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Deterministic evolutionary game dynamics in finite populations
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Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing
individuals. Typically, the microscopic definition of strategy spreading is stochastic such that the dynamics
becomes deterministic only in infinitely large populations. Here, we present a microscopic birth-death process
that has a fully deterministic strong selection limit in well-mixed populations of any size. Additionally, under
weak selection, from this process the frequency-dependent Moran process is recovered. This makes it a natural
extension of the usual evolutionary dynamics under weak selection. We find simple expressions for the fixation
probabilities and average fixation times of the process in evolutionary games with two players and two
strategies. For cyclic games with two players and three strategies, we show that the resulting deterministic
dynamics crucially depends on the initial condition in a nontrivial way.
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I. INTRODUCTION

Evolutionary game dynamics results from the transfer of
economic ideas to biology [1-4]. In economics, rational
players try to find the best strategy to maximize their pay-
offs. In biology, those individuals who use the best strategy
obtain the highest reproductive fitness and spread in the
population.

Traditionally, evolutionary game dynamics is considered
in infinitely large, well-mixed populations. This typically
leads to the replicator dynamics, a system of nonlinear dif-
ferential equations governing the evolutionary dynamics
[5-8]. For any composition of the population, the replicator
dynamics determines deterministically the direction and ve-
locity of evolutionary dynamics. The replicator dynamics can
be derived from microscopic models of strategy spreading,
which are typically stochastic [9—-13]. The precise definition
of strategy spreading between individuals can have decisive
consequences for the dynamics, in particular in structured
populations [14-21].

Since microscopic models of strategy spreading are typi-
cally stochastic, evolutionary game dynamics in finite popu-
lations can only be characterized in a probabilistic way. The
most important quantities are the probability that a mutant
takes over a population and the average time for this process
[22-25]. Different models for strategy spreading have been
proposed. A popular model is to choose two players, Harry
and Sally, at random and to let Harry adopt the strategy of
Sally with probability given by the Fermi function, (1
+exp[+B(m-75)])7!, where 7 is the payoff of Harry and
m is the payoff of Sally [26-29]. The parameter 3 measures
the intensity of selection. For 8<<1, selection is weak and
strategy spreading is essentially random. For 8> 1, selection
is strong and only strategies that are more successful will be
imitated. For B— o, the direction of the process for two
strategies becomes deterministic and thus the fixation prob-
ability is either O or 1. However, even in this case, the pro-

*altrock @evolbio.mpg.de

1539-3755/2009/80(1)/011909(10)

011909-1

PACS number(s): 87.23.Kg, 02.50.Ga, 02.50.Le

cess is only semideterministic as the time of fixation remains
stochastic [29].

Here, we introduce a variant of the Moran process, which
leads to a fully deterministic evolutionary process in finite
populations under strong selection. For weak selection, we
essentially recover the transition probabilities of the standard
frequency-dependent Moran process under weak selection.

We describe evolutionary game dynamics in symmetric
2 X2 games defined by the general payoff matrix,

A B
A (a b) . (1)

B\c d
An A player will obtain a when playing against another A or
b when playing against B. Choosing strategy B results in

either obtaining ¢ (against A) or d (against B).

The average payoffs are obtained from pairwise interac-
tions with all other individuals in the population of size N.
This is the standard assumption and refers to the fact that the

population is well-mixed; i.e., there is no explicit population
structure. Excluding self interactions, this leads to

i-1 N-i

= a+ b, (2)
N-1 N-1
j N—-i-1

bo ey, (3)
N-1 N-1

where i is the current number of A players in the population.
Individuals with higher average payoffs produce offspring
(or are imitated) with a higher probability. Thus, reproduc-
tive success is based on the payoff from the game. The in-
tensity of selection 3 controls the importance of success in
the game for reproductive success. The larger the intensity of
selection, the stronger the influence of the average payoff
difference on reproductive fitness.

The paper is organized in the following way. In Sec. II we
introduce the birth-death process as a general framework of
evolutionary dynamics between two types in finite, well-
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mixed populations. In particular, we address the probability
and times of absorption. In Sec. III we give three explicit
analytical forms for the microscopic dynamics and we dis-
cuss the possibility to analyze strong selection in each case.
We show that the standard Moran process and a previous
generalization do not allow a fully deterministic strong se-
lection limit and propose a generalization of the Moran pro-
cess with selection at birth as well as selection at death. In
Sec. IV we perform the strong selection limit analytically for
the process. In Sec. V we consider the process with selection
at birth and death for two player games with three strategies,
namely, the rock-paper-scissors game. Finally, in Sec. VI we
conclude and discuss our findings.

II. EVOLUTIONARY GAME DYNAMICS IN FINITE
POPULATIONS

In this section, we recall some important properties of
stochastic evolutionary game dynamics in finite populations.
For simplicity, we restrict ourselves to birth-death processes
in which the number of A players can change at most by *1
in each update step.

Let i be the number of A players in a population of size
N>2. The number of B players is given by N—i. The tran-
sition probabilities to go from i to i+1 and to i—1 are de-
noted by 7;(B) and T;(p), respectively. The probability to
stay in the current state is thus 1-77(8)—T7;(B). These mi-
croscopic details do not have to be specified further at this
point. The only requirement is that the expressions for
T:(B) #0 are analytic in system size, payoffs and intensity
of selection. It is also assumed that the population size re-
mains constant. Mutations are excluded such that a strategy
that is lost will not reappear in the system.

In the continuous limit N— o, the state of the system x
=i/N becomes a continuous variable, strategy A can have
any abundance, and we recover a deterministic differential
equation [9-13]. This allows computation of the fixed points
of the system. There are always fixed points at x=0 and x
=1. In addition, there can be a third fixed point at x*=(d
—b)/(a—b-c+d), which is unstable when a>c¢ and b<d
and stable when a<<c and b>d.

In finite population models, stochasticity does not allow
the definition of fixed points. However, the boundaries i=0
and i=N are absorbing due to the absence of mutations,
T5(B)=0 and Ty(B)=0. For recurrent Markov chains
[T;(B)>0 for 0<<i<N], the system will eventually be ab-
sorbed at the boundaries. The probability d)?(,B) that a given
number i <N of A players will reach the absorbing boundary
at ;=N is an important quantity to describe the process. In
addition to this fixation probability, the unconditional and
conditional fixation times, £,(8) and t’;‘(ﬁ), characterize the
stochastic process [24,30-32]. These two average times are
the expectation values of the number of time steps it needs
either to reach any homogenous state (all A or all B) or to
reach fixation at all A under the condition that this event
occurs. In the following we recall recursions for these three
quantities, which can be solved regardless of the details of
the birth-death process. Each solution is only based on the
microscopic transition probabilities T; (8).
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A. Fixation probability

The probability of fixation ¢/ () describes the probability
that i A mutants in a population of N—i B players will reach
fixation at all A. Since the homogenous states are absorbing,
we have ¢(8)=0 as well as ¢(8)=1. For all the interme-
diate states we can write a balance equation for the probabil-
ity to fixate at all A(i=N),

0=T;(B)(L(B) - & (B) + T (B, (B) — 1 (B)).
(4)
With the boundary conditions ¢(8)=0 and ¢4(8)=1, this

can be solved recursively [4,24]. We obtain
i—1 k  Tu(B)
1+ E1<:1 Hm:l TH(8)
N-1 kK T.B "
1+ Ek=1 1_[m=1 m
The probability to fixate at the pure state all B starting from
i A players is given by ¢F(B8)=1-¢(B).

#(PB)= (5)

B. Unconditional average fixation time

The average time (measured in elementary time steps) it
needs to reach fixation at one of the homogenous states (i
=0 or i=N) starting with i players of type A is denoted by
t,(B). Obviously, 7,(8)=0 and #,(B)=0. The unconditional
fixation times also fulfill a balance equation with the transi-
tion probabilities describing the rate of change,

t(B) =1+ T; (Bt (B + (1 = T7(B) - T; (B)1B)
+T7(B)11(B). (6)

This is a recursion equation for the unconditional mean exit
times or average times of fixation. Its solution reads as
[32,33]

N-1 k k N-1 &k

. LA T -(8)
p=2 2 g @2 1o
@
N-1 k k
~
WA =SS - I LB ®)

ict 121 T7(B) s To(B)

Next, we address the time it takes to reach a particular ab-
sorbing state.

C. Conditional average fixation time

Under the condition that the process reaches the absorbing
state all A, i=N, the average time of fixation starting from i,
is #'(8). Following [24], we start from the recursion

H (BB =T; (B iy (Bt (B +1]
+[1=THB) - T; (B (B (B) + 1]
+ ﬁ(ﬁ)d’iﬂ(,g)[tiﬂ(ﬁ) + 1]- (9)

The conditional average fixation time is conditioned upon
fixation at all A, which occurs with probability (bf(ﬂ). Thus,
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the product of probability and conditional time of fixation
appears in the recursion. There can be a finite expectation
value even for vanishing fixation probability because
¢ (B (B)—0 does not imply #(8)—0. For the average
fixation time under the condition of absorption at all A we
find [24,32,34,35]

N-1 k

£ L T
(m¢@§§mmﬂr@

. #(B)< T.(B)
0
@¢wzﬂmw 1o
N-1 k
p-33AO O,

ict 121 T7(B) i1 Th(B)

There is an analogous expression for the fixation time under
the condition that strategy B gets fixed in the population,
() [32]

As expressions (5), (7), and (10) are functions of the
T;(B), the study of a strong selection limit has to be per-
formed in the transition probabilities. In the next section, we
introduce a process with the analytical strong selection limit
T (B—°)— 1 and T; (8— ) — 0 (or the other way around),
and we show that the resulting dynamics is fully determinis-
tic in this limit.

III. MORAN PROCESS
A. Selection at birth and random death

A standard model for evolutionary dynamics in finite
populations is the frequency-dependent Moran process [22].
This process incorporates the following steps: an individual
is selected at random but proportional to its fitness. This
individual produces identical offspring. The offspring re-
places an individual randomly selected for death. Fitness f is
a convex combination of the average payoffs from the game,
71’4 and 7TB and a background fitness, which is usually set to
one. Thus we have f’“(ﬂ) 1- ﬂ+BﬂA and f(B)=1-p
+ ,877? The quantity 0= = ,..=1 determines the inten-
sity of selection. The transition probabilities of the Moran
process are thus given by

if (B . N-i
B+ WN=iffB) " N

() =

Selectio\rcu birth Random death (123)
N—i)f .
=B L
B+ WN-0ffB) N
Selection at birth Random- death (12b)

Selecting proportional to fitness implies that fitness is posi-
tive. Thus, for payoff matrices with negative entries, the in-
tensity of selection B cannot exceed a threshold B, This
process does not have a generic deterministic limit with ar-
bitrarily strong selection intensity and remains stochastic
with random death.
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A possibility to extend the Moran process to higher inten-
sities of selection is to choose fitness as an exponential func-
tion of the payoff; ie., f'(B)=exp(+Bm) and f2(B)
=exp(+B77) [36,37]. Now, the intensity of selection 8 can
be any positive number. For S— e, the fitter individual is
always selected for reproduction [compare Eqgs. (12a) and
(12b)]. The direction of the process becomes deterministic.
But due to random death, the system can remain longer or
shorter in a particular state. Thus, the process remains sto-
chastic in what concerns the times to fixation. With two strat-
egies, we have a semideterministic process with determinis-
tic direction and stochastic speed [29]. If there are more than
two strategies, random death can also change the composi-
tion of the less fit types in the population. This can affect the
direction of selection as the fittest type can change due to
frequency-dependent selection.

B. Selection at birth and death

Here, we introduce a birth-death process that recovers the
usual results for weak selection but also leads to fully deter-
ministic asymptotic behavior for strong selection. The pro-
cess has deterministic microscopic dynamics if the T;:(,B) are
zero or one. As in the standard Moran process, we assume
that selection at birth is proportional to fitness. In addition to
producing less offspring, individuals with a lower fitness
now have a higher probability to die. A simple way to incor-
porate this is to select at death proportional to inverse fitness.
To ensure that fitness is a positive number, we follow the
approach discussed above and define fitness as an exponen-
tial function of the payoff. This leads to the transition prob-
abilities

e (N — i)ePam
T;(,B)='+ A N s g NPE
Jde B 4 (N = i)e ﬁb"& ie Pami 4 (N = i)e ﬂd”&
VT
Selection at birth Selection at death
(13a)
B A
(N = i)etPomi ie Pami
T;(B) =

A B A B
;BT _ N\ ,tBpT; =By _ N\p—Bam;
Je i+(N-i)e ooe i+ (N—i)e P J

VT
Selection at death

(13b)

Selection at birth

B, is the intensity of selection at birth and S, is the intensity
of selection at death. For 8,=0, we recover the process dis-
cussed in Sec. IIT A. It is known that under weak selection
many birth-death processes have the same general properties
[25,38,39]. Especially, for 8, ;<1 the behavior of the Moran
process is recovered [29,30].

For simplicity, we assume S=/,=/3, in the following.
The transition probabilities can be written as

i N-i (142)
s a
i+(N=i)ePrije PAmi L N~

Ti(B) =

N-i i
iePATig N—ii+ (N —i)etPrm’

T;(B) = (14b)

Thus, as far as the payoffs are concerned, the transition prob-
abilities only depend on the difference between the
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frequency-dependent average payoffs, ATrl:ﬂ‘?—ﬂT? .

The case of Am;=0 is a form of neutral selection. In this
case, the transition probabilities are Tf(,@)E(N —i)/N?, for
arbitrary . Note that for neutral selection, moving into one
direction is equally probable as moving into the other
T7(0)=T;(0). But the probability to leave a given interior
state changes with i, T; (0) # T; (0) for i # .

For arbitrary S, the ratio of the transition probabilities
reduces to an exponential function of the payoff difference,

M — e—ZBAﬂ',-.
/(B

Hence, the fixation probabilities of the process can be ap-
proximated with the closed expressions derived in [28] after
rescaling the intensity of selection by a factor of 2. From
this, it is clear that the usual weak selection behavior is re-
covered.

(15)

IV. STRONG SELECTION

For strong selection, S— o, the asymptotic behavior of
the transition probabilities depends only on the sign of the
payoff difference. We focus on the generic cases Am;=0 to
discuss this limit. The limiting cases can be obtained from
Eqgs. (14a) and (14b) and yield

lim r(ﬂ):{o for Am; <0 ’ (16)
B 1 for Am;>0

as well as
lim T;(B)={l for Am; <0 (17)
B—oo 0 for Am;>0

Since limﬁﬁw(Tf(ﬁ) +T;(B))=1, the probability to stay in the
state i (0<<i<N) vanishes for B— and nontrivial payoff
difference, Ar; # 0. Thus, we have a fully deterministic pro-
cess for arbitrary population size. With this, we consider the
fixation probability ¢'() and average fixation times 7,(3)
and £}(f) in the limiting case of strong selection. In the fol-
lowing let ¢?(00) as well as #,() and t’;‘(OO) denote the finite
asymptotic (S— ) values of the fixation probability and
times. We identify them in terms of the initial frequency i,
depending on the average payoff difference for the process
introduced above under strong selection.

A. Fixation probability

Starting with equation (4) and inserting the limiting cases
of T/ (B) leads to

¢ (22) = ( lim T (B)) piali— 1) +( lim T/ (B) i+ 1).
(18)

That is, in the strong selection limit we have a very simple
recursion for the asymptotic value of the fixation probability,
depending on the sign of the payoff difference A, When
strategy A dominates strategy B (a>c¢ and b>d), we have
Am;>0. For 0<i<N, this yields limg ., T;(8)=0, and
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limg_., T7(B)=1, which results in (f)f(W):l—éO,i. In other
words, the probability to reach the state with all B individu-
als is zero, except if there are no A individuals initially.
Equivalently, for dominance of strategy B we obtain ¢/ ()
= dy,;. More interesting cases are found when Ar; changes its
sign, which occurs at i*=(N(d—b)+a—d)/(a—b-c+d) when
a>c and d>b or when a<c and d<<b. These are two im-
portant classes of games: coordination games and coexist-
ence games.

Let us first focus on coordination games (a>c and d
>b). In these games, the threshold value i* cannot be
crossed for infinitely large systems with deterministic dy-
namics [40]. For finite systems under strong selection, we
observe something similar. The payoff difference A,
changes sign from negative to positive and selection points
always away from i* toward the boundaries. Depending on
the initial condition /=", the fixation probability ¢/ () is
one or zero.

(i) If i <i*, Amr; is negative and with Egs. (16) and (17) we
have ¢()= d)?_ 1(). We start the recursion for the fixation
probabilities with ¢ ()= ¢;()=0. This yields ¢?<i*(00)
=0.

(ii) For i >{*, Am; is positive and Egs. (16) and (17) yield
the recursion ¢ ()= ¢, (). Starting with the maximal i
we obtain ¢ (%)=¢y(*)=1 and thus ¢?>i*(00)= 1.

(iii) If i* happens to be an integer value and the system
starts there, the first step has equal probabilities, T;(ﬁ)
=T7(8)=4. This leads to ¢/x(=)=1.

In summary, for the fixation probability we find

0 for i<i*

for i=i* . (19)

DN | =

(o) =
1 for i>i*

This is clearly what is to be expected because A is selected
for i>i* and B is selected for i <i*, (see Fig. 1). Dominance
of strategy A can be seen as a special case of coexistence
with i*<0.

Next, we consider coexistence games with a<<c¢ and d
<b. In this case, Amr; changes sign from positive to negative
and selection points always away from the boundaries to-
ward i*. For strong selection, the system gets trapped and
fixation never occurs.

(i) If i* is an integer, the system switches from i* to i* + 1
with equal probability. From i* = 1, it always returns to i".

(ii) If i* is not an integer, we observe deterministic flip-
ping between the two neighboring states i; <i* and i, >i".

Since fixation never occurs in coexistence games, it does
not make sense to compute the asymptotic value of the fixa-
tion probability. Formally, the probability to get absorbed in
all A converges to 1 if i*>N/2 and to 0 otherwise. However,
it turns out that the fixation times diverge.

B. Unconditional average fixation time

The average time it takes for a number i of A players to
either become extinct or take over the population, ¢,(8), can
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FIG. 1. (Color online) The fixation probability as a function of
selection intensity for a coordination game (a>c, b<d), given by
Eq. (5), with selection at birth and death [Egs. (14a) and (14b)].
From the payoff matrix given in the figure, we obtain i*=%+15—1N,
which gives i*=~5.32 for our numerical example with N=10. With
increasing selection intensity B, for any /<<i* we have ¢>?(,8)—>O
(full lines), whereas for any m>i* we have ¢*(B8)—1 (dotted
lines). The ¢(B) for each i can be identified via its neutral value

#(0)=1%.

be found by solving Eq. (6) recursively. To examine the limit
of strong selection, we perform the limit on both sides of the
balance equation, assuming that there exists an asymptotic
value 7;(e0) of the unconditional fixation time. With the pre-
vious analysis of the transition probabilities, this leads to

1(60) = 1+ (lim T2y () + (lim T8 ().

(20)

This strong selection recursion has to be analyzed for the two
different cases of behavior at the threshold i*, coordination
and coexistence. Again, we first examine the coordination
game (a>c and d>b).

(i) For i<i", the payoff difference is negative, A;<0.
The recursion amounts to £;(0)=1+1¢,_,() because T*(i)
—0 whereas T;(8)— 1. With #5(*)=0 at the boundary we
have 1,(0)=1, f,()=1+1,(0)=2, and eventually #,()=i.

(ii) For i>i" the payoff difference is Am;>0. The recur-
sion from Eq. (20) is #;,(0)=1+t;,;(%). The transition prob-
abilities 7~ (i) behave exactly in the opposite way as before.
The time starting from next to the absorbing boundary is
ty_1(©)=1+1y(°)=1. Hence, we have ty_;()=k, or with k
=N-i, the unconditional average time is 7;()=N-i.

(iii) If the threshold is an integer and the system is initi-
ated there the number of steps needed to fixate is i* or N
—i* with equal probability. Thus, we can compute the aver-
age time with the previous findings, f;+(%)=("+N—-i")/2
=N/2.

In summary, depending on the starting point i*, the
asymptotic value for the unconditional average fixation time
in a coordination game is

PHYSICAL REVIEW E 80, 011909 (2009)
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t1(8)

FIG. 2. (Color online) Dominance of strategy A. We show the
probability distribution of the unconditional fixation time (measured
in elementary time steps) of a single A player in a population of
N-1 B players. For =1 and =2, the distribution has two peaks
corresponding to the two absorbing boundaries. For stronger selec-
tion (inset), the probability that the advantageous A individual goes
extinct becomes small and fixation takes at least N—1 time steps. In
this case, the distribution becomes single peaked. For S— oo, the
distribution converges to a delta peak at £;()=N-1 (payoff matrix
a=2.2,b=1.5, c=2, and d=0.5, population size N=100, and histo-
grams obtained from 107 realizations. Lines are guides to the eyes).

1500

2000

i for i<i”,

N
t(0) = 5 for i=i", (21)

N-i for i>i".

In the strong selection limit #,(%) converges to the distance
between initial state and the final state, as expected from
deterministic motion.

We can also infer the dynamics for games in which one
strategy dominates. When strategy A dominates, we can for-
mally set i*<0O and obtain £,(0)=N-i (cf. Fig. 2). When
strategy B dominates, the equivalent procedure yields 7;(c)
=i.

In case of a coexistence game, the system gets trapped
around i and cannot reach the absorbing boundaries. As ex-
pected, the recursions lead to #;,(0) — oo,

C. Conditional average fixation time

If i A players take over the population, the asymptotic
fixation time under this condition, r,f‘(oo), can be obtained by
solving the balance [Eq. (9)] recursively. However, this situ-
ation is more complex as we have to consider the fixation
probability and the conditional fixation time in a combined
way. Introducing the asymptotic value 0;‘(00)=¢?(00)t?(00),
recursion (9) yields

0 (22) = ( lim T;(B)(OL() + ¢ia(i ~ 1)
+( lim TH(B)(O4, (=) + i+ ).  (22)

The formulation of a similar equation for 6?(00)=(1
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FIG. 3. (Color online) Unconditional [#,(8)] and conditional
[#}(B)] average fixation times (measured in elementary time steps)
as a function of the intensity of selection for a coordination game
(top) and a game in which A dominates (bottom). The payoff ma-
trices of the games are given in the figures, the population size is
N=10. Top: in a coordination game (a>c¢, b<d), the conditional
and unconditional fixation times converge to N—i for S— oo if ini-
tially more than i*=117/22~15.32 individuals play A [compare Eq.
(21)]. The lines show the initials states i=6 (dotted lines) and i=9
(full lines). Bottom: when A dominates B (a>c¢, b>d), the uncon-
ditional fixation time #,(8) first increases with B. For any initial
condition i, #,(8) and £(B) converge to N—i in the limit of strong
selection. The initials states are i=1 (dotted lines) and i=9 (full
lines).

—qu‘(OO)) t?(OO) is straightforward. Both are analyzed regard-
ing the different behaviors at either side of the threshold i*.

For the coordination game the system reaches the absorb-
ing boundaries after a finite time.

(i) If i>i*, the system fixates at i=N with probability
¢f(00)=1. Thus, 0{‘(00)=t‘?(00) and we recover the same re-
cursion as for the unconditional fixation time. This yields
t?(OO)=t,»(OO)=N—i (see Fig. 3).

(ii) If i <i*, the system fixates at i=0, ¢f(00)=0. Thus, we
cannot formulate a meaningful recursion for #/(=¢). In this
case we observe T;(B)—1, T7(B)—0, and we can only
make a statement for t?(OO), which results in tf(,B)zi.

(iii) If i=:" is an integer, the system is not fully determin-
istic as fixation of A and fixation of B are observed with

PHYSICAL REVIEW E 80, 011909 (2009)

equal probability % In this case, we obtain tﬁ.(oo):N —i* and
() =i,

In a regime where A always performs better than B the
unconditional fixation time t?(OO) is equal to the conditional
fixation time #;() (see Fig. 3). Equivalently, when B always
performs better, we have 17(20)=t,().

For a coexistence game, the system does not reach any of
the boundaries but is always dragged toward i, as discussed
before. Recursion (22) for t’?(OO) or its equivalent for tlB (o0) is
not meaningful here because they contain the fixation prob-
abilities. However, in this case all fixation times diverge with
B.

In this section, we have derived asymptotic values for the
birth-death process with selection at birth and selection at
death. We have identified the underlying games that lead to a
fully deterministic process in the limit of strong selection. As
we have seen, the difference of the average payoffs A, as a
function of the relative abundance of type A plays an impor-
tant role.

V. GAMES WITH THREE STRATEGIES

Here, we demonstrate that the process we have introduced
above leads to rather simple and often deterministic dynam-
ics even in more complex situations. We focus on games
with two players and three strategies with cyclic dominance
[41-51].

Cyclic dominance among three strategies corresponds to
rock-paper-scissors games, where each strategy can be
beaten by another one: rock crushes scissors, scissors cut
paper, and paper wraps rock. In general, the payoff for win-
ning does not have to be equal to the payoff for losing, which
leads to nonzero-sum games. For simplicity, we set the pay-
off for a tie to zero. Setting the winners payoff to one and the
losers payoff to —s =0, the 3 X 3 payoff matrix reads as

R P S
RO -5 1
Pl1 0 -5 . (23)
S\-s 1 O

For infinite populations, the state of the system is defined by
the frequencies of the three strategies, xp, xp, and xg. Thus,
the state space is the simplex S;C R?, an equilateral triangle
between the three states all R, all P, and all S. Apart from the
three trivial equilibria, the replicator dynamics has an interior
equilibrium at (xg,x P,xs)*=(% , % , %), which follows from the
symmetry of the system. The parameter s determines
whether the interior equilibrium is asymptotically stable (the
system spirals inwards toward the interior fixed point for s
< 1) or unstable (the system spirals out toward a heteroclinic
cycle along the boundaries for s> 1). In the zero-sum game
with s=1, the system oscillates around the interior equilib-
rium with the Hamiltonian —xzxpxg being a constant of mo-
tion [4,8].

In finite, well-mixed populations, the state space is only a
subset of (N+1)(N+2)/2 states within the simplex S5 (cf.
Fig. 4). Moreover, the dynamics is typically stochastic. Prop-
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FIG. 4. (Color online) The discrete simplex of the rock-paper-
scissors game for the different ranges of s. The three strategies are
arranged in such a way that cyclic dominance is counterclockwise.
For N=33 and s=1 (top left), the three lines of equal payoffs de-
fined by Egs. (34) are parallel to the boundaries of the simplex.
Changing the population size to N=11 (top right) does not change
these lines but only the state space of the system indicated by dots.
For example, the system can no longer access the center of the
simplex. With decreasing s, the three lines of equal payoffs are
rotated clockwise (bottom left, s=0.5). With increasing s, these
lines are rotated counterclockwise (bottom right, s=2.5). Only in
special cases, the three lines of equal payoffs defined by Egs. (34)
intersect with the possible states of the system. The arrows in the
upper left figure indicate the direction of selection as it is induced
by the cyclic dominance of the three strategies.

erties such as the average drift for a Moran process or the
average time to reach the absorbing boundaries are attainable
for weak selection [46,50]. To analyze the strong selection
limit, we adopt the evolutionary process with selection at
birth and death discussed above for 2 X2 games. Starting
with the payoffs from Eq. (23) in a well-mixed population
the average payoffs read as

WR:iS—iPS, (24)
7Tp=iR—iSs, (25)
Mg =ip—Igs, (26)

where ip, ip, and ig=N—igr—ip are the number of individuals
playing rock, paper, or scissors in a population of size N,
respectively. Individuals are selected proportional to fitness
at birth and proportional to inverse fitness at death, both with
the intensity of selection 8. The fitness of strategy X is given
by fy=exp[+Bmx]. The dynamics on the discrete finite set of
states is governed by six transition probabilities in each state.
The transition probabilities in each state (ig,ip,is) to change
to one of the six neighboring states are thus given by

PHYSICAL REVIEW E 80, 011909 (2009)

. .1
.. ixf; iyf
Ty_x(ig,ip,is) = _X X .Y L
Ez izf7 EZ izf7
\'ﬂ_j \'ﬂ_/
birth death (27)

where X, Y, and Z stand for R, P, or S. Note that the prob-
ability to stay in the given state is given by Tx_g(ig,ip,ig)
+Tp_plig,ip,is)+Ts_s(ig,ip,ig). For strong selection, B
— oo, the system moves from each state into one direction
with probability one unless two payoffs are identical. In the
following we address how this direction depends on the pay-
offs in each state and on the parameter s.

Let us first assume that for given state (ig,ip,ig), we have
the unique ordering of the average payoffs from Eqgs.
(24)-(26). Let | denote the largest and 75 denote the lowest
value, i.e., m > 7, > 3. The number of individuals playing
the according strategies can be denoted as iy, i,, and i3. For
T5_,, we have

T ileﬁwl
LT ePT 4 5P 4 3P
o~ Bm™3
ise
X 2 (28)

ile_ﬁwl + ize_BwZ‘F i3€_Bw3

g

iy + e P 4 A=)

i3

X
l.le_B(ﬂ-]_qT3) + ize_ﬁ(ﬂ-z_w3) + i3

. (29)

where m—-m,>0, m—-m3>0, as well as m—m3>0. For
B— o, this leads to

lim 7;5_,,=1. (30)
B_mo
All the other transition probabilities vanish. In each repro-
ductive event, an individual with the largest payoff replaces
an individual with the smallest payoff. This holds for any
unique ordering of the three payoffs.

If the payoffs are not in unique order, that is, if two or
more payoffs are equal, at least two probabilities become
nontrivial. This yields the following three scenarios:

(i) for 7> m, =13, the individual with the highest aver-
age payoff is certainly selected at birth. But selection at
death will remove an individual playing one of the two re-
maining strategies with probability given by their abundance.
We find

i
lim T2ﬂ1= N 2 T (313)
B—o 1+ 13
and
: I3
lim T3*>1= — . (31b)
B—x I+ 13

Obviously, we have T,_1+7;5_,;=1.

(ii) For 7 =1, > 3, the individual with the lowest payoff
is selected for death with certainty, but selection at birth is
still probabilistic. It is easy to see that
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lim T3*>1 = _l_l., (323.)
B—o 1+
and
i
lim T ,=—. (32b)
B0 131 + 1)

ThuS, T3_‘| + T3_>2= 1.
(iii) For 7r;=m, =173, selection is stochastic at birth and at
death. In this case, we find

As expected, we have 2y Ty ,y=1.

These results are valid if two or more payoffs are equal at
a given lattice site, which is only obvious for s=1 and might
not occur for any lattice site at all in the general case of s
#1.

With Egs. (24)—(26), we can compute the point sets in the
simplex where two or all three average payoffs are equal,
depending on the value of s. For 7z=mp= g this is only the
center of the simplex, independent of s. For two payoffs
being equal, we obtain the three linear equations

TR=Tg at iP(S+2)=N—iR(1—S),

Tg= Tp at ip(s—l)=NS—iR(l+2s),

ip2s+1)=N(1+5)—ig(2+5). (34)

TRr=Tp at

However, it is not obvious at which of the discrete states
(ig,ip,is) we can observe equal average payoffs of two strat-
egies if the loser’s payoff is not equal to —1 and especially if
the system size is not a multiple of three (compare Fig. 4).

For simplicity we thus concentrate on the case of N being
a multiple of three. In general, the strong selection behavior
of the system is determined by the transition probabilities
near the lines of equal average payoffs. When the population
size N is a multiple of three, the dynamics for the three
different cases of s=1, s<<1, or s>1 is as follows:

(i) for s=1, we have mg=mg at ip=N/3, me=Tp at iy
=N/3, and mr=mp at ig=N/3. Hence, there is always sto-
chastic movement induced by Egs. (31a), (31b), (32a), (32b),
and (33). Apart from these points, the direction of selection
is indeed deterministic, which means that an individual with
higher payoff always replaces an individual with a lower
one. In certain regimes, near the corners of the simplex and
along the edges the initial condition determines the final state
where the system fixates. In a much larger area, however, the
system fixates stochastically. In Fig. 5 we illustrate this by
showing one fixation probability obtained from numerical
simulations of the birth-death process. Due to the symmetry
of the system, this fixation probability can either be @F, ¢,
or ¢°.

For s<1, the lines where payoffs are equal rotate clock-
wise in our setup of cyclic dominance. In general, no states
of the finite population system coincide with the lines of
equal payoffs (except for special cases) (see Fig. 4). But as
soon as the process crosses these lines, it changes direction.

PHYSICAL REVIEW E 80, 011909 (2009)

Fixation Probability

FIG. 5. (Color online) Zero-sum rock-paper-scissors game. We
show the probability that the system fixates at the lower right cor-
ner, e. g., dJR in a system with N=33, and s=1 for strong selection
B—, depending on the initial state (ig,ip,ig): as discussed in the
main text, fixation is stochastic. Near the corners and along the
edges fixation is deterministic. In a central area of the simplex, the
system spirals out in a probabilistic fashion. The closer the initial
condition is to the center, the closer the probability to get absorbed
in a given state is to one-third (fixation probabilities obtained from
numerical simulations over 10* realizations).

Near the corners and on the edges the system fixates deter-
ministically, but in a central area the process spirals inwards
if it does not hit the boundary of the system. However, it
turns out that there is a largest limit cycle (LLC) depending
on s and N and that there can be several other limit cycles
inside the LLC. We demonstrate this finding as it is obtained
from numerical simulations in Fig. 6, showing one sample
trajectory that ends as the LLC. Note that the term cycle
actually refers to a hexagon.

FIG. 6. (Color online) Positive-sum rock-paper-scissors game.
For a population size of N=33 and s=0.5, the dynamics is such that
fixation does not occur in a central area, but it is deterministic near
the corners. For instance, any initial condition in the darkest area
will lead to the pure state at the lower left. The white area marks the
sites from which, chosen as initial condition, the system does not
fixate but approaches a closed cycle. We show an example trajec-
tory of the system that ends on the largest of these cycles (central
hexagon) starting from the initial state (ig,ip,is)=(1,9,23). Inside
this largest cycle, there are other cycles such that every site except
the center is already on such a cycle.
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FIG. 7. (Color online) Negative-sum rock-paper-scissors game.
Deterministic fixation for a population of size N=33 and different
s>1. The dynamics is deterministic everywhere, except in the cen-
ter (white dot), where all three payoffs are the same. Depending on
the initial state, the system fixates to a given pure state. This is
indicated by the three different shadings. For instance, when the
system 1is initially at a site in darkest shading, it will fixate to the
pure state at the lower left with probability one. We show one
example trajectory (arrow) starting from the initial state (ig,ip,ig)
=(10,13,10). By increasing s, we can vary the state that is ulti-
mately reached by the system.

For s>1, as the lines of equal payoffs rotate counter-
clockwise (Fig. 4) the system spirals outwards in a determin-
istic fashion. The movement is no longer deterministic only
near the corners and along the edges but everywhere (except
for the center) (compare Fig. 7. This means that if s> 1, we
observe deterministic fixation depending on the initial con-
dition.

In this section, we have shown that a birth-death process
with exponential payoff to fitness mapping and selection at
birth and death is able to induce deterministic movement in
the strong selection limit even in 3 X 3 games. For the tran-
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sition probabilities Ty_,y this limit can be performed analyti-
cally. It turns out that the microscopic dynamics is dependent
only on the hierarchy of the average payoffs. As for finite
systems an analytic description of the fixation probabilities
(and times) is lacking; further examination of this system has
to be numerical. Under strong selection the patterns that
emerge show a very interesting regularity; it turns out that
apart from population size, the results are dependent on the
parameter s.

VI. DISCUSSION

The standard approaches to evolutionary game dynamics
such as the Moran process or pairwise comparison based on
the Fermi rule lead to stochastic dynamics in finite popula-
tions [12]. Even if the direction of selection becomes deter-
ministic, the time scale typically remains stochastic and leads
to a distribution of the average fixation or mean exit times
[29]. Moreover, these standard approaches do not lead to a
deterministic direction of selection in games with more than
two different strategies [52]. Here, we have introduced a pro-
cess with selection at birth and at death. This process allows
to interpolate between weak selection, usually considered in
evolutionary biology, and arbitrary strong selection, such that
in the extreme case the worst performing individual is al-
ways replaced by a copy of the best performing individual.
This kind of selection is sometimes used in evolutionary op-
timization [36,53]. While the limiting case itself may not be
of most interest for real biological or social systems, which
are always subject to stochastic noise, we have discussed the
most important features of this limit. In particular, it reveals
speed limits of evolutionary dynamics in 2X2 games that
stochastic dynamics cannot cross and shows that in games
with more than two strategies, the limiting deterministic dy-
namics can have a crucial dependence on the initial condi-
tions.
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