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Induced orientational effects in relaxation of polymer melts
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We study stress relaxation in bidisperse entangled polymer solutions. Shorter chains embedded in a majority
of longer ones are known to be oriented by coupling to them. We analyze the mechanism for this both by
computer simulation and theoretically. We show that the results can be understood in terms of stress fluctua-
tions in a polymer melt and chain screening. Stress fluctuations are frozen on the relaxation time of the longer
chains, and these will induce strong orientational couplings in the shorter chains.
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Polymer molecules in concentrated solution or melts have
very unusual viscoelastic properties [1] and are the subject of
much research [2,3]. After shearing such a system of long
chains, the modulus has a long plateau that depends strongly
on chain length, yet the height of the plateau appears almost
independent of it.

The most successful model in explaining the experimental
data is the “reptation” model of de Gennes [4]. The initial
work concentrated on the case of a polymer in a background
network such as a gel which is most easily understood, but
since then, reptation has had many applications to polymer
solutions. The idea is that topological effects restrict the
movement of a polymer to a tube by virtue of entanglements
thereby suppressing transverse motion for scales larger than
the “tube diameter.” However, chain ends can move freely
forming new tube. A polymer then has a curvilinear diffusion
coefficient inversely proportional to its length L, so that the
time to form a new tube is «L3. This is also expected to be
the relaxation time in a polymer melt.

To compare this to experimental data on the viscosity, we
recall that the elastic modulus G(z) is related to the viscosity
7 through

E: fw G(p)dt. (1)

0

Because the plateau is independent of L, this gives a viscos-
ity «L3. The experimental data in the entangled regime fit
better with L*%* The explanation for this discrepancy has
yielded a number of theoretical explanations. The two main
reasons are both legitimate extensions of de Gennes original
idea. First, finite size effects [5,6], such as tube length fluc-
tuations, yield a larger slope for this quantity. Second, many-
body effects that give rise to chain screening [7-9] require
modification of the original single chain model. Researchers
have been able to fit experimental data separately using ei-
ther idea and it is clear that, in fact, both are real and experi-
mentally contribute.

That many-body effects must be important can be seen by
considering what happens if the chains were all independent.
Then density fluctuations of the system would become very
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large and the system would be very compressible. A real
system has excluded volume interactions, which leads to a
small compressibility and chain screening, that is, ideal chain
statistics on a large scale [2]. The maintenance of screening
leads to an increase in free energy when the chain moves out
of a tube [7-9]. To maintain constant density, this produces a
stress field whose strength grows linearly with the new tube.
This implies that the motion will be activated as the original
tube is vacated. The stress is relieved by other chains moving
into or out of the stressed regions.

This mechanism causes chains to follow the stress trails
of other chains because as a chain leaves a tube, it leaves a
vacancy which is attractive to other chains. The memory for
this stress mechanism will decay with a longer relaxation
time than the time for the chain to vacate a tube. This was
proposed as an explanation for the difference between diffu-
sion and stress relaxation [10].

The effects of interaction of chains can perhaps most eas-
ily be seen by the fact that they induce partial alignment with
each other. Many experiments have shown that there is
strong induced orientational coupling of smaller chains under
stretching of a system containing mainly longer ones, for
example, in bidisperse polymer melts [11] where the ratio of
the orientation of the smaller chains to the longer host chains
was found to be €=0.45 which is quite large. It is the purpose
of this work to show that this phenomenon can at least par-
tially be accounted for by the same mechanism responsible
for the many-body effects related to chain screening men-
tioned above. Earlier work looking at this by simulation
techniques could reproduce similar orientational responses
by means of a direct simulation of these systems [12]. This
work should help to clarify the origin of this effect
theoretically.

We start by performing computer simulations similar to
those done earlier on many-body effects for long polymer
chains [7,8]. Consider short and long chain lengths L, and L,
respectively. We will assume reptation dynamics [13] for
moving chains. Chains live on a cubic lattice in a BXB
X B box. In each step, the head or tail monomer of a chain is
chosen at random, and then an attempt is made to reattach it,
in a random orientation, to the other end. It is rejected only if
the new lattice position is occupied. We assume a curvilinear
diffusion coefficient «1/L, where L is the chain length,
which is expected from reptation [4]. Translated to a Monte
Carlo simulation, we say that the probability of choosing a
chain is «1/L. As discussed above, this system had been
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analyzed numerically in considerable detail [8] and shows
activated motion in agreement with the theoretical predic-
tions [8,9] giving a relaxation time ~exp[(L/L*)*?] for very
long chains, where L* is a constant that depends on the den-
sity of the system. In a real melt it would more directly
depend on the plateau modulus of the melt.

For the simulation to be relevant it must be in the same
universality class for statics and dynamics as that of a real
melt. However, the lattice model does not allow monomers
to simultaneously rearrange themselves as monomers reptate
to new sites. In a real system, such local rearrangement will
happen as is required by the incompressibility of the system.
A consequence of this is that stress will be created by these
rearrangements leading to an increase in free energy that
turns out to be local [8]. This local increase in the free energy
is precisely what one simulates with reptation dynamics.
Therefore, we do expect the same essential physical effects
in these lattice simulations as well, where density fluctua-
tions in the simulation will correspond to stress fluctuations
in a real melt.

To understand memory effects in such systems, we pre-
pare the simulation in a sheared state, where the orientation
of each monomer is now anisotropic. We do this by biasing
the Monte Carlo algorithm so that it is more likely to make
steps in the z direction rather than the other two. The system
is equilibrated in this state by letting it evolve for many
relaxation times. At this point, the effects of shearing are
turned off and directions of motion are chosen to be isotro-
pic.

To illustrate the effect, we shall analyze what happens in a
polydisperse system made up predominantly of long chains
L, with a minority of shorter chains L,. For example, we
consider a box of size B=16 with nine chains of length L,
=256 and one chain of length L;=64, with a number density
of =~0.58. We monitor two kinds of quantities. First, we
monitor [(r), the average amount of the original tube left at
time . We also measure the birefringence which is the de-
viation of polymer links from an isotropic state. We define
this as

n=2n,-n,—ny, (2)

where n,, n,, and n, are the fraction of monomers going in
the x, y, and z directions, respectively.

In the Doi Edwards model, the number of entanglement
points still remaining after time 7 is a measure of the stress of
the system. Hence, in their model the length of original tube
I(zr) is proportional to the elastic modulus. However, if there
are collective effects, even after a chain has left its original
tube, it can still have a residual orientational bias. Therefore,
we should monitor more directly the birefringence of the
system, which for small forcing will be linear with the stress
of the system.

In Fig. 1 we plot the decay of the birefringence separately
for the longer chains (upper plot) and the shorter chain
(middle plot). The lower plot is (), the amount of chain left
in the original tube for chain length L,.

In the original reptation picture, one expects that the bi-
refringence should be proportional to the chain left in the
tube. Clearly for the shorter chains, this is not the case. The
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FIG. 1. (Color online) The decay of the average birefringence
for a simulation using reptational motion in a polymer melt with
two different chain lengths. The top plot, L;=256, and the middle
plot, L,;=64. The lower plot is the average amount of chain length
left in the tube at time 7, I(¢) for chain length L;.

birefringence quickly decays initially, following I(z) quite
closely, however, it appears to level off at a nonzero value.
After this it decays but at a much longer time scale. We will
analyze what mechanism gives rise to such a striking effect.

In the initially biased preparation of the system, links are
more likely to be oriented in the z direction; therefore, as the
polymer chain leaves its tube, it will see a biased environ-
ment. In the extreme case of an environment oriented as rods
in the z direction, the chain will also be biased in the same
direction as well [14]. In the case of smaller orientational
biases, it is then expected to have an effect which is linear in
the average birefringence of the chains. If the surrounding
chains are much longer than the shorter one, it will see an
almost constant orientational bias as it moves. Even after it
has completely left its original tube it will possess a residual
orientational bias. This will then slowly decay with time at
the same rate as the bias of the longer chains.

Therefore, we should modify the noninteracting repta-
tional hypothesis by saying that the orientational bias of the
shorter chains is the amount of chain left in the tube at time
t plus the bias due to the environment. This is precisely the
same assumption made in reptation-based treatments of this
effect made previously [15]. So we can define the “residual
birefringence” due to the birefringence n, of shorter chains as

r(1) = ny(1) - eny(1), 3)

where € is the fraction of orientational coupling induced by
the longer chains n;, as has been measured experimentally
[11]. After subtracting out the background bias from the
longer chains, we are left with the bias from chains that have
yet to leave their tube. We therefore expect r(r) o« l(z). To test
if this is the case, we find the value of e that best eliminates
the longer time decay and then plot r(¢) and I(z) as shown in
Fig. 2. It is clear that the two curves fit each other quite well.
In this case €=0.14.

Therefore, we have gained a good understanding of how
orientation decays in this polydisperse polymer lattice simu-
lation. Shorter chains continue to have substantial anisotropy
even after completely leaving their original environments by
the influence of the surrounding longer chains, which still
have not relaxed to an unbiased state.
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FIG. 2. (Color online) The residual birefringence r(r) (line) and
the average amount of chain left in a tube I(¢) (points) are shown.
As is clear, the two curves closely follow each other.

This is in accord with earlier experimental and theoretical
work on these systems. This orientational bias is an effect
identical to what is seen in more microscopic accurate simu-
lations on effectively shorter chains [12]. The degree of ori-
entational coupling is given by the factor €, which given the
density of this system appears to be consistent with the value
of coupling found in the more microscopic approach [12].

Now we turn to the relation between this lattice simula-
tion and real polymer melts. There are two idealizations of
the simulation that need to be addressed that stem from a
lack of continuous translational symmetry for lattice models:
the initial conditions from which the system relaxes and the
inability of surrounding chains to simultaneously rearrange
themselves so as to accommodate new chain.

First, in a real experiment, the elastic modulus is defined
as the stress relaxation observed after a small and sudden
deformation of the material. After such a deformation, the
system is in a nonequilibrium state, and the polymer chains
will then move to restore themselves to equilibrium statistics.
The simulation here is started in a deformed state and is then
relaxed. The deformed state has been obtained by equilibrat-
ing the chains so that their directions are biased in the z
direction. This is not identical to a real experiment because
lattice chains cannot be continuously deformed due to a lack
of continuous translational symmetry. A test of the validity of
such a procedure is to ask if we are in the small deformation
linear regime. We therefore test to determine if the relaxation
of the system is linear in the initial birefringence. We calcu-
lated the integral of n(r), normalized by its initial value, for
two different initial biases and found that indeed this was the
case. For example, we considered a melt of chains of length
64 with 0.58 of the lattice sites occupied. When the bias was
reduced by 38%, this integral only changed by 2.3%.

Second, as mentioned above, there are no multimonomer
moves with reptation dynamics, and so neighboring chains
are unable to rearrange themselves around new tube being
formed. This causes an increase in the local chain density of
a region. In reality, what happens instead is that the system is
almost incompressible, so that stress and strain are created by
the introduction of new monomers into a region. These ef-
fects in equilibrium have been analyzed in detail previously
[8.9] and give rise to the same behavior as in the simulations.

In the simulation described here, the reason that the poly-
mer chain acquires an anisotropy is due to the influence of
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the surrounding medium. The surrounding medium is inho-
mogeneous and the density of the medium is frozen in on the
time scale of a relaxation time of the majority (longer)
chains. The anisotropy of density fluctuations causes the
polymer to orient in the same direction. In a real melt, the
analogous quantities to consider are stress fluctuations, as
was analyzed by Semenov and Rubinstein [9] when the sys-
tem was isotropic. We will consider the effect of these fluc-
tuations in a stressed polymer melt. The network stress o;(r)
will be frozen in for time scales less than the relaxation time.
When the end of a chain enters a certain region, the network
will be deformed creating a strain €;(r). The excess free
energy is then

F~ f EiJO'ijd3r. (4)

The typical energy of a fluctuation of order an entanglement
length =N, must obey Boltzmann statistics and is therefore
of order kzT [9]. At the same time, the energy of such a
fluctuation in a volume Vo N3’ is

Vo?
W~ = (5

where K is the (longitudinal) elastic modulus of the network
and is «<kgT/N, [2].

The increase in free energy in placing additional chain in
a new region is responsible for the exponential dependence
of relaxation time on chain length as has been previously
analyzed [8,9]. However, what we are interested in here is
the fluctuation in the additional free energy that must be paid
by placing an entanglement length of chain in a new region.
The average deformation €;~N,/V and using Egs. (4) and
(5), this gives [16] 6F~T/N*.

We can therefore think about the elastic fluctuations as
causing a random potential with an rms of *N, 4 which the
chain interacts with. We now ask what happens when the
network is deformed. Suppose an affine deformation e is
applied that is of order 1. The random potential will now also
be deformed, just as the density had been deformed in the
simulations. So we expect an anisotropy in the potential also
of order kzTN, 4 Therefore, a chain segment of length N,
will no longer explore its surroundings isotropically but have
a bias of order 1/N!'* in the z direction. Therefore, the bire-
fringence of the chains in this new region will more gener-
ally be ~eN, ",

To understand this more quantitatively, write the correla-
tion function for the random potential ¢(r) as

(p(r)p(r))=v(r-r’). (6)

For a single chain in this environment, the annealed and
quenched averages yield the same results [17]. Averaging
over realizations of the random potential leads to a weak
attraction of the polymer to itself, which interacts with itself
via the potential v(r).

At first, this weak attraction would seem to be in contra-
diction with the screening theorem [2] that says for long
chains, the statistics of individual chains are ideal. However,
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we are considering a potential that is static only on a time
scale much less than the reptation time. On that time scale,
the curvilinear motion of the tube is small and we can con-
sider what happens if we stop chain ends completely from
reptating. Because of entanglements, chain motion is con-
fined to a tube and this means that we do not expect com-
plete screening in this case. Chain of length less than N, can
move quite freely, but above that entanglements reduce the
number of degrees of freedom. Therefore, we expect that the
screening of excluded volume is not complete, and the
screening should scale as it would for a melt of chains of
length N,. Therefore, the excluded volume parameter «<1/N,
[2].

On the scale of blobs of length N,, this leads to a net
repulsive potential ~(1/N,)N2/V~N,"?, with a range of a
tube diameter. This is exactly the same scale as the scale of
the effective attractive potential in Eq. (6) because the height
of v is ~N,"? also with the range of a tube diameter. There-
fore, one expects that this weak attraction is canceled out by
the excluded volume repulsion weakened by screening in
order to have ideal chains over large distances.

This argument can be turned around: the fact that we must
have complete screening for arbitrarily long chains, and that
screening will be imperfect for polymers confined to a tube,
implies that the polymer chain must move in a weak random
potential whose strength is such as to give complete cancel-
lation of the second virial coefficient. In other words, the
assumption of reptation, plus the requirement of screening,
gives rise to the random potential with the strength given
above.

After stressing the system, the random potential will
change so that the correlation function is v (r—r’). The form
of the potential should now be anisotropic and approximately
v,=v(Ar), where A is the affine transformation of the un-
sheared coordinates to the sheared state. In the direction of
maximum extension, the range of v, has now increased, and
perpendicular to this, the range has decreased. This clearly
leads to an alignment of the chains in the direction of maxi-
mum extension. To calculate the local anisotropy quantita-
tively is not possible without additional information. The ex-
act form of v(r) in Eq. (6) depends on the correlations of
entanglements in these systems. This, at the moment, is un-
known. Related to this is how the imperfect screening of
chains in tubes, discussed above, is modified by stretching.
This is necessary to determine chain statistics in the stretched
state.
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The € factor in Eq. (3) is 0<N;1/4. This is a substantial
amount of orientational bias on the scale of a tube diameter.
In a melt one would also expect that chain packing would
also induce further alignment locally due to local chain pack-
ing and indeed an €=0.45 has been reported experimentally.
However, in concentrated and semidilute solutions, such lo-
cal packing effects would not be expected to play a large
role.

To analyze the semidilute situation further using scaling
theory [2], we expect that contact energy between blobs of
the size of the screening length & will be of order of kT per
blob [2]. Therefore, the number of interchain contacts per
unit volume is proportional 1/&. By assumption, alignment
due to packing is local, so this will give a dependence of
€1pcs™ 1/ E. If the number density of monomers is p, then
Eoxcp34 2] so that €,.,%p”*. We must also modify the
calculation of 8F to take into account swollen exponents
below a screening length & The experimental data in this
regime are not completely conclusive so we will make the
conservative assumption that the tube diameter increases
with the same power as & Taking the ratio of these two
effects €cqr/ €sress ~ P"'%. Therefore, in the entangled semi-
dilute regime, we expect that the mechanism discussed here
would dominate for low enough density.

The simulation described here is used to verify that, in the
reptation regime, shorter chains will partially align them-
selves to sheared background chains in a way that is very
similar to what is seen experimentally. However, the degree
of orientation in the model presented is not indicative of the
experimental value. The tube diameter is artificially set to
one step length and there are no stress fluctuations, only
fluctuations in density. To understand the strength of the cou-
pling in more detail, we have performed a theoretical analy-
sis of stress fluctuations showing that their effect is indeed
substantial.

In conclusion, we have shown that induced orientational
coupling of chains in a concentrated polymer solution can be
understood as a consequence of the many-body interactions
of a polymer system undergoing reptation. Reptational mo-
tion freezes in degrees of freedom causing incomplete
screening that must be balanced by a random potential caus-
ing chain attraction. This random potential has its origin in
elastic fluctuations of the system [9]. When the system is
stretched, the correlation in the random potential no longer
screens interactions completely and causes the chain to elon-
gate in the direction of stretch. This was analyzed directly by
computer simulation using reptation dynamics and demon-
strated that this orientational bias is substantial.
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