tion

dx’ .
——=Vi(x), (1)
dt
where
V=V, (2)

is the velocity vector field, and ¢ is time. Metric relations
among particles are given by

dS2 = g[jdxidxj, (3)

where g;; is the Euclidean metric. Coordinatize the material
object by Lagrangian coordinates convected by the flow, i.e.,
let every material point keep the same coordinates that it had
originally. The changing metric relationship of material
points is then expressed entirely by the change in the metric
components g;;, and the rate of change is given by the Lie
derivative

ﬁ—jf" = Vg +8([0,,V].0) + g(3;[. V]). @)

Here [,] is the Lie bracket of vector fields.
As an example of such a computation, let V be the shear-
ing flow,

V=ySd,, (5)

in the plane, where S is a constant. Then if x and y are
initially Cartesian coordinates, the metric tensor in convected
coordinates at time 7 is given by the Lie-Taylor series (which
terminates in this case)

. t2£ . (1 1S ) ©)
+1fyg+ — = ,
ETEVET 5 SVVE= o 14 282

and evaluating at r=1 one has the Euclidean metric

_(1 S) ;
§5\s 1+52) ™

in skew coordinates corresponding to constant shear strain S
as shown in Fig. 4.
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FIG. 4. In the skew coordinates (x,y) the distance between (0,0)
and (0,1) is correctly given as \1+5? by the metric tensor of Eq.

(7).

The flow V of Eq. (5) is an example of a ciliary flow, and
the form of the metric tensor g in Eq. (7) encodes the result.
The filaments, parallel to the x axis and labeled by the y
coordinate, slide on each other inextensibly, as one sees in
the metric component g;;=1. The resulting shear strain is
visible in the off-diagonal component g,,=S. Finally, det g
=1 means that the flow is incompressible. The three-
dimensional generalization of this form to a general ciliary
configuration is

1 S T
g=|S 1+8* sT |, (8)
T ST 1+T°

where now § and 7, two independent components of shear
strain, depend on Lagrangian coordinates (x,y,z). Here x is
arclength along filaments, up to an additive constant reflect-
ing the arbitrariness of choosing an origin in each filament,
and the coordinates (y,z) label the filaments. It should be
noted that this is not the most general outcome of an incom-
pressible flow of the filaments because the only motion that
has been allowed to them is sliding longitudinally along each
other (and of course bending). These are exactly the con-
straints of the sliding filament model, encoded in the form of
g. The precise statement of the ciliary constraints is that the
metric tensor should have this form in Lagrangian coordi-
nates, which is really a stipulation of the form of the strain.

Associated with the metric tensor g is an orthonormal
frame field

€1=O7x, (9)
ey=0,- 84, (10)
ey=d,- T4, (11)

where e; is everywhere tangent to filaments. This is not,
however, a coordinate frame because the vector fields do not
commute as differential operators, in general.

The metric g determines the shape of each filament up to
a rigid motion because for each (y,z) it determines the fila-
ment’s curvature x and torsion 7 as a function of x (see
Appendix A). These are the Frenet data for the filament as a
space curve. One has
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k=S +T? (12)

X X

T.S,—S.T
= XX > X. )C, (13)
K

where the subscript x denotes the derivative d, along the
filament. The Frenet equations then determine the filaments
as space curves R(x) along with an orthonormal frame
{T,N,B} at each point of each curve according to

R.=T, (14)
f'x=KA, (15)
Nx=—K’f+ B, (16)
B o (17)

In the context of ciliary geometry it is more natural to de-
scribe the filaments in terms of the shear strains S and T
directly than to translate them into the Frenet language. This
is an alternative equivalent description of space curves. It is
even possible to translate the other way, from the Frenet
description to the ciliary description, inverting the relations
in Egs. (12) and (13),

S, =K cos ¢, (18)

T.= K sin ¢, (19)

=1 (20)

In this formulation the space curves R(x) are the solutions of
R.=e, 21)

dye; = K COS ey + K sin ¢es, (22)

der =— K COS ey, (23)

de3=— Kk sin ¢ey, (24)

h=T. (25)

There is an arbitrary constant in the angle ¢ since, unlike N

and B in the Frenet picture, e, and e5 are only determined up
to a global rotation about e;. This amounts to a gauge free-
dom in the ciliary description. An advantage of the ciliary
description is that it remains well defined where the curva-
ture vanishes, a nuisance in the Frenet description. These
equations imply that the displacement vector from a given
filament toward a neighboring filament, e,, for example, is
parallel transported along the given filament. In more physi-
cal language, the neighboring filament is as parallel as it can
be to the given filament.

The shear strains § and T cannot be arbitrary functions
because g is the Euclidean metric, even if it is expressed in
peculiar coordinates. Its associated Riemannian curvature
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FIG. 5. If filaments are bent into arcs of circles, with arclength
x along the filaments and plane polar coordinates (r,#), then x
=r#, and hence shear strain S=-dx/dr=—0=—-x/r is constant on
lines perpendicular to the filaments, a special case of Eq. (29). Also
note S,=—1/ris the curvature, a special case of Eq. (18). The minus
sign is because the curvature vector is opposite to e, =4/ dr.

tensor must, therefore, vanish identically, and hence S and T
must obey the following identities (see Appendix B)

0=0,(e,5) = d,(e35) = d,(e,T) = 9, (e5T), (26)

0=e35—e,T. (27)
The second of these equations can be recognized as
[e.e3]=0. (28)

This says that e, and e together form an integrable distribu-
tion, and thus there exist surfaces normal to the filaments, at
least locally. Moreover, since e, and e; are now an orthonor-
mal coordinate frame field on these surfaces, they are iso-
metric to Euclidean planes. A computation shows that their
second fundamental form vanishes ([e,,e;] and [e3,e,] are
orthogonal to e, and e3). Thus they are not just isometric to
Euclidean planes, they actually are Euclidean planes, and |
will call them normal planes.

By allowing the filaments to reptate along their length
inextensibly, one can bring Eq. (26) to the simpler form

O=€25=63S=€2T= 6‘3T, (29)

that is, the strains S and 7 can be made constant in normal
planes, as in Fig. 5. Thus the configuration of filaments in a
neighborhood of a given filament is entirely determined by
that filament. The given filament determines the direction of
neighboring filaments since it determines the normal planes,
and it determines their curvatures and torsions since it deter-
mines the values of S and 7. The geometrical meaning of
Egs. (26) and (27) is that these two potentially conflicting
descriptions are consistent. Thus the ciliary geometry is al-
most rigid. The freedom that it possesses corresponds essen-
tially to a single free space curve.

I turn now to the motions possible in ciliary matter: ciliary
flows (note: not flows external to a cilium but flows within
the cilium). Since one of those motions is reptation of fila-
ments, [ will also justify the assertions of the preceding para-
graph.
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III. CILIARY FLOWS

A ciliary flow, by definition, must maintain the form of
Eq. (8) even as g evolves according to Eq. (4). If V is the
flow with components («, 8, y), namely,

V=ad+ Bd,+ yd., (30)

then for V to be ciliary (a,,7y) must obey the conditions
(see Appendix C)

0=a,+SB.+Ty,, (31)
0=1e,0, (32)
0=e37, (33)

O=eyy+esp, (34)
0=(e27)x = BT+ 1:Sss (35)
0=e5e,7, (36)
0=eze38, (37)

where the partial derivative d, is indicated by the subscript x.
Equations (36) and (37) are not independent of the others
since, for example, ese;B=—eze,y=—e,e3y=0. In fact all
higher derivatives of 8 and 7 in the normal planes vanish by
this argument so that 8 and vy restricted to a normal plane can
only be affine linear functions. I return to this consideration
below.

The simplest nontrivial ciliary flow is reptation, a,=p
=v=0. By Eq. (4) the shear strains change under this flow at
the rate

S;=a,+as,, (38)

T,=a. +al,, (39)

where subscripts indicate partial derivatives with respect to
the corresponding variable. It is possible to construct a rep-
tation « that alters S and 7 in such a way that Eq. (29) holds
in one normal plane, at least locally (see Appendix D). Then
by Eq. (26) S and T are constant in every normal plane along
the filaments. This proves the assertions made at the end of
the last section. I will now assume that S and T obey the
simpler equation (29) since this can always be arranged by a
reptation.

The ciliary conditions require 8 and vy to be affine linear
functions in the normal planes. To see that there exist non-
trivial solutions to these conditions, imagine specifying B(x)
and y(x) arbitrarily along one filament. Integrating Eq. (35)
determines e,y=—e3[3 along the filament up to an arbitrary
global constant. These are all the data required to extend 3
and vy in each normal plane as affine linear functions. This
extension continues to satisfy Eq. (35) on neighboring fila-
ments because of the easily verified identities

62[(627),( - Txﬁx + Sx7x] = 2Sx[(e2')/)x - Txﬁx + Sx‘)/x] >
(40)
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63[(627)x - Txﬁx + Sxyx] = 2Tx[(627)x - Txﬁx + Sxyx] .
(41)

Repeated differentiation of Eq. (35) using e, and e; shows
that if (e,y),—T,B,+S,7y, vanishes on a filament, then all its
normal derivatives also vanish there. Thus given only that it
is represented by its Taylor series, it is constant, and hence
zero, and the constructed solution obeys all the ciliary con-
ditions. V is a nontrivial ciliary flow, determined by its val-
ues on one filament.

The conditions [Egs. (31)—(37)] confirm that the ciliary
configuration is entirely determined by one filament. If one
tries to move the filaments, one can specify B(x) and y(x) on
only one given filament. The ciliary conditions then deter-
mine a(x) along that filament up to a constant (a reptation).
They further determine B and 7y almost uniquely as linear
functions in normal planes. Neighboring filaments intersect
the normal planes (each plane labeled by x, its intersection
with the given filament), and in the course of the motion
these intersection points rotate about the given filament at an
angular velocity

w(x) = (e27)(x), (42)

which is not arbitrary but is determined up to a global con-
stant by B and 7y according to Eq. (35). (The undetermined
constant in @ describes a global twisting rotation in which
every normal plane rotates at the same rate, a motion that is
possible but probably not physically relevant.) The remain-
ing freedom in « corresponds to reptations of neighboring
filaments. Thus, to summarize, any filament determines the
configurations of its neighbors, and any motion of that fila-
ment determines the motion of its neighbors. It is worth not-
ing what was not obvious a priori: that nontrivial motions of
the filaments are possible, that is, the ciliary material is not
completely rigid. One filament can move arbitrarily (but in-
extensibly), and all the others must follow it.

IV. CILIARY DYNAMICS

I now model the dynamics of the cilium by applying stan-
dard ideas of continuum mechanics to a thin cylinder of cili-
ary matter of length L and radius p, with all dynamical quan-
tities depending just on x, the coordinate along one given
filament. That filament can of course have any shape so the
cylinder is not necessarily straight. Let the cilium have elas-
tic moduli so that the energy of a configuration is given by
the shear energy and bending energy

L L
E:ﬁf [(S=F)?+(T-G)*)dx + ij (S + T%)dx,
2 0 2 0

(43)

where w is the shear modulus and k.. is the bending modulus
(with dimensions appropriate to one dimension, not three).
Here F and G are target shear strains, such that the shear
energy would be minimal if the shear strains S and T could
relax to F and G. The operation of the ciliary “engine” would
be to make F and G functions of time so that the equilibrium
becomes a moving target. Asymmetries in the nanoscopic
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structure of the cilium could be built into this expression,
which is taken symmetrical here for illustration.
Conjugate to shear strains S and T are internal stresses

O =OE/8S = u(S—F) - k.S, (44)

W = 6E/6T = (T - G) — k. T,,, (45)

which, by the above mentioned one dimensionality, have the
units of force.

Continuing this variational approach to the dynamics, one
finds the generalized forces conjugate to the displacement of
a cilium along V=ad,+Bd,+yd, of Eq. (30), together with
the required rotation w of Eq. (42) in normal planes. In the
orthonormal basis, V takes the form

V=(a+ BS+yT)e, + Be, + yes, (46)

a representation that becomes increasingly appropriate as one
moves up to the mesoscopic scale. Note that 8 and vy are the
components of velocity normal to the cilium but that they
also contribute to the tangential velocity if the shear strains
are nonzero. This is a residual piece of three-dimensional
information in the one-dimensional description of the cilium
as a curve.

From Eq. (4), imposing Egs. (31)—(37), the strains under
the flow V change at the rate

S;=(a+ BS+ IS, + B+ e,a+ T, (47)

T,=(a+BS+yDT,+ v, + e3a— wS. (48)

The terms e, and e;a represent reptations within the cilium,
a possibility that is ignored from now on. The constraints

0= ax+S:8x+ T%cv (49)

0=w,—T.B:+S Vs (50)
are handled with Lagrange multipliers A and v in the expres-

sion

L
E'=E+ f Na,+ SB,+ Ty,)dx
0

L
+ f Vw, — TSy + S, y)dx. (51)
0

Then the generalized interior forces on the cilium are

Fo,=—-06E'/6a=—-®S —-WT, +\,, (52)

Fy=— 0E'| 6= - ®SS,— WST, + B, + (\S), - (vT),,
(53)

F,=— 0E'|8y=—®TS,— WIT,+ ¥, + \T), + (15,),,
(54)
F,=-6E'/éw=v,— DT+ VS. (55)

Generalized external forces on the cilium, due to the fluid
medium of viscosity 7 in which it is immersed, can be found
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from the dissipation function D for the corresponding Stokes
flow. A thorough analysis of this problem has been done by
Gueron and Liron [4]. For simplicity I take just the leading
term indicated by their analysis,

L
(& () C
D=J {f(a+ﬂs+ yT)2+7N(,82+ )/2)+7“’w2 dx,
0

(56)

where the C’s are constant resistance coefficients. The vis-
cous force conjugate to displacement by « is then —dD/ da,
etc. Requiring that elastic forces and viscous forces balance,
i.e.,
OE' 6D (57)
Sa  da’
etc., leads to the surprisingly simple dynamical laws con-
necting the motion of ciliary matter to its internal stresses,

Crla+BS+yTI)=-DS, - VT, +\,, (58)
CvB=D, + NS, - (V1) (59)
Cyy=V, + T+ (¥S)),, (60)

C,o=v,—OT+VS. (61)

Under this flow the strains change according to Egs. (47) and
(48). The Lagrange multipliers can now be determined from
the constraints [Eqs. (49) and (50)]. Substituting the solu-
tions in Egs. (58)—(61) gives the equations for A and v,

C C C
A= kN + (DS, +WT), + —(S, P, + T W) + — 1620,
Cy Cy Cy

(62)
Ve = (PT-WS),
C, )
- C_[SX\I,X.X - qu)xx + ATK + T_X(VTX)X.X + S.x( VSX)XX] 2
N

(63)

where I have used the expressions for curvature « and tor-
sion 7 first derived in terms of S and 7 in Egs. (12) and (13).
In the limit as C,,/Cy— 0, the equation for v simplifies con-
siderably, with solution

v:f (OT—WS)dx + c1x + cs. (64)
0

The solution for w is already explicit in terms of 8 and 7y
from the constraint [Eq. (50)],

w= f (TBy — Syy,)dx + const. (65)
0

With one important exception, the above dynamical laws
for ciliary matter are precisely the usual phenomenological
laws for three-dimensional motions of cilia, as derived by
Gueron and Liron [5]. It is remarkable that they emerge here
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without any appeal or reference to the shape of the cilium
(apart from the hydrodynamic interaction that one could in-
troduce into a more accurate dissipation function [Eq. (56)])
but purely as a consequence of the dynamics of S and 7. The
occurrence of x and 7 above is just an abbreviation for cer-
tain combinations of derivatives of § and T that appeared. Of
course the large scale shape of the cilium could be recon-
structed at any time from Egs. (18)—(25).

The dynamical laws have been expressed here in terms of
the force vector

F: )\el+(1362+\1’e3, (66)

but the vector quantities in [5] were expressed in terms of the
Frenet basis f,l(’ é where F took the form

From Egs. (18)-(22) one has the transformation that con-
nects these two descriptions,

f =€, (68)
N=cos de, + sin ey, (69)
B=-sin e, + cos e, (70)

with ¢, =7, the torsion of the curve. Using also Egs. (12) and
(13), it is straightforward to verify that the dynamical laws of
ciliary matter, as derived here, agree with standard phenom-
enology in every respect but one: in ciliary matter there is an
additional constraint, and a corresponding additional term in
the laws.

The additional constraint arises because the sliding fila-
ment model is constrained by more than just the inextensi-
bility of the filaments. Its constraints are expressed in the
form of the strain tensor, or equivalently in the form of the
metric tensor in Lagrangian coordinates [Eq. (8)]. It is to be
expected that these additional constraints would have conse-
quences for the dynamics, just as inextensibility does,
through the Lagrange multiplier . The dynamical form that
this constraint takes is a certain definite coupling of shear
and twist, the last terms in Egs. (59) and (60), and more
generally every reference to the Lagrange multiplier v and
the twist velocity . Models of ciliary dynamics should ei-
ther include these terms or justify the violation of ciliary
constraints.

V. HELICES AND PROKARYOTIC FLAGELLA

The flagella of bacteria are unrelated to the cilia of eu-
karyotic cells. They are typically helices of well defined cur-
vature and torsion, although within each bacterial species
they exhibit polymorphism: more than one helix may exist as
a metastable form. The helical flagellum is turned by a rotary
motor in the bacterial cell membrane like a screw propeller.
This mechanism of cell motility is clearly very different from
the sliding filament mechanism that causes cilia to beat.

The structure of the flagellum is nonetheless somewhat
reminiscent of that of the cilium. The protein flagellin poly-
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merizes to form protofilaments, and typically 11 protofila-
ments self-assemble side by side to form a hollow tube that
is the flagellum. The protofilaments constituting the flagel-
lum may wrap around its helical form in either the left
handed or right handed sense. In a polymorphic transition,
everything changes together, and may even change from
right handed to left handed, or the reverse. Attempts to un-
derstand the existence of the helical form in the first place,
and its polymorphism, have continued since pioneering work
of Asakura [18]. Recent work including a good introduction
to the problem is the paper of Srigiriraju and Powers [19].

The behavior described above is not unlike that of ciliary
matter. The necessarily cooperative motion of all filaments
together, exhibited in the collective behavior of the protofila-
ments in flagellar polymorphic transitions, is the most char-
acteristic feature of what I have called ciliary flow. And as I
show below, if one filament is a helix, the nearby ones wind
around it in the manner of the flagellin protofilaments around
the centerline of the helical flagellum. These similarities in
the properties of abstract ciliary matter and real flagella mo-
tivate the following observations.

Ciliary matter is almost rigid, and there is almost nothing
about it that is adjustable. The only freedom is to choose the
shape of one filament. Let that one filament be a helix with
curvature x and torsion 7,

X= 2K cos VK2 + 7x, (71)
K+ 7
Y= 2K sin \e"mx, (72)
K+ 7
T
Z=- , (73)
Vit + 7

where (X,Y,Z) are fixed Cartesian coordinates, and x is ar-
clength along the helix. Then, integrating Eqs. (18)—(20), the
local shear strains between filaments are

S= £ sin X, (74)
T
T=- Ecos 7X. (75)
T

Inverting Egs. (69) and (70), we see that along this helix the
vectors e, and ej rotate with respect to the Frenet frame with
(spatial) period 27/ 7,

e,= cos(7x)N — sin(7x)B, (76)

e3 = sin(7x)N + cos(7x)B. (77)

Since e, and e5 are defined by Lagrangian coordinates, and
point to definite filaments, this is not just the behavior of the
coordinates, it means that the filaments of the ciliary matter
spiral about the central helix in this way, reminiscent of the
spiraling of protofilaments in the flagellum, as I noted above.

We are thus motivated to ask whether the protofilaments
in the flagellum can be modeled by the filaments of ciliary
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matter. It is immediate that sometimes the answer is “no.”
There is a form of flagellin that forms a straight flagellar
filament, i.e., a straight hollow cylinder, in which the
protofilaments that make up the cylinder spiral around the
cylinder, like the second cylinder in Fig. 3. By the rigidity of
ciliary matter, if the protofilaments are helices, then the fla-
gellum itself should be a helix, and if the flagellum is
straight, then the protofilaments must be straight, like the
first cylinder in Fig. 3. Yet it is obvious that a straight cylin-
der can be made of helical protofilaments, as happens in this
case, just as it can presumably happen in the 9+0 cilium
[15].

The form of flagellin described above lacks a piece that
extends inside the cylinder and forms connections there
among the protofilaments into what could be functionally a
twelfth central protofilament. In Ref. [19] this central com-
ponent was modeled as a central elastic rod. I consider the
possibility that it completes the three-dimensional structure,
in the same way that I have conjectured that the central mi-
crotubules complete it in the 9+2 cilium and impose the
ciliary constraints. With this (normal) flagellin the flagellum
does behave more like ciliary matter, as I have already noted.
In Ref. [19] elastic stress imposed by the central rod on the
outer filaments was necessary to obtain the observed behav-
ior: this may be an equivalent way of saying that the central
rod imposes the ciliary constrains.

Within the model of ciliary material it is easy to find the
strain tensor in the cylindrical surface of the flagellum, rela-
tive to the reference configuration of the straight flagellum,
as the flagellum varies through all helical shapes. It is this
surface strain, and the associated elastic energy, that is
thought to control and select the observed helical shapes of
flagella as local elastic energy minima. I have already found
in Egs. (74) and (75) the two independent functions S and T
in the metric tensor g along a general helix, which I take to
be the centerline of the flagellum. The cylindrical surface
surrounding this helix at a distance p~10 nm can be coor-
dinatized by x and 6, where (p, 6) are polar coordinates in
normal planes, and the direction of e, is #=0. Note that 6 is
then a Lagrangian coordinate, labeling protofilaments on the
surface of the flagellum. In particular, 6=0 labels the
protofilament pointed to by e,. I restrict g to the surface by
evaluating it on d/dx and d/ 36, where

J . J J
— =—psin 6— +pcos 6—. (78)
a0 ay 0z

Ignoring higher order corrections in kp=<0.01, I find

B ( 1 — (pK/T)cos(mx — 6) )
=\ (pr/T)cos(mx — 6) p*{1 +[(pr/Tcos(mx— )7/
(79)

The two-dimensional strain tensor U is, therefore, up to a
factor of 2, the difference of this tensor from its value at the
reference configuration k=0, namely,
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0 2
0 T

FIG. 6. The coordinate plane for the surface of the flagellum has
lines of constant # that map onto spiraling protofilaments. The co-
ordinate x is arclength along protofilaments. The dotted line is a line
of constant shear strain, determining that the flagellum is a helix of
torsion 7.

Uz 1 0 — (p/T)cos(7x — 6)
" 2| = (pr/Dcos(mx - 0) [(pPxiDcos(mx— O |
(80)

There is essentially just one independent component of shear
strain,

U,o=- (pr/7)cos(x - 6). (81)

The challenge in modeling the flagellum is to understand
what is the underlying elastic energy that is minimized, at
least locally, by this strain at the observed helical values of «
and 7. Any explanation for why the surface of the flagellum
is strained in this way would explain the shape of the
prokaryotic flagellum, assuming ciliary constraints.

It is worth noting a point of common sense about this
result, illustrated in Fig. 6, which almost could be guessed
without any computation. Since any fixed protofilament
(fixed 6) spirals around the helical flagellum, the shear strain
in its neighborhood must be periodic in x with period 27/ 7,
as it visits the inside of the helix, then the outside, etc. He-
lical symmetry then requires the strain to have the form of
Eq. (81), at least the lowest-order Fourier component. Since
protofilaments really do spiral around the flagellum, the ac-
tual strain in the surface must look like this even if ciliary
matter turns out not to be a good model for it.

Detailed models of how strain is introduced into the sur-
face, as the flagellum seeks its equilibrium configuration,
suggest that there could be local conformational changes,
rotations, or displacements of the flagellin units that make up
the protofilaments. In particular, these changes, with their
attendant shear strain, could be cooperative within a
protofilament [ 19], propagating shear strain along it. The pic-
ture that emerges from the ciliary model is similar but not
identical to this. If the shear strain were propagated along a
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protofilament, it would depend on the protofilament (i.e., on
6), but not on x, which is not the form of Eq. (81). Of course
the ultimate shear strain in Eq. (81) could be driven by an
imposed strain of a different form, with the flagellum even-
tually relaxing into Eq. (81) as a compromise involving other
elastic energies but the most straightforward idea is that the
above shear strain is simply imposed by whatever the mecha-
nism is. In the language of cooperative interaction between
flagellin units, it says that the shear strain propagates along a
protofilament but is gradually also communicated to the
neighboring protofilament on one side. The distance required
for this strain to visit all protofilaments in turn and return to
the original protofilament determines 7, the torsion of the
eventual flagellum helix, and the maximum amplitude of the
shear strain determines «, the curvature of the eventual helix.
In this way nanoscopic details of interaction would deter-
mine the mesoscopic form of the flagellum

Pursuing such details here would take me away from the
original purpose of this paper, which was to point out useful
and previously unrecognized properties of a model that is
already widely used in biophysics, a continuum approxima-
tion to the sliding filament model.

APPENDIX A: CILIARY FILAMENTS AS SPACE CURVES

The rates of change in the vector fields e, and es, along
the integral curves of ¢, (the filaments of the ciliary space)
are given by the Lie derivatives (Lie brackets)

dver =[er,e3] == S,eq, (A1)

dees=[e.e3]=—Te, (A2)

where the subscript x indicates d,, the derivative along a
filament. Thus the curvature vector, in the sense of the Frenet
equations, is

kN =S.e,+T,es, (A3)
where the curvature is the norm of this vector
k=\S2+ T2 (A4)

The rate of change in the principal normal N along the fila-
ment, dotted with the binormal
~ Ses—Tee
B X3 X2 i
K

(A5)

is the torsion

TxxS x S xxTx
- 5

T:g([el’N]’é): (A6)

APPENDIX B: CONSEQUENCES OF FLAT
GEOMETRY

Differential forms dual to the orthonormal vector fields e/,
e,, and e5 of Egs. (9)—(11) are

o' =dx + Sdy + Tdz, (B1)
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o?=dy, (B2)
o =dz. (B3)
Define
1
A= E(TSX—STX"' Ty—SZ). (B4)

It is straightforward to verify that the connection forms

wl=w3=wy=0, (B5)
wy=—w;=-S,0' +Ad>, (B6)
a); =— w? =-T.o' -Ad®, (B7)
w%:—w%:—Aa‘l, (BY)

satisfy the Cartan structure equations

do’ + wj A 07 =0. (B9)
Now because the metric is flat, the curvature forms
0§=dwj+w};/\wf (B10)
must vanish identically. In particular,
6% =-2A0” A 0> + other components, (B11)

so A must vanish, and this is Eq. (27). The remaining iden-
tities reduce to dwé:dwé:O, and this is Eq. (26).

APPENDIX C: GEOMETRICAL CALCULATIONS FOR
CILIARY FLOWS

Under a ciliary flow V it is necessary that g;; keep the
constant value 1 so that

0=az‘gll=2g([axvv]vax)=2(ax+SBx+T7x)9 (Cl)

and this is Eq. (31). To preserve the form of g it is necessary
that

9822 =288,=289,812, (C2)
0,833 =2TT,=2T0,8,3, (C3)
823=ST,+ TS, =80,g13+ T8, (C4)

and these conditions, using Eq. (4), are Egs. (32)—(34). Fi-
nally, it is not enough that g keep the form of Eq. (8), it must
also continue to have zero Riemannian curvature. The most
efficient way to handle this computation is to use the moving
orthonormal frame associated with the changing g. The
change in these vector fields is computed by the Lie deriva-
tive (the Lie bracket for vector fields). Thus under the ciliary
flow V of Eq. (30)

[?tel = [61, V] =ae + :Bx&y + ’yxé)z = Ber + €3, (CS)

dey=[er,V]-(9S)e, = {Ul[(ez,v)] - 9,Ste; + (exy)es,
(Co)
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de3=[e3, V1= (9,De; ={a'[(e3,V)] - 9,T}e, + (e3P)e,.

(C7)

As a check, one verifies what is required by orthonormality,
3, ="' ([ex, V]) + B., (C8)

3,T= ' ([es,V]) + ¥, (C9)

using Eq. (4), and also e;B8=—¢,y by Eq. (34). To summa-
rize,

de) = Ber + ¥ie3, (C10)
dier =~ Byey — (e3P)es, (C11)
des =~ y.e; = (ery)e,. (C12)

For the Riemannian curvature to vanish it is necessary that

0=3d[es.es]=[desr.e5] +[es,d.e5] (C13)
=[(63B)x - (627)x + ZTXBX - 2Sx7x]€1 + (6282 7)62 + (8363:8)83'
(C14)

The vanishing of this vector field is condition equations
(35)—(37). It remains to show that with these conditions the
other components of the Riemannian curvature continue to
vanish identically. Dual to Egs. (C10)-(C12) one has

do' = B + y.0°, (C15)
9,0° == .o’ = (e38)0°, (C16)
(3,03 =— ’)/XO'I - (ezy)a2. (C17)

The Cartan structure equations, which are identities, require
Gy =[= B+ Ti(e3p)]0" = S,B,0% = S,y,0°, (C18)
atwfli = [_ Yix T Sx(eZ Y)]Ul - Txﬁxo-z - Txyxaﬁr (C19)

fw3 =0, (C20)

and a long but straightforward computation then shows that
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Idw+ i A ) =0, (C21)

for all components.

APPENDIX D: MAKING S AND 7 CONSTANT IN ONE
NORMAL PLANE BY REPTATION

Let « be a reptation, i.e., V=ad, and a,=0. Then, rear-
ranging Eqgs. (38) and (39), the convective derivative,

(D1)

S;—aS,=a,,

T,—aTl, =, (D2)

is the rate of change in strain in a fixed normal plane. (The
normal planes are not convected with the material but are
associated with the stationary pattern of the filaments, so to
stay in a normal plane, subtract the convective term). Thus in
a fixed normal plane, since a, =0,

(€28) = ex(S, = aS,) = ey, = e300, (D3)
(e37);r = e3(T, — aT) = e3a. = e3e3a, (D4)
(e38) = (exT)yr = ee3a. (DS5)

Here the subscript ' means that the time derivative is at a
fixed normal plane, not at fixed x. In this normal plane, we
can introduce coordinates (y’,z’) such that e,=4d/dy’, e;
=3/ dz'. Then by the Poincaré lemma, Eq. (27) says that there
exists locally a function F(y',z’,f) such that in that plane
S=e,F, T=e5F. Extend F to be constant along filaments, and
take a=—F. Then under the reptation V=ad,,

(€28)r =~ €S, (D6)
(e37)y =—e3T, (D7)
(e38)y = (exT)y =—e3S=—e,T. (D8)

Thus these quantities decay to zero exponentially with time.
In the limit as t— o, Eq. (29) holds in one normal plane [and
then by Eq. (26) it holds in all normal planes].
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